A method of adjusting the presentation of music is provided. In the method, a sequence of musical notes is presented by a first music presenting device. A critical beat indicator defining a time within the sequence of musical notes for a critical beat point is received. An isolation indicator defining a period for note isolation for the sequence of musical notes is received. A velocity coefficient is calculated by a processor for each note of the sequence of musical notes. The velocity coefficient is calculated as a function of the defined time and the defined period for note isolation. The sequence of musical notes is presented by a second music presenting device using the calculated velocity coefficient.
|
19. A method of adjusting a presentation of music, the method comprising:
controlling presentation of a sequence of musical notes by a first music presenting device;
receiving a critical beat indicator defining a time within the sequence of musical notes for a critical beat point;
receiving an isolation indicator defining a period for note isolation for the sequence of musical notes;
calculating, by a processor, a velocity coefficient for each note of the sequence of musical notes, wherein the velocity coefficient is calculated as a function of the defined time and the defined period for note isolation; and
controlling presentation of the sequence of musical notes by a second music presenting device using the calculated velocity coefficient for each note of the sequence of musical notes.
1. A non-transitory computer-readable medium having stored thereon computer-readable instructions that when executed by a device cause the device to:
control a first presentation of a sequence of musical notes;
receive a critical beat indicator defining a time within the sequence of musical notes for a critical beat point;
receive a period for note isolation indicator defining a period for note isolation for the sequence of musical notes;
calculate a velocity coefficient for each note of the sequence of musical notes, wherein the velocity coefficient is calculated as a function of the defined time and the defined period for note isolation; and
control a second presentation of the sequence of musical notes using the calculated velocity coefficient for each note of the sequence of musical notes.
18. A system comprising:
a processor;
a music presenting device operably coupled to the processor; and
a computer-readable medium operably coupled to the processor, the computer-readable medium having computer-readable instructions stored thereon that, when executed by the processor, cause the system to
control a first presentation of a sequence of musical notes;
receive a critical beat indicator defining a time within the sequence of musical notes for a critical beat point;
receive a period for note isolation indicator defining a period for note isolation for the sequence of musical notes;
calculate a velocity coefficient for each note of the sequence of musical notes, wherein the velocity coefficient is calculated as a function of the defined time and the defined period for note isolation; and
control a first presentation of the sequence of musical notes by the music presenting device using the calculated velocity coefficient for each note of the sequence of musical notes.
2. The computer-readable medium of
3. The computer-readable medium of
4. The computer-readable medium of
5. The computer-readable medium of
6. The computer-readable medium of
7. The computer-readable medium of
receive a request from a user via a user interface window presented in a display accessible by the device, wherein the request indicates a data file to open, wherein the data file includes data characterizing the sequence of musical notes; and
read musical notes from the indicated data file.
8. The computer-readable medium of
9. The computer-readable medium of
10. The computer-readable medium of
11. The computer-readable medium of
12. The computer-readable medium of
13. The computer-readable medium of
where N is a number of critical beat points, W is the period for note isolation, and D is each note's distance in time from each critical beat point.
14. The computer-readable medium of
15. The computer-readable medium of
16. The computer-readable medium of
17. The computer-readable medium of
20. The method of
a musical instrument;
a display;
a musical synthesizer;
a speaker.
|
This Application claims priority to U.S. Provisional Patent Application Ser. No. 61/755,192, filed Jan. 22, 2013, which is hereby incorporated by reference in its entirety.
The field of the disclosure relates generally to adjusting the presentation of musical sounds during the automatic generation of musical sounds from a musical score, and more particularly, to using a determined critical beat indicator to accent musical sounds similarly to how they would be accented during generation by a live musician.
The automatic generation of musical sounds from a musical score defined by a sequence of notes lacks variability. As a result, such automatically generated sound lacks the intonations that naturally result when different musicians add their own accent to the manner in which the notes are played.
In an example embodiment, a method of adjusting the presentation of music is provided. In the method, a sequence of musical notes is presented by a first music presenting device. A critical beat indicator defining a time within the sequence of musical notes for a critical beat point is received. An isolation indicator defining a period for note isolation for the sequence of musical notes is received. A velocity coefficient is calculated by a processor for each note of the sequence of musical notes. The velocity coefficient is calculated as a function of the defined time and the defined period for note isolation. The sequence of musical notes is presented by a second music presenting device using the calculated velocity coefficient.
In another example embodiment, a computer-readable medium is provided having stored thereon computer-readable instructions that when executed by a device, cause the device to perform the method of adjusting the presentation of music.
In yet another example embodiment, a system is provided. The system includes, but is not limited to, a music presenting device, a processor and a computer-readable medium operably coupled to the processor. The computer-readable medium has instructions stored thereon that when executed by the processor, cause the system to perform the method of adjusting the presentation of music.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
With reference to
Input interface 102 provides an interface for receiving information for entry into music generation system 100 as known to those skilled in the art. Input interface 102 may interface with various input devices including, but not limited to, a mouse 112, a keyboard 114, a display 116, a track ball, a keypad, one or more buttons, etc. that allow input of information into music generation system 100 automatically or under control of a user. Mouse 112, keyboard 114, display 116, etc. further may be accessible by music generation system 100 through communication interface 106. Display 116 may be a thin film transistor display, a light emitting diode display, a liquid crystal display, or any of a variety of different displays known to those skilled in the art. The same interface may support both input interface 102 and output interface 104. For example, a display comprising a touch screen both allows user input and presents output to the user. Music generation system 100 may have one or more input interfaces that use the same or a different input interface technology.
Output interface 104 provides an interface for outputting information from music generation system 100. For example, output interface 104 may interface with various output technologies including, but not limited to, display 116, a speaker 118, a printer, etc. Speaker 118 may be any of a variety of speakers as known to those skilled in the art. Music generation system 100 may have one or more output interfaces that use the same or a different interface technology. Speaker 118, the printer, etc. further may be accessible by music generation system 100 through communication interface 106.
Communication interface 106 provides an interface for receiving and transmitting data and messages between devices using various protocols, transmission technologies, and media as known to those skilled in the art. Communication interface 106 may support communication using various transmission media that may be wired or wireless. Music generation system 100 may have one or more communication interfaces that use the same or a different communication interface technology.
The components of music generation system 100 may be included in a single device and/or may be remote from one another. A network including one or more networks of the same or different types including any type of wired and/or wireless public or private network including a cellular network, a local area network, a wide area network such as the Internet, etc. may connect the components of music generation system 100 using communication interface 106. The one or more components of music generation system 100 may communicate using various transmission media that may be wired or wireless as known to those skilled in the art including as peers in a peer-to-peer network.
Computer-readable medium 108 is an electronic holding place or storage for information so that the information can be accessed by processor 110 as known to those skilled in the art. Computer-readable medium 108 can include, but is not limited to, any type of random access memory (RAM), any type of read only memory (ROM), any type of flash memory, etc. such as magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, . . . ), optical disks (e.g., CD, DVD, . . . ), smart cards, flash memory devices, etc. Music generation system 100 may have one or more computer-readable media that use the same or a different memory media technology. Music generation system 100 also may have one or more drives that support the loading of a memory media such as a CD or DVD. Computer-readable medium 108 further may be accessible by music generation system 100 through communication interface 106 and/or output interface 104.
Processor 110 executes instructions as known to those skilled in the art. The instructions may be carried out by a special purpose computer, logic circuits, or hardware circuits. Thus, processor 110 may be implemented in hardware, firmware, or any combination of these methods and/or in combination with software. The term “execution” is the process of running an application or the carrying out of the operation called for by an instruction. The instructions may be written using one or more programming language, scripting language, assembly language, etc. Processor 110 executes an instruction, meaning that it performs/controls the operations called for by that instruction. Processor 110 operably couples with input interface 102, with output interface 104, with computer-readable medium 108, and with communication interface 106 to receive, to send, and to process information. Processor 110 may retrieve a set of instructions from a permanent memory device and copy the instructions in an executable form to a temporary memory device that is generally some form of RAM. Music generation system 100 may include a plurality of processors that use the same or a different processing technology.
Music data 120 includes data defining a sequence of musical notes. Music data 120 may be stored in a variety of formats and include various data fields to define the note to be played which may include the pitch, the timber, the time, or any other note attribute for playing the note. Music data 120 may be stored in a database that may use various database technologies and a variety of different formats as known to those skilled in the art including a file system, a relational database, a system of tables, a structured query language database, etc. Computer-readable medium 108 may provide the electronic storage medium for music data 120. Music data 120 further may be stored in a single database or in multiple databases stored in different storage locations distributed over the network and accessible through communication interface 106 and/or output interface 104.
A sound synthesizer application 122 performs operations associated with generating sounds to be output using speaker 118, using a musical instrument 130, using a music synthesizer 132, etc. In the illustrative embodiment, musical instrument 130 and music synthesizer 132 are shown as accessible by processor 110 through communication interface 106 though in alternative embodiments, either or both may be accessible through input interface 102 and/or output interface 104. The operations may be implemented using hardware, firmware, software, or any combination of these methods. With reference to the example embodiment of
Sound synthesizer application 122 may be implemented as a Web application. For example, sound synthesizer application 122 may be configured to receive hypertext transport protocol (HTTP) responses from devices such as music generation system 100 and to send HTTP requests to devices such as music generation system 100. The HTTP responses may include web pages such as hypertext markup language (HTML) documents and linked objects generated in response to the HTTP requests. Each web page may be identified by a uniform resource locator (URL) that includes the location or address of the computing device that contains the resource to be accessed in addition to the location of the resource on that computing device. The type of file or resource depends on the Internet application protocol. The file accessed may be a simple text file, an image file, an audio file, a video file, an executable, a common gateway interface application, a Java applet, or any other type of file supported by HTTP. Thus, sound synthesizer application 122 may be a standalone program or a web based application.
If sound synthesizer application 122 is implemented as a Web application, a browser application may be stored on computer readable medium 108. The browser application performs operations associated with retrieving, presenting, and traversing information resources provided by a web application and/or web server as known to those skilled in the art. An information resource is identified by a uniform resource identifier (URI) and may be a web page, image, video, or other piece of content. Hyperlinks in resources enable users to navigate to related resources. Example browser applications include Navigator by Netscape Communications Corporation, Firefox® by Mozilla Corporation, Opera by Opera Software Corporation, Internet Explorer® by Microsoft Corporation, Safari by Apple Inc., Chrome by Google Inc., etc. as known to those skilled in the art. The browser application may integrate with sound synthesizer application 122. For example, sound synthesizer application 122 may be implemented as a plug-in.
With reference to
The order of presentation of the operations of
The general workflow for sound synthesizer application 122 may be to create or open music data 120, to provide functionality to allow editing of music data 120, and to save or play music data 120 through speaker 118, musical instrument 130, or music synthesizer 132. Musical instrument 130 may be any type of electronically controllable musical instrument including drums, a piano, a guitar, a wind instrument, etc. Music synthesizer 132 may be any type of electrical or electo-mechanical device that synthesizes musical sounds from music data 120. As with any development process, operations may be repeated to develop music that is aesthetically pleasing as determined by the user of sound synthesizer application 122.
With continuing reference to
In an operation 202, musical notes are read, for example, after opening the musical data file or by interpreting the created music data 120. In an operation 204, the musical note sequence read from the musical data file is presented in display 118 or played through speaker 118, musical instrument 130, or music synthesizer 132.
In an operation 206, one or more indicators indicating critical beat points are received. The indicators are received by sound synthesizer application 122 based on user selection and interaction with sound synthesizer application 122. A time for each critical beat point is captured relative to the time in the presentation of the sequence of musical notes 300. For example, with reference to
As another alternative, the sequence of musical notes 300 may be presented by playing the sequence of musical notes 300 read from the selected musical data file using speaker 118, musical instrument 130, or music synthesizer 132. Of course, the sequence of musical notes 300 also may be played and presented in display 118. The user may use mouse 112 to select the timing position for each critical beat point by clicking at the desired time during the playing of the sequence of musical notes 300.
A critical beat point may be determined by the user as a tempo-independent position in musical time and indicates a level of importance associated with one or more adjacent musical notes. For example, the most consistent use of dynamic variation is to isolate notes critical to define a simple core beat. It is desirable to play a more robust pattern than is required to define the beat, yet the beat needs to remain clearly distinct to support the music. Beat points are the note positions that define the core beat, which remain distinct and isolated. Beat points can also vary in degree. For example, in older styles of popular music, the beat is often nothing more than the count: 1, 2, 3, 4. In later styles, count “3” is often dropped or subdued. In the old song “Suzy Q” you find that count 1 is defined, count 2 is very profound, count 3 is defined very little (if at all), and count 4 is lightly defined (the back beat, counts 2 and 4, are typically critical to the beat in almost all forms of popular music). The beat in Suzy Q is a moderate beat on 1, and very profound beat on 2, little or no beat on 3, and a moderate beat on 4.
With continuing reference to
In an operation 208, one or more indicators indicating a period for note isolation are received. For example, a single period for note isolation may be defined by the user using a user interface such as a numerical entry text box presented under control of sound synthesizer application 122 in display 118. The period for note isolation is a fixed period. In an illustrative embodiment, the affect is logarithmic so the period for note isolation may be expressed as a half life. As another example, the user may identify one or more time periods during the play of the sequence of musical notes 300 and during which a value of the period for note isolation is defined. Thus, more than one period for note isolation may be defined for the sequence of musical notes 300. The value for each time period may be defined differently. In an alternative embodiment, the period for note isolation may be implemented as two parameters for notes preceding or following a critical beat point.
In an operation 210, an instrument type indicator indicating the type of musical instrument to be used to present the sequence of musical notes 300 is received. For example, a list of musical instrument types may be presented to the user in display 118 under control of sound synthesizer application 122. The instrument indicator is received based on the user selection from the list.
In an operation 212, a velocity coefficient is calculated for each note of the sequence of musical notes 300 using the period for note isolation and the critical beat points. For example, the velocity coefficient for a given note may be calculated using the equation,
where N is the number of critical beat points, W is the period for note isolation, and D is the note's distance in time from each critical beat point. As another example, the velocity coefficient for a given note may be calculated using the equation,
It the sequence of musical notes 300 is a subset of the notes read from the musical data file, the velocity coefficient is calculated based on the period for note isolation and the note's distance in time from each critical beat point defined for that subset. Other equations for calculating the velocity coefficient using the period for note isolation and the note's distance in time from each critical beat point may be used.
Using the velocity coefficient calculated for each note, the velocities of the notes that do not correspond to beat points vary with proximity to the beat point. Specifically, the note is quieter when nearer to a beat point and is gradually louder away from the beat point. The time around each beat point in which non-beat notes are reduced is defined as the period for note isolation and is fixed and thus does not vary with tempo. The period for note isolation is used to sufficiently isolate a note that corresponds to a beat point. More time results in a bland drum pattern. Less time buries the beat points and sounds too busy or even artificial. Because the time required to sufficiently isolate a note is fixed, the velocities relevant to the beat points cannot be determined without knowing the tempo at which the note pattern is to be played. Velocities calculated for a pattern at a specific tempo may be adjusted to sound correct if the pattern is played at a different tempo.
In an operation 214, a velocity to play each note is determined based on the calculated velocity coefficient for each note. For example, if determining a musical instrument digital interface (MIDI) note velocity, values from 0 to 255 are used for inclusion in a MIDI message as understood by a person of skill in the art. In this example, the velocity may be determined by multiplying the velocity coefficient for each note by 255. Of course, other scaling factors may be used. For example, the user may select the scaling factor as an input similar to the period of note isolation. As an example, a conversion to a logarithmic value may be used as a scaling factor.
In an operation 216, the sequence of musical notes 300 is played using the determined velocity. For example, MIDI messages including the determined velocity may be sent to musical instrument 130 or music synthesizer 132 or generated by sound synthesizer application 122 and played through speaker 118 as understood by a person of skill in the art. Reducing the velocity of notes that do not correspond to beat points to isolate them gradually and using a time window that may vary with the intensity of the beat point but not the tempo allows note patterns to be generated by a computer as basically structured patterns of notes played in an aesthetically pleasing manner at any tempo. This in turn allows the computer to generate random variations in note patterns such as drum patterns. Without this capability, tossing random variations into a note pattern risks disturbing the “feel” of it. As another benefit, correctly adjusting the velocities, including possible discarding or skipping of notes beneath a threshold, with respect to tempo causes note patterns to be much more useful. For example, many variations in drum parts, and even variations considered to represent different styles, prove to be little more than an appropriate compensation for the same basic pattern played at a faster or slower tempo. As a simple example, a kind of “boogie” swing beat used in old blues typically as low as 100 beats/minute (BPM) becomes a typical fox trot when it is played at 125 BPM or more and recalculated factoring in tempo.
The velocity provides a level to play each note based on the tempo in the sequence of musical notes 300 to simulate the way a human might accent the notes and to provide an aesthetically pleasing sound based on the individual user's perception of the sound. As a result, in an operation 218, the user may determine that the sound produced from speaker 118, musical instrument 130, or music synthesizer 132 is unsatisfactory or is satisfactory. If the produced sound is unsatisfactory to the user, processing may continue at any of operations 206-210 to allow adjustment of the parameters used to calculate the velocity. If the produced sound is satisfactory to the user, the velocity data may be stored to computer readable medium 108. For example, the velocity coefficient and/or the velocity may be stored in the same or a different file than the musical data file from which the sequence of musical notes 300 were read. Additionally, one or more of the adjustment parameters may be stored also or in the alternative to allow recreation of the sound created in operation 216.
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. Still further, the use of “and” or “or” is intended to include “and/or” unless specifically indicated otherwise. The illustrative embodiments may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed embodiments.
The foregoing description of illustrative embodiments of the invention has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Billen, David, Juszkiewicz, Henry
Patent | Priority | Assignee | Title |
11386876, | Dec 28 2017 | BIGO TECHNOLOGY PTE LTD | Method for extracting big beat information from music beat points, storage medium and terminal |
Patent | Priority | Assignee | Title |
4982642, | May 26 1989 | Brother Kogyo Kabushiki Kaisha | Metronome for electronic instruments |
6576826, | Feb 22 2000 | Yamaha Corporation | Tone generation apparatus and method for simulating tone effect imparted by damper pedal |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 22 2014 | Gibson Brands, Inc. | (assignment on the face of the patent) | / | |||
Apr 21 2014 | BILLEN, DAVID | GIBSON BRANDS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033068 | /0352 | |
Apr 21 2014 | JUSZKIEWICZ, HENRY | GIBSON BRANDS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033068 | /0352 | |
Aug 03 2016 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | ASSIGNMENT OF SECURITY INTEREST | 039687 | /0055 | |
Aug 03 2016 | GIBSON BRANDS, INC | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039658 | /0005 | |
Aug 03 2016 | GIBSON BRANDS, INC | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039656 | /0788 | |
Feb 15 2017 | BALDWIN PIANO, INC | BANK OF AMERICA, N A , AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 041760 | /0592 | |
Feb 15 2017 | GIBSON INNOVATIONS USA, INC | BANK OF AMERICA, N A , AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 041760 | /0592 | |
Feb 15 2017 | GIBSON PRO AUDIO CORP | BANK OF AMERICA, N A , AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 041760 | /0592 | |
Feb 15 2017 | GIBSON INTERNATIONAL SALES LLC | BANK OF AMERICA, N A , AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 041760 | /0592 | |
Feb 15 2017 | GIBSON BRANDS, INC | BANK OF AMERICA, N A , AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 041760 | /0592 | |
May 18 2018 | GIBSON BRANDS, INC | CORTLAND CAPITAL MARKET SERVICES LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 046239 | /0247 | |
Oct 04 2018 | BANK OF AMERICA, NA | GIBSON BRANDS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048841 | /0001 | |
Oct 04 2018 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GIBSON BRANDS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048841 | /0001 | |
Oct 04 2018 | CORTLAND CAPITAL MARKET SERVICES LLC | GIBSON BRANDS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048841 | /0001 | |
Nov 01 2018 | GIBSON BRANDS, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047384 | /0215 | |
Dec 21 2020 | Wells Fargo Bank, National Association | GIBSON BRANDS, INC | RELEASE OF SECURITY INTEREST : RECORDED AT REEL FRAME - 047384 0215 | 054823 | /0016 | |
Oct 06 2022 | GIBSON BRANDS, INC | KKR LOAN ADMINISTRATION SERVICES LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 061639 | /0031 |
Date | Maintenance Fee Events |
Nov 11 2019 | REM: Maintenance Fee Reminder Mailed. |
Apr 27 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 22 2019 | 4 years fee payment window open |
Sep 22 2019 | 6 months grace period start (w surcharge) |
Mar 22 2020 | patent expiry (for year 4) |
Mar 22 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 22 2023 | 8 years fee payment window open |
Sep 22 2023 | 6 months grace period start (w surcharge) |
Mar 22 2024 | patent expiry (for year 8) |
Mar 22 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 22 2027 | 12 years fee payment window open |
Sep 22 2027 | 6 months grace period start (w surcharge) |
Mar 22 2028 | patent expiry (for year 12) |
Mar 22 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |