A hydraulic control, for example of a hydraulically operable working tool, includes a hydroconsumer that can be acted upon against a permanent force via a pressure source, and a switching valve with working power/pressure control function reacting against a spring force depending on a pressure and/or through flow volume. The switching valve connects the hydroconsumer with a tank for a return stroke of the hydroconsumer when the pressure source is switched off. The hydroconsumer can be hydraulically stopped with the return stroke via the pressure source by a pressure pulse and/or through flow volume pulse. In a hydraulically operable working tool, the hydroconsumer can be hydraulically stopped in the return stroke even before a predetermined end position is reached by switching on the pressure source.
|
11. A hydraulically operable working tool comprising:
a tool insert;
a hydroconsumer for controlling the tool insert and that can be hydraulically acted upon against a permanent force, the hydroconsumer having an admission chamber;
a pressure source that can be electrically operated in a cutoff operation; and
a switching valve having a working force/pressure control function that is configured to react depending on pressure and/or through flow volume, the switching valve being operable, when the pressure source is switched off, to connect the admission chamber of the hydroconsumer with a tank for a return stroke of the hydroconsumer under the permanent force;
wherein the hydroconsumer is stoppable exclusively hydraulically by a pressure pulse and/or a through flow volume pulse generated by switching on the switched off pressure source during the return stroke before a predetermined end position is reached; and
wherein the switching valve comprises a seat, a seat valve closing member with a sealing surface, and a chamber underneath the seat valve closing member and having a pressure source connection, and wherein the chamber is limited on a side facing away from the seat valve closing member by a chamber bottom embodied as an insertion part that is penetrated by a passage leading to a hydroconsumer connection, and wherein a control throttle arrangement is disposed in the passage, the control throttle arrangement being configured to generate a pressure differential from hydraulic delivery pressure or delivery rate generated by the pressure source.
1. A hydraulic drive comprising:
a pressure source;
a tank;
at least one single-actuated hydroconsumer that is actuatable from the pressure source to execute an extending motion into a working position counter to a permanent force; and
a switching valve having a working force/pressure control function, the switching valve being configured to respond counter to spring force and depending on pressure and/or through flow volume, and the switching valve being operable to take a through flow position when the pressure source is cut off or switched off and to connect an admission chamber of the hydroconsumer at least via a bore with the tank for a return stroke of the hydroconsumer under the permanent force;
wherein the hydroconsumer is stoppable during the return stroke hydraulically via the pressure source by a pressure pulse and/or a through flow volume pulse; and
wherein the switching valve comprises a seat and a seat valve closing member with a sealing surface between the hydroconsumer and the tank, and further comprises, in a housing for the working force/pressure control function in the seat valve closing member, a through bore in communication with the pressure source, a piston loaded by the spring force of the switching valve with a closing projection that cooperates with the through bore, and an adjustable abutment for a spring generating at least a portion of the spring force, and wherein either the abutment is disposed in the seat valve closing member and movably guided in the housing with the seat valve closing member sealed to the outside in the housing, or the abutment is disposed directly in the housing separate from the seat valve closing member encapsulated in the housing in a sealing manner.
17. A hydraulic drive comprising:
a pressure source;
a tank;
at least one single-actuated hydroconsumer that is actuatable from the pressure source to execute an extending motion into a working position counter to a permanent force; and
a switching valve having a working force/pressure control function, the switching valve being configured to respond counter to spring force and depending on pressure and/or through flow volume, and the switching valve being operable to take a through flow position when the pressure source is cut off or switched off and to connect an admission chamber of the hydroconsumer at least via a bore with the tank for a return stroke of the hydroconsumer;
wherein the hydroconsumer is stoppable during the return stroke hydraulically via the pressure source by a pressure pulse and/or a through flow volume pulse;
wherein switching valve function of the switching valve and the working force/pressure control function are connected in parallel in a working line extending from the pressure source via the hydroconsumer and the bore to the tank, and a portion of the working line to the hydroconsumer and a portion of the working line from the hydroconsumer to the tank each extend through the switching valve;
wherein the working line comprises, between the pressure source and the hydroconsumer, a control throttle arrangement that is configured to generate a pressure differential from hydraulic delivery pressure or delivery rate generated by the pressure source, the control throttle arrangement comprising either a control throttle and a check valve configured to shut off in a return flow direction to the pressure source, or only a spring-loaded check valve with control throttle function configured to shut off in the return flow direction to the pressure source, and wherein the spring force of the switching valve is configured to act in a moving direction of the switching valve to the through flow position, and the switching valve is configured to be pilot controlled by pressure towards a shutoff position from upstream of the control throttle arrangement, and towards the passage position from downstream of the control throttle arrangement; and
wherein the hydraulic drive further comprises a pressure source on-off switch, and either a time function element or a program section that is functionally allocated to the pressure source on-off switch to switch on the pressure source for stopping the return stroke of the hydroconsumer over a predetermined time duration which ensures that the pressure pulse and/or the through flow volume pulse is sufficient for switching the switching valve from the through flow position to the shutoff position and holding the switching valve in the shutoff position via a pressure differential generated at the control throttle arrangement.
2. The hydraulic drive according to
3. The hydraulic drive according to
4. The hydraulic drive according to
5. The hydraulic drive according to
6. The hydraulic drive according to
7. The hydraulic drive according to
8. The hydraulic drive according to
9. The hydraulic drive according to
10. The hydraulic drive according to
12. The hydraulically operable working tool according to
13. The hydraulically operable working tool according to
14. The hydraulically operable working tool according to
15. The hydraulically operable working tool according to
16. The hydraulically operable working tool according to
18. The hydraulic drive of
|
This application claims foreign priority benefits under 35 U.S.C. §119(a)-(d) to European patent application number EP 12185472.3, filed Sep. 21, 2012, which is incorporated by reference in its entirety.
The disclosure relates to a hydraulic drive and to a hydraulically operable working tool.
In a portable, hydraulically operable tool (with accumulator or mains cable) that can be used, for example, as cable lug press, a well-known hydraulic drive is used whose switching valve with working power/pressure control function (the latter by an integrated pressure control valve) is disposed in a discharge channel to the tank which branches off from a working line from the pressure source to the hydroconsumer. When the tool is started for the first time, the working power is limited by opening the pressure control valve via the pressure control function when a working position is reached. The pressure control valve then remains in its open position, so that, after the pressure source has been switched off, the permanently acting force (either a spring or a load) will move the hydroconsumer via its return stroke to a predetermined end position and in the process allow the pressurizing agent to flow off from the admission chamber to the tank through the switching valve which is in the passage position. Then, the pressure control valve returns to its original position. Since the switching valve also controls the pressure control function, it needs a high spring force and a relatively narrow throttle point, which on the one hand requires at least one very large pressure admission surface, and on the other hand results in a relatively limited return stroke speed. The hydroconsumer will always drive back to its end position over the complete return stroke, even if the pressure source is switched on again during the return stroke. The return stroke could only be manually stopped by actuating a manual emergency device. However, this requires complicated hand movements and a considerable expenditure of force. Since the hydroconsumer always performs the complete return stroke, a lot of time is wasted until the next operation, also due to the slow return stroke speed. For in many applications, it would be sufficient, for example when cable lugs are pressed, to only slightly release the tool application controlled by the hydroconsumer until it can be transferred to a new working position without having to accept the long duration for the return stroke. The large pressure admission surface in the switching valve results in high structural efforts. Furthermore, a relatively high permanent force (energy storing spring) for the hydroconsumer is required.
It has been suggested in practice to additionally dispose an electrically operable valve in the hydraulic drive of such a tool by which the return stroke of the hydroconsumer can be stopped at any arbitrary point before the hydroconsumer has reached its end position. However, this involves additional, cost-intensive efforts and an extra demand of electric energy, being a disadvantage, for example, in a tool powered by an accumulator. Moreover, an electric activation of the valve is required, and also a separate actuator for the valve, thus rendering the handling of the tool difficult and creating additional sources of failure.
An object underlying the disclosure is to provide a hydraulic drive of the type mentioned in the beginning and a hydraulically operable working tool, where one does not have to await the duration of the complete return stroke of the hydroconsumer to its end position after a working cycle, and this in an energy-saving manner and without any additional components of equipment.
The hydroconsumer can be stopped at an arbitrary point during the return stroke before it reaches its end position just by generating a pressure and/or volume flow pulse via the pressure source, and it can either be held at this position or immediately be brought again to a working position by the switched-on pressure source, so that, if this is desired, the duration for the complete return stroke and the new stroke towards the working position, at least to the stop position, does not have to be awaited. An essential advantage of the hydraulic control is that components needed for the normally required functions are employed for stopping the return stroke, and no additional pieces of equipment are required.
The possibility of stopping the return stroke at any arbitrary position, of holding this position, or of immediately initiating a new working cycle offers the considerable advantage of a clear saving of time with several subsequent working cycles in the hydraulically operated working tool.
In a suitable embodiment, the pressure source is a pump that can be electrically operated in the cutoff operation (accumulator operation or mains cable operation), and the pressure or volume flow pulse required for hydraulically stopping the return stroke can be generated by at least temporarily switching on the initially switched off pump. This can be comfortably done by the user via the on-off switch of the pump which is provided anyway.
In the hydraulic drive, the switching valve and its working power/pressure control function are suitably connected in parallel in a working line extending from the pressure source via the hydroconsumer and the throttle point to the tank, and the working line is guided through the switching valve both to the hydroconsumer and from the hydroconsumer to the tank in each case. This represents a suitable departure from the common principle of disposing the switching valve only in the outlet line to the tank and provides a prerequisite for stopping the return stroke at any time only by hydraulic means.
Advantageously, the working line is here equipped with a control throttle arrangement between the pressure source and the hydroconsumer generating a predetermined pressure differential from the delivery pressure or the delivery rate of the pressure source, comprising either a control throttle and a check valve shutting off in the return flow direction to the pressure source, or only a spring-loaded check valve with control throttle function shutting off in the return flow direction to the pressure source. The spring force of the switching valve acts in the moving direction towards the passage position, while the switching valve is pilot controlled by pressure in the moving direction towards the shutoff position from upstream of the control throttle arrangement, and additionally in the moving direction towards the passage position from downstream of the control throttle arrangement each. These pressure pilot controls of the switching valve permit to provide the usual functions of such a hydraulic drive and to additionally stop the return stroke at any desired point.
Here, it might be important for the switching valve to hold the shutoff position by pressure pilot control during the extending motion of the hydroconsumer and in the respective working position against the spring force.
In a preferred embodiment, the switching valve comprises, for the shutoff position between the hydroconsumer and the tank, a seat and a seat valve closing member with a sealing surface, preferably between the throttle point disposed at the inlet of the switching valve and a tank connection. The seat valve closing member shuts off at the seat under the delivery pressure or delivery rate of the pressure source, and it is lifted off the seat without delivery pressure or delivery rate by the spring force of the switching valve when the manual emergency control is used or pressure control is effected. This is because in this case, the pressure in the chamber collapses. If this is not the case, the seat valve closing member will remain on the seat due to the pressure caused by the force permanently acting in the hydroconsumer. The changeovers of the switching valve are done quickly without delay.
In a suitable embodiment, there are provided in a housing of the switching valve for the working power/pressure control function in the seat valve closing member a through bore in communication with the pressure source, a piston loaded by the spring force of the switching valve with a closing projection cooperating with the through bore, and preferably an adjustable abutment for a spring generating the spring force. Here, the abutment can be either disposed in the seat valve closing member, for example fixed by being bolted, and be movably guided in the housing with the seat valve closing member being sealed against the outside of the housing, or the abutment is disposed in the housing separate from the seat valve closing member, for example bolted, the seat valve closing member being encapsulated in the housing in a sealed manner. The latter solution has the advantage of requiring fewer sealing zones which are subjected to stress in the operation of the switching valve.
To permit a manual emergency stop control, for example for venting the system or relieving it from pressure or the like, it is suitable for a projection to extend from the piston through the abutment to the outside of the housing in a sealed manner, the projection forming a manual emergency actuation at the end situated outside the housing.
In an advantageous embodiment, a chamber with a pressure source connection is disposed underneath the seat valve closing member in the housing which is partially limited by a chamber bottom facing away from the seat valve closing member. The chamber bottom can be embodied as an insertion part inserted in the housing or be an integral part of the housing. The chamber bottom is penetrated by a passage leading to a hydroconsumer connection point of the housing. The control throttle arrangement is disposed in the passage, for example. This results in short and low-loss flow paths and a compact construction of the switching valve.
In the passage of the chamber bottom, the control throttle embodied as screwed throttle insert, and the check valve embodied as plate-type check valve are mounted. The screwed throttle insert can be easily replaced by one embodied with a different throttle cross-section. The plate-type check valve saves installation space in the axial direction. As an alternative, the spring-loaded check valve with control throttle function can be mounted directly in the passage.
To ensure smooth-running and neat movements of the movable components of the switching valve, the piston for the pressure control function can be guided inside the seat valve closing member embodied as piston tube with a conical sealing surface on the outer periphery, and the seat valve closing member can be movably guided inside a bushing inserted in the chamber of the housing.
As peripheral equipment, a pump on-off switch can be provided to which preferably either a time function element or a program section is functionally allocated to switch on the pump for stopping the return stroke of the hydroconsumer for a predetermined duration which ensures that the pressure or volume flow pulse is sufficient for switching over the switching valve from the passage position to the shutoff position and holding it in the shutoff position via a corresponding pressure differential at the control throttle arrangement.
Embodiments of the subject matter of the disclosure will be illustrated in more detail with reference to the below drawings.
As required, detailed embodiments are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary and that various and alternative forms may be employed. The figures are not necessarily to scale. Some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art.
In the tool W, a pressure source P is provided at a tank T and can be operated by an electric motor M in the cutoff operation. This can be a fixed displacement pump with one or several pump elements. The electric motor M is connected to an on-off switch 6 which can be actuated at the tool as required. In an optional embodiment, a time function element or a program section 7 is allocated to the on-off switch and ensures, when the on-off switch 6 is only temporarily actuated for switching on, a predetermined switch-on period which will be discussed later.
A working line 9 leads from the pressure source P to the hydroconsumer 2 via a check valve 8 shutting off in the return flow direction to the pressure source P, namely one branch 9a of the working line 9 through a switching valve U with working power/pressure control function to an admission chamber 40 of the hydroconsumer 2, and one branch 9b from the admission chamber 40 through the switching valve U to the tank.
The switching valve U comprises a housing 10, in the embodiment shown in
Inside the seat valve member 18, a piston 23 is movably guided and provided for the tool working force/pressure control function of the switching valve U and supports a closing member projection 24 at its bottom side which cooperates with a passage 29 in the bottom of the seat valve member 18 (pressure control seat valve function). The chamber bottom 16 contains a passage to the first hydroconsumer connection 12. In the passage, a control throttle arrangement A is disposed which consists of a screwed-in throttle insert 26 with a control throttle 27 of a predetermined cross-sectional dimension in the embodiment of
A spring 30 is disposed inside the piston 23 which generates the spring force for keeping the pressure control valve 24, 29 closed. The spring 30 is supported with its other end at an abutment 31 which is screwed into the seat valve member 18 and permits to change the spring force in the embodiment in
The embodiment of the hydraulic drive H in
In
In the phase shown in
If, after the maximum pressure is reached (max. working power), the pressure source P is switched off, the hydroconsumer 2 will perform its complete return stroke which can be stopped again at any time by switching the pressure source on again.
In
To be able to easily adapt the hydraulic drive H to the respective demands (for example with respect to performance, direction of motion, stroke, etc.), the hydroconsumer 2 (hydraulic cylinder, hydraulic motor) is optionally disposed such that it can be easily replaced, i.e., the hydroconsumer connections in the housing 10, 10a of the switching valve U form interfaces for combinations with different types of hydroconsumer 2. For example, the switching valve U can be matched to changing demands by exchanging the throttle insert 26 and/or adjusting the abutment 31 to change the spring force 30 (22). The switching valve U is illustrated with a block-like housing 10, 10a, however it could alternatively be a valve cartridge or a screwed-in valve. The check valve 28 could be arranged in the system at another position than the one shown.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Aneder, Georg, Zwingler, Engelbert
Patent | Priority | Assignee | Title |
10731675, | Nov 06 2015 | PLEIGER MASCHINENBAU GMBH & CO KG | Method and device for controlling a hydraulically actuated drive unit of a valve |
11053957, | Dec 21 2017 | Moog GmbH | Actuating drive having a hydraulic outflow booster |
9541101, | Aug 08 2013 | HAWE Hydraulik SE | Hydraulic drive |
Patent | Priority | Assignee | Title |
5076140, | Mar 10 1989 | Pacific Fluid Systems, Corp. | Method and system for hydraulically positioning and impact load cushioning of a workpiece |
7296669, | Oct 31 2002 | Magna Drivetrain AG & Co KG | Simple action actuator with a hydraulic fast-opening valve for controlling a clutch |
8549983, | Jun 12 2007 | Voith Patent GmbH | Hydraulic drive, in particular for machine tools, and method for controlling the hydraulic drive |
20030178060, | |||
20110088797, | |||
20120090690, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 18 2013 | HAWE Hydraulik SE | (assignment on the face of the patent) | / | |||
Jul 03 2013 | ZWINGLER, ENGELBERT | HAWE Hydraulik SE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030792 | /0728 | |
Jul 03 2013 | ANEDER, GEORG | HAWE Hydraulik SE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030792 | /0728 |
Date | Maintenance Fee Events |
Jan 27 2020 | REM: Maintenance Fee Reminder Mailed. |
Jul 13 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 07 2019 | 4 years fee payment window open |
Dec 07 2019 | 6 months grace period start (w surcharge) |
Jun 07 2020 | patent expiry (for year 4) |
Jun 07 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 07 2023 | 8 years fee payment window open |
Dec 07 2023 | 6 months grace period start (w surcharge) |
Jun 07 2024 | patent expiry (for year 8) |
Jun 07 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 07 2027 | 12 years fee payment window open |
Dec 07 2027 | 6 months grace period start (w surcharge) |
Jun 07 2028 | patent expiry (for year 12) |
Jun 07 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |