In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.
|
17. An apparatus, comprising:
a first sidewall gas distribution assembly that includes a first plurality of orifices to introduce one or more process gases into a processing chamber; and
a second sidewall gas distribution assembly that includes a second plurality of orifices to introduce one or more process gases into the processing chamber, wherein the first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber, wherein the first sidewall gas distribution assembly has a first characteristic radial film growth rate profile having a faster growth rate near a center of a susceptor of the processing chamber and the second sidewall gas distribution assembly has a second characteristic radial film growth rate profile having a faster growth rate near an edge of the susceptor to complement each other to produce a net uniform radial growth rate profile.
11. A method comprising:
introducing a first process gas into a first sidewall gas distribution assembly that includes a first gas passage and a second gas passage; and
introducing a second process gas into a second sidewall gas distribution assembly that includes a third gas passage and a fourth gas passage, wherein the first and second sidewall gas distribution assemblies are each adapted to be coupled to at least one chamber wall of a processing chamber, wherein the second gas passage and the fourth gas passage each include a plurality of orifices to introduce the first and second process gases respectively into the processing chamber, wherein the first sidewall gas distribution assembly has a first characteristic radial film growth rate profile having a faster growth rate near a center of a susceptor of the processing chamber and the second sidewall gas distribution assembly has a second characteristic radial film growth rate profile having a faster growth rate near an edge of the susceptor to complement each other to produce a net uniform radial growth rate profile.
1. An apparatus, comprising:
a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber; and
a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber, wherein the first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of a processing chamber, wherein the second gas passage and the fourth gas passage each include a plurality of orifices to introduce the first and second process gases into the processing chamber, wherein the first gas passage is shaped as a first annular ring within the processing chamber at a first height above the second gas passage that is shaped as a second annular ring for uniform distribution of the first process gas at a different second height within the processing chamber, wherein the third gas passage is positioned within the processing chamber at a third different height below the first height of the first gas passage and above the second height of the second gas passage.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
a third gas distribution assembly that includes a fifth gas passage and a sixth gas passage.
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
18. The apparatus of
19. The apparatus of
|
This application claims the benefit of Provisional Application No. 61/549,694, filed Oct. 20, 2011, which is incorporated herein by reference. This application is related to the following commonly-owned, application Ser. No. 12/637,019, filed Dec. 14, 2009, entitled “HVPE Chamber Hardware”, which has published as U.S. 2010/0258049.
The United States Government has rights in this invention pursuant to Contract No. DE-EE0003331 between the United States Department of Energy and Applied Materials, Inc.
This present disclosure relates to multiple complementary sidewall gas distribution assemblies that are coupled to a processing chamber.
Group-III Nitrides such as GaN, AlN and AlGaN alloys are very important materials in the fabrication of optoelectronics (e.g. solid state lighting), laser diodes, and high power electronics. One method used to deposit Group-III nitride films is hydride vapor phase epitaxy (HVPE). In conventional HVPE, a gaseous hydrogen halide or halogen reacts with the Group-III metal to create a metal halide which then reacts with a nitrogen precursor to form the Group-III metal nitride. The reaction typically involves the high temperature vapor phase reaction between one or more metallic chlorides and ammonia (NH3). HVPE has significant advantages over other deposition methods. These advantages include high film growth rates, excellent material characteristics, flexible growth conditions, good reproducibility, simplicity in hardware and low cost of ownership. However, one of the difficulties with HVPE is achieving good within-chamber thickness uniformity of the Group-III nitride film.
Described herein are exemplary apparatuses for depositing semiconductor films on substrates. In one embodiment, the processing apparatus (e.g., a hydride vapor phase epitaxy apparatus) includes a chamber with at least one chamber wall and two or more gas distribution assemblies attached to at least one chamber wall. Each gas distribution assembly is coupled to one or more gas sources and each gas distribution assembly has orifices through which one or more gases flow into the chamber and react to deposit semiconductor films.
In an embodiment, an apparatus includes multiple gas distribution assemblies. Each gas distribution assembly includes a first gas passage and a second gas passage. Each gas distribution assembly is adapted to be coupled to a processing chamber. Each of the second gas passages includes orifices to introduce one or more process gases into the processing chamber.
Embodiments of the present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which:
In the following description, numerous details are set forth. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In some instances, well-known methods and devices are shown in block diagram form, rather than in detail, to avoid obscuring the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, function, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, functions, or characteristics may be combined in any suitable manner in one or more embodiments. For example, a first embodiment may be combined with a second embodiment anywhere the two embodiments are not mutually exclusive.
In one embodiment, a processing apparatus (e.g., hydride vapor phase epitaxy apparatus, hot wall chemical vapor deposition apparatus) for depositing films on substrates with improved thickness uniformity is disclosed. The apparatus includes a chamber with at least one chamber wall and two or more sidewall gas distribution assemblies attached to at least one chamber wall. Each gas distribution assembly is coupled to at least one process gas source and each gas distribution assembly has orifices through which at least one process gas is introduced into the chamber. A previous approach for depositing a film by hydride vapor phase epitaxy (HVPE) uses a processing apparatus with only one sidewall gas distribution assembly. One of the drawbacks of a processing apparatus with only one sidewall gas distribution assembly is poor radial film growth rate uniformity across the susceptor. Every sidewall gas distribution assembly has a characteristic radial film growth rate profile produced under a given process condition that is within the process window where desirable film properties are obtained. The characteristic radial film growth rate profile of a given sidewall gas distribution assembly is typically non-uniform with growth rates that are either faster at the center (center-fast) or faster at the edge (edge-fast) of the susceptor. A processing apparatus with only one sidewall gas distribution assembly also suffers from inflexibility and limited tuneability because the orifices on the sidewall gas distribution assembly all experience the same gas supply pressure by virtue of the orifices sharing the same sidewall gas distribution assembly. The gases that emerge from each of the orifices on the sidewall gas distribution assembly are automatically equalized to the same velocity regardless of the size and orientation of the orifices or the number of orifices.
In one embodiment with two or more sidewall gas distribution assemblies, each sidewall gas distribution assembly may be designed to have different but complementary characteristic radial film growth rate profiles. The two or more sidewall gas distribution assemblies with complementary characteristic radial film growth rate profiles may together produce a net characteristic radial film growth rate profile that is approximately uniform across the susceptor. For example, a chamber may have two sidewall gas distribution assemblies where each has a characteristic radial film growth rate profile that is linear but in opposite directions (i.e., one center-fast and the other edge-fast). In such a case, a uniform film growth rate profile may be obtained by operating the two sidewall gas distribution assemblies together or in sequence. An improvement in film growth rate uniformity across the susceptor improves the within-chamber thickness uniformity of films deposited on the substrates which increases overall product yields.
Two sidewall gas distribution assemblies 150 and 160 are coupled to at least one chamber wall 108 and are disposed between the gas distribution showerhead 106 and the susceptor 114. In an alternative embodiment, the chamber may contain more than two sidewall gas distribution assemblies. The assembly 150 includes a gas passage 152 coupled to another gas passage 154, which has orifices 146. The assembly 160 includes a gas passage 162 coupled to another gas passage 164, which has orifices 148. Each sidewall gas distribution assembly is coupled to one or more gas sources and has orifices 146, 148 through which gases may be introduced into the chamber 102. In one embodiment, the first sidewall gas distribution assembly 150 is coupled to one or more precursor sources 118 (e.g., Ga, Al, etc) and may introduce one or more precursor containing gases (e.g., metal halide, GaCl, GaCl3, AlCl, AlCl3, AlBr3, AlI, AlI3, etc.) into the chamber 102. The second gas distribution assembly 160 is coupled to one or more gas sources 120 and may introduce one or more inert gases (e.g., helium, argon, diatomic nitrogen, etc.) into the chamber 102. In another embodiment, each sidewall gas distribution assembly may be coupled to any one or combination of precursor sources, reactive gas sources, or inert gas sources. Two or more sidewall gas distribution assemblies may each introduce different gases into the chamber from different sources. Two or more sidewall gas distribution assemblies may also each introduce the same gases into the chamber from the same sources.
The precursor source may be a separate reaction vessel in which a reactive gas (e.g., halogen containing gas, Cl2, HCl, Br2, HBr, I2, HI, etc.) may be introduced to react with the precursor (e.g., Ga, Al, etc) to form a precursor containing gas (e.g., metal halides, GaCl, GaCl3, AlCl, AlCl3, AlBr3, AlI, AlI3, etc.) that is delivered into the chamber through one or more sidewall gas distribution assemblies. The precursor may be in a solid or a liquid state. The reactivity of the reactive gas with the precursor may be enhanced by snaking the reactive gas through the chamber 124 past a resistive heater 122 to increase its temperature.
In an embodiment, to react with the gas from the source 110, precursor material may be delivered from one or more precursor sources 118. The one or more precursor sources 118 may include precursors such as gallium and aluminum. It is to be understood that while reference will be made to two precursors, more or less precursors may be delivered as discussed above. In one embodiment, the precursor includes gallium present in the precursor source 118 in liquid form. In another embodiment, the precursor includes aluminum present in the precursor source 118 in solid form. In one embodiment, the aluminum precursor may be in solid, powder form. The precursor may be delivered to the chamber 102 by flowing a reactive gas over and/or through the precursor in the precursor source 118. In one embodiment, the reactive gas may include a chlorine containing gas such as diatomic chlorine. The chlorine containing gas may react with the precursor source such as gallium or aluminum to form a chloride. In one embodiment, the one or more sources 118 may include eutectic materials and their alloys. In another embodiment, the HVPE apparatus 100 may be arranged to handle doped sources as well as at least one intrinsic source to control the dopant concentration.
In order to increase the effectiveness of the chlorine containing gas to react with the precursor, the chlorine containing gas may optionally snake through the boat area in the chamber 124 and be heated with the resistive heater 122. By increasing the residence time that the chlorine containing gas is snaked through the chamber 124, the temperature of the chlorine containing gas may be controlled. By increasing the temperature of the chlorine containing gas, the chlorine may react with the precursor faster. In other words, the temperature is a catalyst to the reaction between the chlorine and the precursor.
In order to increase the reactiveness of the precursor, the precursor may be heated by a resistive heater 122 within the chamber 124 in an optional boat 130 or 132. For example, in one embodiment, the gallium precursor may be heated to a temperature of between about 750 degrees Celsius to about 850 degrees Celsius. The chloride reaction product may then be delivered to the chamber 102 via boat 130 and gas distribution assembly 150. The reactive chloride product first enters a gas passage 152 where it evenly distributes within the gas passage 152. The gas passage 152 is connected to another gas passage 154. The chloride reaction product enters the gas passage 154 after it has been evenly distributed within the gas passage 152. The chloride reaction product then enters into the chamber 102 where it mixes with the nitrogen containing gas to form a nitride layer on the substrate 116 that is disposed on a susceptor 114. In one embodiment, the susceptor 114 may include silicon carbide. The nitride layer may include gallium nitride or aluminum nitride for example. The other reaction product, such as nitrogen and chlorine, is exhausted through an exhaust 126.
In an embodiment, the chloride reaction product may be delivered to the chamber 102 via boat 132 and gas distribution assembly 160. The reactive chloride product first enters a gas passage 162 where it evenly distributes within the gas passage 162. The gas passage 162 is connected to another gas passage 164. The chloride reaction product enters the gas passage 164 after it has been evenly distributed within the gas passage 162. The chloride reaction product then enters into the chamber 102 where it mixes with the nitrogen containing gas to form a nitride layer on the substrate 116 that is disposed on a susceptor 114. The one or more gas sources 120 may also be delivered into either of the gas distribution assemblies 150 and 160.
Referring back to
The heating of the processing chamber 102 is accomplished by heating the susceptor 114 with a lamp module 128 that is disposed below the susceptor 114. During deposition, the lamp module 128 is the main source of heat for the processing chamber 102. While shown and described as a lamp module 128, it is to be understood that other heating sources may be used. Additional heating of the processing chamber 102 may be accomplished by use of a heater 133 embedded within the walls 108 of the chamber 102. The heater 133 embedded in the walls 108 may provide little if any heat during the deposition process. A thermocouple may be used to measure the temperature inside the processing chamber. Output from the thermocouple may be fed back to a controller that controls the heating of the heater 133 based upon the reading from the thermocouple. For example, if the chamber is too cool, the heater 133 will be turned on. If the chamber is too hot, the heater 133 will be turned off. Additionally, the amount of heating from the heater 133 may be controlled such that a low amount of heat is provided from the heater 133.
After the deposition process, the one or more substrates 116 are normally taken out of the processing chamber 102. The lamp module 128 is turned off. Without the heat from the lamp module 128, the chamber 102 may rapidly cool. The process gases may condense and deposit onto the walls 108 of the chamber. The deposits may have a different coefficient of thermal expansion than the walls 108 themselves and thus may flake off due to thermal expansion. To prevent undesired flaking, the heater 133 embedded within the chamber walls 108 may be turned on to control the thermal expansion and maintain the chamber 102 at the desired chamber temperature. The control of the heater 133 may again be based upon real time feedback from the thermocouple. Once the lamp module 128 is turned off, the heater 133 may be turned on or up to maintain the temperature of the chamber 102 at the desired temperature so that the deposits on the chamber walls 108 may not flake off and contaminate the substrate or land on the susceptor 114 and create an uneven susceptor 114 surface. By maintaining the chamber walls 108 at an elevated temperature, a cleaning gas, such as chlorine, may be more effective in cleaning the deposits from the chamber walls 108.
In one embodiment, each sidewall gas distribution assembly may include two or more gas passages.
Each orifice on the sidewall gas distribution assemblies may have multiple orifice characteristics. One orifice characteristic may include an orifice diameter.
Each sidewall gas distribution assembly may have a different number of orifices and may have orifices with a different combination of orifice characteristics. For example, one or more sidewall gas distribution assemblies may have 48 orifices while one or more other sidewall gas distribution assemblies in the same chamber may have 60 orifices. One or more sidewall gas distribution assemblies may have orifices with orifice diameters of 1.2 mm while one or more other sidewall gas distribution assemblies in same the chamber may have orifice diameters of 1.5 mm. One or more sidewall gas distribution assemblies may have orifices with different orifice orientations compared to one or more other sidewall gas distribution assemblies where the orifices direct process gases at different angles.
Referring to
Depositing a film with a uniform thickness distribution across the susceptor requires the processing apparatus to have a uniform radial film growth rates profile across the susceptor. The radial film growth rate profile of a sidewall gas distribution assembly may be strongly dependent on the orifice characteristics of the sidewall gas distribution assemblies. In particular, the orifice orientation and the angles at which the orifices direct process gases into the chamber may greatly affect the film growth rate profile across the susceptor.
The relative heights of the peaks may depend on the relative number of orifices directing gases at each of the angles.
The radial film thickness distribution may also be tuned by adjusting the gas flow rate through the gas distribution showerhead 106.
The radial film thickness distributions may also be tunable by adjusting gas flow rate conditions through the sidewall gas distribution assemblies.
The orifice characteristics of the sidewall gas distribution assemblies may be designed such that the film growth rate profile produced by one sidewall gas distribution assembly complements the film growth rate profiles produced by one or more other sidewall gas distribution assemblies. The resultant combined film growth rate profile for all the sidewall gas distribution assemblies may be approximately uniform across the susceptor. For example, the chamber may contain two sidewall gas distribution assemblies where one sidewall gas distribution assembly may have orifice characteristics that produce a center-fast film growth rate profile similar to
In one embodiment, a process apparatus may contain two sidewall gas distribution assemblies having complementary film growth rate profiles similar to
Radial Position of
1-sigma %
Substrate on Susceptor
Uniformity
Outer
2.26
Middle
1.47
Inner
1.71
In one embodiment, one or more substrates are inserted into a processing chamber (e.g., a HVPE processing chamber, a hot-wall chemical vapor deposition apparatus) at block 1102. The substrates may be supported by the susceptor. The lamp module may be turned on to heat the substrate and correspondingly the chamber. A nitrogen containing reactive gas may be introduced from a gas source into the processing chamber. The nitrogen containing gas may pass through an energy source such as a gas heater to bring the nitrogen containing gas into a more reactive state. The nitrogen containing gas then passes through the chamber lid and the gas distribution showerhead.
One or more process gases (e.g., metal halides, GaCl, GaCl3, AlCl, AlCl3, AlBr3, AlI, AlI3, diatomic nitrogen, helium, argon, etc.) may be introduced into the processing chamber through two or more sidewall gas distribution assemblies. For example, a first processing gas may be introduced into a first sidewall gas distribution assembly that includes a first gas passage and a second gas passage at block 1104. A second processing gas may be introduced into a second sidewall gas distribution assembly that includes a third gas passage and a fourth gas passage at block 1106. The first and second gas distribution assemblies are each adapted to be coupled to the processing chamber. In one embodiment, the second gas passage and the fourth gas passage each include orifices to introduce the first and second process gases respectively into the processing chamber.
Each of the sidewall gas distribution assemblies in the processing apparatus may be controlled independently and be operated at different conditions. A subset of sidewall gas distribution assemblies may be operated at any one time or by varying the process gas flow through each sidewall gas distribution assembly during processing. The one or more process gases may be introduced into the processing chamber sequentially through each sidewall gas distribution assembly at different times. Alternatively, the one or more process gases may be introduced into the processing chamber at the same time through the simultaneous operation of the sidewall gas distribution assemblies. The process gases introduced by the sidewall gas distribution assemblies may be one of or a combination of reactive gases or inert gases. Due to the thermal gradient within the chamber, the process gases and the nitrogen containing gas may intermix by rising and falling within the processing chamber and react together to form a film (e.g., GaN, AlN, AlGaN) that is deposited on one or more substrates. The gaseous reaction may produces gaseous by-products such as chloride and nitrogen containing compounds which may be evacuated out of the chamber thought the exhaust.
While the nitrogen containing gas is discussed as being introduced through the gas distribution showerhead and one or more other process gases are delivered through the sidewall gas distribution assemblies, it is to be understood that the locations of gas introduction may be reversed. However, if the other process gases (e.g., metal halides, GaCl, GaCl3, AlCl, AlCl3, AlBr3, AlI, AlI3, diatomic nitrogen, helium, argon, etc.) are introduced through the showerhead, the showerhead may be heated to increase the reactiveness of the process gases.
Additionally, the deposition process may involve depositing a thin film (e.g. AlN, Al-containing III-nitride) as a seed layer over the one or more substrates 116 followed by another subsequent film (e.g., p-GaN, n-GaN, u-GaN, AlN, AlGaN). Both the seed layer and the subsequent film may be deposited within the same processing chamber. Thereafter, the substrates may be removed and placed into an MOCVD processing chamber where yet another layer may be deposited. In some embodiments, the seed layer may be eliminated. The HVPE apparatus 100 and the MOCVD apparatus may be used in a processing system which includes a cluster tool that is adapted to process substrates and analyze the results of the processes performed on the substrate.
The physical structure of the cluster tool is illustrated schematically in
In one embodiment, an additional chamber 1604 is coupled with the transfer chamber 1606. The additional chamber 1604 may be an MOCVD chamber, an HVPE chamber, a metrology chamber, a degassing chamber, an orientation chamber, a cool down chamber, a pretreatment/preclean chamber, a post-anneal chamber, or the like. In one embodiment, the transfer chamber 1606 is six-sided and hexagonal in shape with six positions for process chamber mounting. In another embodiment, the transfer chamber 1606 may have other shapes and have five, seven, eight, or more sides with a corresponding number of process chamber mounting positions.
The HVPE chamber 1602 is adapted to perform HVPE processes in which gaseous metal halides are used to epitaxially grow layers of compound nitride semiconductor materials on heated substrates. The HVPE chamber 1602 includes a chamber body 1614 where a substrate is placed to undergo processing, a chemical delivery module 1618 from which gas precursors are delivered to the chamber body 1614, and an electrical module 1622 that includes the electrical system for the HVPE chamber of the cluster tool 1600. In one embodiment, the HVPE chamber 1602 may be similar to the HVPE apparatus 600 described in
Each MOCVD chamber 1603a, 1603b includes a chamber body 1612a, 1612b forming a processing region where a substrate is placed to undergo processing, a chemical delivery module 1616a, 1616b from which gases such as precursors, purge gases, and cleaning gases are delivered to the chamber body 1612a, 1612b and an electrical module 1620a, 1620b for each MOCVD chamber 1603a, 1603b that includes the electrical system for each MOCVD chamber of the cluster tool 1600. Each MOCVD chamber 1603a, 1603b is adapted to perform CVD processes in which metalorganic precursors (e.g., TMG, TMA) react with metal hydride elements to form layers of compound nitride semiconductor materials.
The cluster tool 1600 further includes a robot assembly 1607 housed in the transfer chamber 1606, a load lock chamber 1608 coupled with the transfer chamber 1606, a batch load lock chamber 1609, for storing substrates, coupled with the transfer chamber 1606. The cluster tool 1600 further includes a load station 1610, for loading substrates, coupled with the load lock chamber 1608. The robot assembly 1607 is operable to pick up and transfer substrates between the load lock chamber 1608, the batch load lock chamber 1609, the HVPE chamber 1602, and the MOCVD chambers 1603a, 1603b. In one embodiment, the load station 1610 is an automatic loading station configured to load substrates from cassettes to substrate carriers or to the load lock chamber 1608 directly, and to unload the substrates from substrate carriers or from the load lock chamber 1608 to cassettes.
The transfer chamber 1606 may remain under vacuum and/or at a pressure below atmosphere during the process. The vacuum level of the transfer chamber 1606 may be adjusted to match the vacuum level of corresponding processing chambers. In one embodiment, the transfer chamber 1606 maintains an environment having greater than 90% N2 for substrate transfer. In another embodiment, the transfer chamber 1606 maintains an environment of high purity NH3 for substrate transfer. In one embodiment, the substrate is transferred in an environment having greater than 90% NH3. In another embodiment, the transfer chamber 1606 maintains an environment of high purity H2 for substrate transfer. In one embodiment, the substrate is transferred in an environment having greater than 90% H2.
The cluster tool 1600 further includes a system controller 1660 which controls activities and operating parameters. The system controller 1660 includes a computer processor and a computer-readable memory coupled to the processor. The processor executes system control software, such as a computer program stored in memory.
In one embodiment, one of the processing chamber 1602, 1603a, 1603b, or 1604 is configured to form a group III-nitride layer prior to forming device structures. The group III-nitride layer or several group III-nitride layers deposited on substrates are then transferred to one or more deposition chambers to deposit the subsequent layers used to form the device structures. The structure permits the transfers to be effected in a defined ambient environment, including under vacuum, in the presence of a selected gas, under defined temperature conditions, and the like. The cluster tool is a modular system including multiple chambers that perform various processing operations that are used to form an electronic device. The cluster tool may be any platform known in the art that is capable of adaptively controlling a plurality of process modules simultaneously. Exemplary embodiments include an Opus™ AdvantEdge™ system or a Centura™ system, both commercially available from Applied Materials, Inc. of Santa Clara, Calif.
For a single chamber process, layers of differing composition are grown successively as different operations of a growth recipe executed within the single chamber. For a multiple chamber process, layers in a III-V or II-VI structure are grown in a sequence of separate chambers. For example, an undoped/nGaN layer may be grown in a first chamber, a MQW structure grown in a second chamber, and a pGaN layer grown in a third chamber.
The exemplary computer system 1500 includes a processor 1502, a main memory 1504 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1506 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1518 (e.g., a data storage device), which communicate with each other via a bus 1530.
Processor 1502 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1502 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1502 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1502 is configured to execute the processing logic 1526 for performing the operations (e.g., ICM operations) discussed herein.
The computer system 1500 may further include a network interface device 1508. The computer system 1500 also may include a video display unit 1510 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 1512 (e.g., a keyboard), a cursor control device 1514 (e.g., a mouse), and a signal generation device 1516 (e.g., a speaker).
The secondary memory 1518 may include a machine-readable storage medium (or more specifically a computer-readable storage medium) 1531 on which is stored one or more sets of instructions (e.g., software 1522) embodying any one or more of the methodologies or functions described herein. The software 1522 may also reside, completely or at least partially, within the main memory 1504 and/or within the processing device 1502 during execution thereof by the computer system 1500, the main memory 1504 and the processing device 1502 also constituting machine-readable storage media. The software 1522 may further be transmitted or received over a network 1520 via the network interface device 1508.
While the machine-readable storage medium 1531 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. Although the present disclosure has been described with reference to specific exemplary embodiments, it will be recognized that the invention is not limited to the embodiments described, but can be practiced with modification and alteration. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense.
Chen, Lu, Melnik, Yuriy, Ng, Tuoh-Bin, Tuncel, Eda, Pang, Lily L, Nguyen, Son T
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5993557, | Feb 25 1997 | Shin-Etsu Handotai Co., Ltd. | Apparatus for growing single-crystalline semiconductor film |
6274495, | Sep 03 1998 | CVC PRODUCTS, INC | Method for fabricating a device on a substrate |
6921437, | May 30 2003 | AVIZA TECHNOLOGY, INC | Gas distribution system |
20010050059, | |||
20020164423, | |||
20040026038, | |||
20060021568, | |||
20060060143, | |||
20060162661, | |||
20070087296, | |||
20070221129, | |||
20070274822, | |||
20080185104, | |||
20080314311, | |||
20100258049, | |||
20100258052, | |||
20110052833, | |||
20110230008, | |||
20120122302, | |||
KR100484945, | |||
KR100791995, | |||
KR101026058, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 11 2012 | Applied Materials, Inc. | (assignment on the face of the patent) | / | |||
Nov 23 2012 | NG, TUOH-BIN | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 | |
Dec 11 2012 | MELNIK, YURIY | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 | |
Dec 13 2012 | TUNCEL, EDA | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 | |
Feb 12 2013 | PANG, LILY L | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 | |
Feb 12 2013 | NGUYEN, SON T | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 | |
Feb 26 2013 | CHEN, LU | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0454 |
Date | Maintenance Fee Events |
Sep 23 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 20 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 05 2019 | 4 years fee payment window open |
Oct 05 2019 | 6 months grace period start (w surcharge) |
Apr 05 2020 | patent expiry (for year 4) |
Apr 05 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 05 2023 | 8 years fee payment window open |
Oct 05 2023 | 6 months grace period start (w surcharge) |
Apr 05 2024 | patent expiry (for year 8) |
Apr 05 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 05 2027 | 12 years fee payment window open |
Oct 05 2027 | 6 months grace period start (w surcharge) |
Apr 05 2028 | patent expiry (for year 12) |
Apr 05 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |