A method of reducing the level of pain experienced by a patient during a pain-inducing dermatological treatment by using non-pharmacologic means is described. The method employs the use of multiple bursts of a gas to stimulate a touch sensation in or near the tissue to be treated using the dermatological treatment in order to reduce and/or relieve pain. The method can be used alone or can be used in combination with other non-pharmacologic and/or pharmacologic methods of relieving pain in order to make a patient more comfortable during or following the dermatological treatment.

Patent
   9364287
Priority
Jun 05 2007
Filed
Jun 05 2008
Issued
Jun 14 2016
Expiry
Feb 19 2035
Extension
2450 days
Assg.orig
Entity
Large
0
141
currently ok
1. A method of reducing the level of pain experienced by a patient during a pain-inducing dermatological treatment, comprising:
stimulating a touch sensation in a patient in an area in or near a region of tissue to be treated during a pain-inducing dermatological treatment,
wherein the stimulating of the touch sensation is achieved by directing multiple bursts of a gas at or near the region of tissue so as to reduce the level of pain experienced by the patient during the pain-inducing dermatological treatment.
3. A method of reducing the dosage of anesthetic required by a patient undergoing a pain-inducing dermatological treatment, comprising:
stimulating a touch sensation in a patient in an area in or near a region of tissue to be treated during a pain-inducing dermatological treatment,
wherein the stimulating of the touch sensation is achieved by directing multiple bursts of a gas at or near the region of tissue, and
wherein the stimulating of the touch sensation reduces the dosage of anesthetic required to reduce the level of pain experienced by a patient undergoing the pain-inducing dermatological treatment.
2. The method of claim 1, further comprising:
providing the pain-inducing dermatological treatment to a patient.
4. The method of claim 3, wherein the method comprises stimulating a touch sensation in the region of tissue to be treated by the pain-inducing dermatological treatment.
5. The method of claim 3, wherein the method comprises stimulating a touch sensation in a region of tissue immediately adjacent to the region of tissue to be treated by the pain-inducing dermatological treatment.
6. The method of claim 3, wherein the method comprises stimulating a touch sensation in a region of tissue which is larger than and encompasses the region of tissue to be treated by the pain-inducing dermatological treatment.
7. The method of claim 3, wherein the region of tissue to be treated comprises human skin.
8. The method of claim 3, wherein the multiple bursts of gas are delivered at a rate between about 5 bursts per second and about 100 bursts per second.
9. The method of claim 3, wherein the multiple bursts of gas are delivered at a rate between about 5 bursts per second and about 50 bursts per second.
10. The method of claim 3, wherein the multiple bursts of gas are delivered at a rate between about 10 bursts per second and about 30 bursts per second.
11. The method of claim 3, wherein the multiple bursts of gas comprise bursts of pressurized gas.
12. The method of claim 3, wherein the gas comprises air.
13. The method of claim 1 or 3, wherein the gas comprises nitrogen.
14. The method of claim 3, wherein the temperature of the gas is approximately ambient temperature as it contacts the tissue.
15. The method of claim 3, wherein the temperature of the gas is between about 20° C. and about 30° C. as it contacts the tissue.
16. The method of claim 3, wherein the temperature of the gas is below about 20° C. as it contacts the tissue.
17. The method of claim 3, wherein the temperature of the gas is above about 30° C. as it contacts the tissue.
18. The method of claim 3, wherein the pain-inducing dermatological treatment comprises an optical energy based treatment.
19. The method of claim 3, wherein the pain-inducing dermatological treatment comprises a laser treatment.
20. The method of claim 3, wherein the average pain score experienced by a patient undergoing the pain-inducing dermatological treatment in conjunction with the stimulating is at least 1 point less on a 10 point pain scale than the average pain score experienced by a patient undergoing the pain-inducing dermatological treatment in the absence of the stimulating, where a score of zero is no pain and a score of 10 is the worst pain imaginable.
21. The method of claim 20, wherein the topical anesthetic is selected from the group consisting of lidocaine, prilocaine, tetracaine, benzocaine, dibucaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, and combinations thereof.
22. The method of claim 3, wherein the average pain score experienced by a patient undergoing the pain-inducing dermatological treatment in conjunction with the stimulating is at least 2 points less on a 10 point pain scale than the average pain score experienced by a patient undergoing the pain-inducing dermatological treatment in the absence of the stimulating, where a score of zero is no pain and a score of 10 is the worst pain imaginable.
23. The method of claim 3, wherein the anesthetic comprises a topical anesthetic.
24. The method of claim 3, wherein the dosage of anesthetic required to reduce the level of pain experienced by a patient undergoing the pain-inducing dermatological treatment in conjunction with the stimulating is at least 20% less than the dosage of anesthetic required to reduce the level of pain experienced by a patient undergoing the pain-inducing dermatological treatment in the absence of the stimulating.
25. The method of claim 24, wherein a dosage of anesthetic required to reduce the level of pain experienced by a patient undergoing the pain-inducing dermatological treatment in the absence of the stimulating comprises the dosage of anesthetic required to prevent the patient from experiencing pain in excess of a pain score of 8 on a 10 point pain scale, where a score of zero is no pain and a score of 10 is the worst pain imaginable.
26. The method of claim 3, further comprising:
providing the pain-inducing dermatological treatment to a patient.

This application claims the benefit of and priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 60/942,175, “Method for Reducing Pain of Dermatological Treatments,” filed Jun. 5, 2007, which is incorporated herein by reference in its entirety.

This invention relates generally to a method of reducing the level of pain experienced by a patient during a pain-inducing dermatological treatment. More particularly, it relates to a method of reducing the pain experienced by a patient during a dermatological treatment by using multiple bursts of a gas to stimulate a touch sensation in or near the tissue to be treated using the pain-inducing dermatological treatment.

A number of methods of providing dermatological treatments, such as, for example, intense pulsed light based treatments and laser treatments, produce significant levels of pain in patients, leading to the use of anesthetics or analgesics to make patients more comfortable during and immediately following these treatment. Systemic analgesics have been used to reduce pain, but these can lead to unwanted side effects and can be less effective than desired. Topical anesthetics are more commonly used but these can also produce unwanted side effects, including systemic uptake of the anesthetic. Also, as only lower concentrations of topical anesthetics are currently marketed in the United States, physicians often use compounded materials containing higher concentrations of anesthetic. The use of compounded materials presents concerns about product stability, homogeneity and quality in addition to concerns about side effects and systemic uptake.

A number of non-pharmacologic methods of reducing pain have been used for different purposes. For example, transcutaneous electroneurostimulation has been shown to relieve chronic and acute pain (Ersek (1977) Transcutaneous electrical neurostimulation: a new therapeutic modality for controlling pain, Clin Ortop Relat Res. 128:314-24). Applying pressure or pinching skin before and during an injection has been widely reported to reduce the severity of the pain of the injection (Fletcher (2004) Painless Depo-medroxyprogesterone acetate (DMPA) injections using the ‘pinch technique’, J Obstet Gynaecol 24(5):562-3). The use of vibratory stimulation has also been proposed to reduce pain, but results have not been conclusive (Saijo et al. (2005) Lack of pain reduction by a vibrating local anesthetic attachment: a pilot study, Aneth Prog 52(2):62-4). These non-pharmacologic methods require that some sort of physical contact is used to stimulate a response in tissue in order to be effective. However, implementing a method using stimulation based on physical contact with tissue can be problematic when combined with a dermatological treatment which may also require contact with the tissue. For example, the delivery mechanism for the dermatological treatment device can interfere with the stimulation by directly contacting or covering the tissue. If the dermatological treatment device requires the use of a contact plate or window, using the contact plate or window itself to stimulate a response in tissue can be difficult. If the stimulation is based on a touch stimulus, the amount of pressure that needs to be applied to the contact plate or window in order to stimulate the tissue can be more than enough pressure to deform the tissue, which in turn can affect the dermatological treatment. Also, if the stimulation is based on a touch stimulus, it may require that the delivery handpiece is vibrated or is repeatedly put in contact and removed from contact with the tissue while the treatment is delivered, which in turn can affect the dermatological treatment. Further, devices which incorporate a means for stimulating tissue in a delivery handpiece can be substantially more complicated to design, manufacture and maintain.

Thus, a need exists for non-pharmacologic methods of reducing the pain of dermatological treatments by stimulating a touch sensation in a patient which are compatible with the various sorts of dermatological treatment devices on the market and in development. Such non-pharmacologic methods of reducing pain by stimulating a touch sensation can be used alone in order to reduce pain during or immediately following a dermatological treatment, or can be used to supplement other methods of analgesia and/or anesthesia.

The present invention is directed to a method of reducing the level of pain experienced by a patient during or immediately following a pain-inducing dermatological treatment, comprising: stimulating a touch sensation in a patient in an area in or near a region of tissue to be treated immediately before, during, or immediately following a pain-inducing dermatological treatment, wherein the stimulating a touch sensation is achieved by directing multiple bursts of a gas at or near the region of tissue so as to reduce the level of pain experienced by the patient during or immediately following the dermatological treatment. In another embodiment, the present invention is directed to a method of reducing the dosage of anesthetic required by a patient undergoing a pain-inducing dermatological treatment, comprising: stimulating a touch sensation in a patient in an area in or near a region of tissue to be treated immediately before, during, or immediately following a pain-inducing dermatological treatment, wherein the stimulating a touch sensation is achieved by directing multiple bursts of a gas at or near the region of tissue, and wherein the stimulating reduces the dosage of anesthetic required to reduce the level of pain experienced by a patient undergoing the pain-inducing dermatological treatment.

The invention has other advantages and features which will be more readily apparent from the following detailed description of the invention an the appended claims, when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a drawing illustrating an example of a gas burst production system being used to deliver a burst of gas to a tissue.

FIG. 2 is a drawing illustrating an electromagnetic energy based medical treatment system which incorporates a gas burst production system being used to deliver busts of gas during an electromagnetic energy based treatment to a tissue.

A number of different types of devices are used to deliver dermatological treatments to various types of tissue to achieve various desired medical and/or cosmetic outcomes in the tissue. Under many treatment conditions, these dermatological treatments can produce pain in the patient undergoing the treatment. The devices used to deliver these dermatological treatments can employ one or more forms of electromagnetic radiation, such as, for example, electrical energy, radiofrequency energy, thermal energy, and optical energy, including laser energy, intense pulsed light, etc. In one example, various forms of electromagnetic radiation have been used to treat medical and/or cosmetic conditions such as hypervascular lesions, pigmented lesions, acne scars, rosacea, hypertrichosis, verruca, actinic keratoses, psoriasis, for hair removal, to treat the nail, nail plate or nail matrix, to deliver photodynamic therapy, etc. Additionally, various forms of electromagnetic radiation have also been used for solely cosmetic purposes to achieve a better cosmetic appearance by resurfacing the skin and remodeling the different layers of skin, to improve the appearance of wrinkled or aged skin and/or to tighten skin, and to remove hair. Generally, skin resurfacing is understood to be the process by which the top layers of the skin are completely removed by using chemicals, mechanical abrasion or optical energy to promote the development of new, more youthful looking skin and stimulate the generation and growth of new skin. In laser skin remodeling, laser energy penetrates into at least a portion of the deeper layers of the skin and is aimed at stimulating the generation of and/or altering the structure of extra-cellular matrix materials, such as collagen, that contribute to the youthful appearance of skin.

During dermatological treatments utilizing electromagnetic radiation, the electromagnetic radiation is directed at the skin surface or at the layers of tissue below the surface of the skin of a patient. Generally, optical energy based dermatological treatments operate at one or more wavelengths that are absorbed by one or more of the natural chromophores in the skin, such as, for example, blood, melanin and/or water, although chromophores can also be added to the tissue. In the case when water is used as the primary chromophore, cellular and interstitial water absorbs the optical energy and transforms the optical energy into thermal energy. The transport of thermal energy in tissues during treatment is a complex process involving conduction, convection, radiation, metabolism, evaporation and phase change that vary with the operational parameters of the beam of optical energy. It is important in such procedures not to damage tissue underlying or surrounding the target tissue area. If the operational parameters of the beam of optical energy, such as wavelength, power, intensity of the optical energy, pulse duration, rate of emission, etc., are properly selected, cellular and interstitial water in the patient's skin is heated, causing temperature increases that produce a desired dermatological effect. Conversely, improper selection of the operational parameters can result in under-treatment or over-treatment of the tissue.

Dermatological treatments utilizing electromagnetic radiation often produce at least a low level of pain in the patient. Physicians typically use some method of reducing or relieving the pain experienced by the patient in order to make the patient more comfortable, such as, for example, oral analgesics and/or topical anesthetics prior to treatment. The methods of the present invention can be used to reduce or relieve the level of pain experienced by a patient during or immediately following a pain-inducing dermatological treatment. These methods can be used immediately before, during, or immediately following a dermatological treatment in order to reduce or relieve the level of pain produced in a patient by a pain-inducing dermatological treatment. These methods can be used continuously for a period of time immediately following a pain-inducing dermatological treatment in order to maintain the comfort of the patient following the treatment. Alternatively, these methods can be used intermittently for a long period of time following treatment on an as needed basis to maintain the comfort of the patient. These methods can be used alone in order to relieve pain, reduce pain and/or increase patient comfort. These methods can also be combined with other methods of providing analgesia and/or anesthesia in order to further decrease the level of pain experienced by a patient, or in order to decrease the concentration and/or dose of analgesia and/or anesthesia required.

The methods of the present invention reduce pain via non-pharmacologic means by stimulating a touch sensation in a tissue. The tissue can comprise a region of tissue that is to be treated using a dermatological treatment device. The tissue can comprise tissue near a region that is to be treated using a dermatological treatment device. The tissue can comprise tissue immediately adjacent to a region of tissue that is to be treated using a dermatological treatment device. The tissue can comprise a region of tissue which is larger than and encompasses the region of tissue that is to be treated using a dermatological treatment device.

The region of tissue to be treated by the pain-inducing dermatological treatment can comprise human tissue. The region of tissue to be treated by the dermatological treatment can comprise skin. The region of tissue to be treated by the dermatological treatment can comprise human skin. The region of tissue to be treated by the dermatological treatment can comprise one or more layers of human skin, such as, for example, the stratum corneum, the epidermis, the dermal-epidermal junction, the dermis, the subcutis, etc.

The touch sensation in the tissue is stimulated by directing multiple bursts of a gas at a tissue. The bursts of gas are of duration such as to stimulate a noticeable touch sensation in the region of tissue to which they are directed. The bursts of gas can comprise a series of bursts. The bursts and/or series of bursts of gas can be delivered in a pattern or in a random manner. The bursts and/or series of bursts can be delivered at a rate between about 5 bursts per second and about 100 bursts per second. The bursts and/or series of bursts can be delivered at a rate between about 7 bursts per second and about 50 bursts per second. The bursts and/or series of bursts can be delivered at a rate between about 10 bursts per second and about 30 bursts per second.

In one embodiment, the bursts of gas can comprise bursts of pressurized gas. The pressure of the bursts of gas can be between about 0.01 pound per square inch (psi) and about 10 psi. The pressure of the bursts of gas can be between 0.05 psi and about 5 psi. The pressure of the bursts of gas can be between about 0.1 psi and about 2 psi. In one embodiment, the gas can comprise air. Alternatively, the gas can comprise a substantially pure inert gas or mixture of inert gasses. The gas can comprise nitrogen.

In one embodiment, the temperature of the gas is approximately the ambient temperature in the treatment space at the time the gas contacts the tissue. For example, the average temperature of the gas can be between about 20° C. and about 30° C. at the time it contacts the tissue. Alternatively, the temperature of the gas can be significantly above or below the ambient temperature in the treatment space at the time the gas contacts the tissue in order to stimulate both a touch sensation and a temperature sensation in the tissue. For example, the average temperature of the gas can be above about 30° C., or below about 20° C. at the time it contacts the tissue.

In one embodiment, the pain-inducing dermatological treatment comprises an optical energy based treatment. The optical energy can be coherent in nature, such as laser radiation, or non-coherent in nature, such as flash lamp radiation. Coherent optical energy can be produced by lasers, including gas lasers, dye lasers, metal-vapor lasers, fiber lasers, diode lasers, and/or solid-state lasers. If a laser is used for the source of optical energy, the type of laser can be selected from the group consisting of an argon ion gas laser, a carbon dioxide (CO2) gas laser, an excimer chemical laser, a dye laser, a neodymium yttrium aluminum garnet (Nd:YAG) laser, an erbium yttrium aluminum garnet (Er:YAG) laser, a holmium yttrium aluminum garnet (Ho:YAG) laser, an alexandrite laser, an erbium doped glass laser, a neodymium doped glass laser, a thulium doped glass laser, an erbium-ytterbium co-doped glass laser, an erbium doped fiber laser, a neodymium doped fiber laser, a thulium doped fiber laser, an erbium-ytterbium co-doped fiber laser, and combinations thereof. The optical energy can be applied in a fractional manner to produce fractional treatment. For example, the FRAXEL® SR 1500 laser (Reliant Technologies, Inc. Mountain View, Calif., USA) produces fractional treatments using an erbium-doped fiber laser operating at a wavelength that is primarily absorbed by water in tissue, at about 1550 nm.

The wavelength of the optical energy used in the treatment can be between about 600 nm and about 20,000 nm. The wavelength of the optical energy can be selected based on the absorption strength of various components within the tissue and the scattering strength of the tissue. The wavelength of the optical energy can be chosen to target a particular chromophore, such as, for example, water, elastin, collagen, sebum, hemoglobin, myoglobin, melanin, keratin, or other endogenous or exogenous molecules present in the tissue. Wavelengths that are primarily absorbed by water present in the tissue, such as, for example, 1550 nm, can be used. The wavelength of the optical energy treatment can be within the near infrared spectrum, such as, for example, between about 700 nm and about 1400 nm. Wavelengths in the visible spectrum, such as, for example, between about 400 nm and about 700 nm are also useful. Ultraviolet optical energy within the range of between about 200 nm to about 400 nm can be used. These wavelengths can be particularly effective for allowing lower levels of radiation to be used to activate photodynamic therapeutic agents for treatment of conditions in the papillary and reticular dermis.

When the pain-inducing dermatological treatment comprises a fractional optical energy based treatment, depending on the desired size and depth of the treatment zones, the wavelength of the optical energy used can be selected from the group consisting of between about 1100 nm and about 2500 nm, between about 1280 nm and about 1350 nm, between about 1400 nm and about 1500 nm, between about 1500 nm and about 1620 nm, between about 1780 nm and 2000 nm, and combinations thereof. Wavelengths longer than 1500 nm and wavelengths with absorption coefficients in water of between about 1 cm−1 and about 30 cm−1 can be used if the goal is to get deep penetration with small treatment zones. The shorter wavelengths generally have higher scattering coefficients than the longer wavelengths.

In some examples, the optical energy can have a wavelength that is highly absorbed in water. Cellular water absorbs optical energy and transforms the optical energy into heat. Wavelengths larger than 190 nm, such as wavelengths in the range from 190 nm to 10600 nm, from 700 nm to 1600 nm, and about 1550 nm can used. The source of optical energy used to provide the treatment can be capable of providing one wavelength or a range of wavelengths or can be tunable across a range of wavelengths. One or more sources of optical energy can be used to produce a variety of different wavelengths or wavelength ranges used in the dermatological treatment. The optical energy source can be adapted to selectively produce pulses of optical energy at a frequency of between about 0 and about 50,000 pulses per second, or between about 0 and about 1,000 pulses per second. In one example, an optical energy source can emit a beam having pulse energy per treatment spot of between about 1 mJ and about 1000 mJ, or between about 10 mJ and about 30 mJ, with each pulse having a pulse duration per treatment spot between about 0.1 ms and about 30 ms, or about 1 ms.

In some embodiments, the pain-inducing dermatological treatment can be used, for example, to produce non-ablative coagulation of an epidermal and/or a dermal layer of tissue. Typically, for this purpose, an optical fluence incident to a tissue area greater than about 5 J/cm2, such as an optical fluence in the range from about 10 J/cm2 to about 1000 J/cm2, is adequate for coagulating tissue. Generally, the optical fluence is adapted to the wavelength and the tissue to be treated. If various dermatological effects are desired, a treatment device can be selected with the capacity to produce source parameters suitable for other types of tissue treatment. For example, if ablation of an epidermal layer of the tissue is desired, a treatment device can be used with the capability to emit a beam of optical energy with a wavelength of about 2940 nm and optical fluence higher than about 10 J/cm2.

Various methods of rating or scoring pain levels exist in the literature. For example, pain can be scored using a numerical analog score, a verbal assessment score, a verbal pain score, a visual analog score, etc. Such scoring systems are typically based on a continuum of possible scores or a series of possible scores where the lowest possible score is no pain, and the highest possible score is the worst pain imaginable. Other such scoring systems can be based on a scale representing low, medium, or high levels of pain.

One commonly used scoring system is a verbal pain assessment method where the patient is asked to verbally assign a score to their pain and/or discomfort at several points during the treatment. The score can be based on a 10 point scale, where 0 represents no pain and 10 represents the worst pain imaginable. In one example, when such a 10 point pain scale is used, a score of 8 or below can be considered to be a desirable level of pain for a patient to experience during or following a dermatological treatment. A reduction in an average pain score of one point on this scale can be considered to be a desirable and effective reduction in pain. For example, if for a patient a pain-reducing method results in a reduction in an average pain score of at least one point on this scale, the method can be considered to have been effective in reducing the patient's pain. If for a patient a pain-reducing method results in a reduction in an average pain score of at least two points on this scale, the method can be considered to have been more effective in reducing the patient's pain.

The methods of the present invention can be used alone or in combination with other methods of reducing or relieving pain. For example, these methods can be used in conjunction with oral analgesics, topical analgesics, topical anesthetics, injectable anesthetics, etc. The methods of the present invention can be used to reduce the dosage of an analgesic and/or anesthetic required to relieve and/or reduce the level of pain experienced by a patient undergoing a pain-inducing dermatological treatment.

A number of different types of topical anesthetics at various concentrations and dosages are commonly used to reduce or relieve the pain of dermatological treatments. For example, commonly used topical anesthetics include of lidocaine, prilocaine, tetracaine, benzocaine, dibucaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, as well as combinations of topical anesthetics and other active ingredients. The non-pharmacologic methods of the present invention can be used to augment the effect of these active ingredients in order to relieve or reduce pain.

For example, the methods of the present invention can be used to reduce the concentration and/or dosage of an active ingredient that is required to produce a desired level of pain relief and/or reduction. If combining a pain-reducing method of the present invention with an active ingredient produces a reduction in an average pain score of at least one point on a ten point pain scale, the method can be considered to have been effective in relieving and/or reducing the patient's pain. If combining a pain-reducing method of the present invention with an active ingredient produces a reduction in an average pain score of at least two points on a ten point pain scale, the method can be considered to have been more effective in relieving and/or reducing the patient's pain. Alternatively, if combining a pain-reducing method of the present invention with an active ingredient can reduce the dosage and/or concentration of the active ingredient required by at least 10% in order to produce a similar average pain scale as compared to the use of the active ingredient alone, the method can be considered to have been effective in reducing the dosage and/or concentration of active ingredient required. If combining a pain-reducing method of the present invention with an active ingredient can reduce the dosage and/or concentration of the active ingredient required by at least 20% in order to produce a similar average pain scale as compared to the use of the active ingredient alone, the method can be considered to have been more effective in reducing the dosage and/or concentration of active ingredient required.

FIG. 1 is a drawing illustrating one example of a gas burst production system 130 that can be used to stimulate a touch sensation in tissue 150 by directing multiple bursts of a gas at a region of tissue so as to reduce and/or relieve pain produced by a dermatological treatment. In FIG. 1, the gas source 160 can comprise a system that produces a stream of gas 132, such as, for example, an air compressor, an air blower, a source of pressurized gas, etc.

The stream of gas 132 is directed out of the gas source 160 and toward a burst production system 170. The burst production system serves to divide the stream of gas 132 into individual bursts of gas 133. The burst production system can comprise, for example, a rotating fan, a rotating wheel with alternating open and closed apertures, etc. The burst production system can divide the stream of gas into a series of bursts. The burst production system can divide the stream of gas into a pattern of bursts with a set frequency and/or delay. The burst production system can divide the stream of gas into a random series of burst without a set frequency and/or delay. The timing of the bursts is such that, when the bursts are directed at a tissue, the bursts produce a touch sensation in the tissue 150. Once the bursts of gas 133 leave the gas burst production system 130, they are directed to the tissue 150 by a gas burst delivery system 131. The gas burst delivery system 131 can comprise, for example, a tube or other such housing.

The gas burst production system of FIG. 1 can be used as a separate device in order to stimulate a touch sensation in a tissue. Alternatively, the gas burst production system of FIG. 1 can be incorporated into a dermatological treatment device in order to more easily deliver the multiple bursts of gas immediately before, during or immediately following a dermatological treatment.

FIG. 2 illustrates a laser dermatological treatment which incorporates a gas burst production system such as, for example, the gas burst production system of FIG. 1. The treatment device of FIG. 2 comprises a laser source 110, a gas burst production system 130, a controller, a gas burst delivery system 131, and a handpiece 140. In the device of FIG. 2, the laser source 110 and the gas burst production system 130 are controlled by the controller 120. Optionally, other components of the device, such as the handpiece, can be controlled by the controller as well. In the device of FIG. 2, the gas burst production system 130 produces multiple bursts of gas which are directed by the gas burst delivery system 131 through the handpiece 140 to a tissue 150, where the multiple gas bursts stimulate a touch sense in the tissue. The gas bursts 133 can be directed at the tissue immediately before, during, and immediately following the laser treatment.

Five patients are recruited to participate in a study to evaluate the level of pain reduction produced by the use of a gas burst production system in conjunction with a fractional laser skin resurfacing treatment. The study parameters and requirements are fully explained to each patient, and each patient signs a consent form prior to start of the study.

On the day of the treatment, each patient is prepared for the treatment by applying a thick layer (about ¼ inch) of a commercially available topical anesthetic cream, such as EMLA® Cream lidocaine and prilocaine cream (AstraZeneca, Wilmington, Del., USA) to the entire face. The cream is left in place for approximately 45 minutes. Immediately prior to treatment, the cream is removed from the patient's face.

Each patient receives a skin resurfacing treatment on their face using a FRAXEL® SR 1500 laser (Reliant Technologies, Inc. Mountain View, Calif., USA) at settings appropriate for their skin type. On half the face of each patient, multiple bursts of gas are directed at the skin in a manner which produces a touch sensation. The multiple bursts of gas are delivered to the skin essentially concurrently with the laser treatment. The multiple bursts of gas are produced using a Zimmer Cryo 6 cold air device (Zimmer MedizinSystems, Irvine, Calif., USA) which has been modified to include a rotating wheel with apertures which breaks the stream of cold air into bursts, producing a series of bursts of cold air at a rate of approximately 10 bursts per second. On the other half of the face of each patient, a steady stream of gas is directed at the skin essentially concurrently with the laser treatment. The steady stream of gas is provided using the same Zimmer Cryo 6 cold air device at the same settings as previously, but with the rotating wheel with apertures removed in order to allow the device to deliver the cold air in a stream rather than bursts.

During the treatment, the patients are verbally asked to assess their pain level using a 10 point pain scale, where zero is the absence of pain and 10 is the worst pain imaginable. At least 5 pain scores are recorded for each half of the face treated for each patient, and are averaged to obtain an average pain score for each treatment type (with a steady stream of cold air or with multiple bursts of cold air) for each patient. The two average pain scores for each patient are then compared, and the average pain scores for the treatments using multiple bursts of cold air are found to be at least one point lower than the average scores for the treatments using a stream of cold air.

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

In the specification and in the claims, reference to an element in the singular is not intended to mean “one and only one” unless explicitly stated, but rather is meant to mean “one or more.” In addition, it is not necessary for a device or method to address every problem that is solvable by different embodiments of the invention in order to be encompassed by the claims.

Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples and aspects of the invention. It should be appreciated that the scope of the invention includes other embodiments not discussed in detail above. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as defined in the appended claims. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalents. Furthermore, no element, component or method step is intended to be dedicated to the public regardless of whether the element, component or method step is explicitly recited in the claims.

DeBenedictis, Leonard C., Dallarosa, Joseph L.

Patent Priority Assignee Title
Patent Priority Assignee Title
3861383,
4014347, May 27 1975 REHABILLICARE, INC Transcutaneous nerve stimulator device and method
4595008, Jun 16 1981 Sunset Ltd. Localized thermotherapy technique
5447530, Mar 28 1994 Periodic pulsed heat technique for inducing analgesic effects
5449378, May 08 1992 MEAGAN MEDICAL, INC Method and apparatus for the electric stimulation of skin receptors
5580350, Mar 28 1994 Periodic pulsed heat technique for inducing analgesic effects
5660836, May 05 1995 THERMAGE, INC Method and apparatus for controlled contraction of collagen tissue
5727556, Feb 10 1993 Method for pain therapy and/or for influencing the vegetative nervous system
5755753, May 05 1995 Thermage, Inc. Method for controlled contraction of collagen tissue
5871524, May 05 1995 THERMAGE, INC Apparatus for controlled contraction of collagen tissue
5919219, May 05 1995 THERMAGE, INC Method for controlled contraction of collagen tissue using RF energy
5941902, Nov 21 1986 Gradient Technologies, LLC Continuous pulse, non-modulated non-burst mode nerve stimulator and method of applying same
5948009, Mar 06 1998 IRVINE BIOMEDICAL, INC Apparatus and methods for medical ablation use
5948011, May 15 1995 THERMAGE, INC Method for controlled contraction of collagen tissue via non-continuous energy delivery
6011994, Sep 24 1997 PINEY WOODS PATENT GROUP LLC Multipurpose biomedical pulsed signal generator
6063079, Dec 15 1997 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
6068596, Feb 10 1993 Method for administering a pulse-like wave to a patient for pain therapy and/or for influencing the autonomic nervous system
6086585, Jun 07 1995 Arthrocare Corporation System and methods for electrosurgical treatment of sleep obstructive disorders
6091989, Apr 08 1998 Imperception, Incorporated Method and apparatus for reduction of pain from electric shock therapies
6091994, Dec 28 1995 Pulsative manipulation of nervous systems
6109268, Jun 07 1995 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
6139545, Sep 09 1998 VidaDerm Systems and methods for ablating discrete motor nerve regions
6210402, Nov 22 1995 Arthrocare Corporation Methods for electrosurgical dermatological treatment
6217534, Mar 12 1991 Method and pulsating spray apparatus for inducing altered states in human beings
6228078, Nov 22 1995 Arthrocare Corporation Methods for electrosurgical dermatological treatment
6254600, May 10 1993 Arthrocare Corporation Systems for tissue ablation and aspiration
6264652, Nov 25 1997 Arthro Care Corporation Electrosurgical systems for treating tissue
6277116, May 06 1994 Syneron Medical Ltd Systems and methods for shrinking collagen in the dermis
6296638, May 10 1993 Arthrocare Corporation Systems for tissue ablation and aspiration
6309387, Nov 25 1997 Arthrocare Corporation Systems and methods for electrosurgical skin resurfacing
6311090, May 15 1995 Thermage, Inc. Method and apparatus for controlled contraction of collagen tissue
6387380, May 05 1995 THERMAGE, INC Apparatus for controlled contraction of collagen tissue
6405090, May 05 1995 THERMAGE, INC Method and apparatus for tightening skin by controlled contraction of collagen tissue
6408212, Apr 13 1999 Method for treating acne
6413255, Mar 09 1999 THERMAGE, INC Apparatus and method for treatment of tissue
6432103, Jun 07 1995 Arthrocare Corporation System for electrosurgical treatment of submucosal tissue
6445955, Jul 08 1999 FOSTER BIODEVICE, LLC Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
6453202, May 15 1995 Thermage, Inc. Method and apparatus for controlled contraction of collagen tissue
6461350, Nov 22 1995 Arthrocare Corporation Systems and methods for electrosurgical-assisted lipectomy
6461354, Nov 22 1995 Arthrocare Corporation Systems for electrosurgical dermatological treatment
6481104, Sep 22 2000 Sharper Image Corporation Vibrating shaving systems
6535767, Aug 21 2001 HEALTHONICS, INC Apparatus and method for bioelectric stimulation, healing acceleration and pain relief
6544261, Jun 07 1995 Arthrocare Corporation Systems and methods for electrosurgical treatment of submucosal tissue
6572594, Aug 18 1999 R S MEDICAL, LLC Skin treatment using neuromuscular stimulation and a treatment gas containing medicine
6659106, Jun 07 1995 Arthrocare Corporation System and methods for electrosurgical treatment of turbinates
6679908, Jan 11 2000 Oohiro Works, Ltd. Facial treatment device
6697670, Aug 17 2001 AngioDynamics, Inc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
6719754, Nov 22 1995 Arthrocare Corporation Methods for electrosurgical assisted lipectomy
6746447, May 10 1993 Arthrocare Corporation Methods for ablating tissue
6766202, Aug 30 1999 Arthrocare Corp. Systems and methods for intradermal collagen stimulation
6832996, Jun 07 1995 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
6843789, Oct 31 2000 Gyrus Medical Limited Electrosurgical system
6896672, Nov 22 1995 Arthrocare Corporation Methods for electrosurgical incisions on external skin surfaces
6902554, Jul 31 2000 Bionix, LLC Method for controlling the pain from injections or minor surgical procedures and apparatus for use therewith
6920883, Nov 08 2001 Arthrocare Corporation; ArthoCare Corporation Methods and apparatus for skin treatment
6930590, Jun 10 2002 OWNWAY BIOTRONICS, INC Modular electrotactile system and method
6949096, Jan 21 1998 Arthrocare Corporation Electrosurgical ablation and aspiration apparatus having flow directing feature and methods related thereto
6991631, Jun 09 2000 Arthrocare Corporation Electrosurgical probe having circular electrode array for ablating joint tissue and systems related thereto
7001381, Dec 02 1999 Olympus Corporation Electric operation apparatus
7004941, Nov 08 2001 Arthrocare Corporation Systems and methods for electrosurigical treatment of obstructive sleep disorders
7020528, Apr 13 1999 Method for treating acne
7117034, Jun 24 2003 Healthonics, Inc. Apparatus and method for bioelectric stimulation, healing acceleration, pain relief, or pathogen devitalization
7131969, Jun 07 1995 Arthrocare Corp Systems and methods for electrosurgical treatment of obstructive sleep disorders
7241293, Nov 20 1998 Arthrocare Corporation Electrode screen enhanced electrosurgical apparatus and methods for ablating tissue
7331957, May 10 1993 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
7389145, Feb 20 2001 Case Western Reserve University Systems and methods for reversibly blocking nerve activity
7422586, Feb 28 2001 MORRIS, DAVID L Tissue surface treatment apparatus and method
7452358, Jan 05 1996 THERMAGE, INC RF electrode assembly for handpiece
7473251, Jan 05 1996 THERMAGE INC Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
7601149, Mar 07 2005 Boston Scientific Scimed, Inc. Apparatus for switching nominal and attenuated power between ablation probes
7762964, Dec 10 2001 Candela Corporation Method and apparatus for improving safety during exposure to a monochromatic light source
7762965, Dec 10 2001 Candela Corporation Method and apparatus for vacuum-assisted light-based treatments of the skin
7824394, Apr 01 2004 General Hospital Corporation, The Method and apparatus for dermatological treatment and tissue reshaping
8073550, Jul 31 1997 MIRADRY, INC Method and apparatus for treating subcutaneous histological features
8216218, Jul 10 2007 SOLTA MEDICAL, INC Treatment apparatus and methods for delivering high frequency energy across large tissue areas
8406894, Dec 12 2007 MIRADRY, INC Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
20010025176,
20020087155,
20020133149,
20020169442,
20020193789,
20030117371,
20030208194,
20030212351,
20030212396,
20030225403,
20040098065,
20040127895,
20040206365,
20040210214,
20050055055,
20050152905,
20050217682,
20050234439,
20050267454,
20050288665,
20060004306,
20060047281,
20060089688,
20060171890,
20060212077,
20060217636,
20060293722,
20070010811,
20070060921,
20070066971,
20070078290,
20070093797,
20070093798,
20070142863,
20070167943,
20070219604,
20070219605,
20080015565,
20080015568,
20080058784,
20080091179,
20080119828,
20080188779,
20080214968,
20080215039,
20080288035,
20080294226,
20090171424,
20090287207,
20100145321,
20100179455,
20100179531,
20110015687,
20110172586,
20110202048,
AU779100,
CA2364098,
EP1158919,
EP1407720,
JP11504828,
JP2002537939,
JP2007268297,
WO53113,
WO2008069647,
WO9634568,
/////////////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 05 2008Reliant Technologies, Inc.(assignment on the face of the patent)
Jul 02 2008DALLAROSA, JOSEPH L RELIANT TECHNOLOGIES, INC,ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0213200680 pdf
Jul 10 2008DEBENEDICTIS, LEONARD C RELIANT TECHNOLOGIES, INC,ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0213200680 pdf
Dec 23 2008RELIANT TECHNOLOGIES, INC Reliant Technologies, LLCMERGER SEE DOCUMENT FOR DETAILS 0562180067 pdf
Mar 04 2009Reliant Technologies, LLCSilicon Valley BankSECURITY AGREEMENT0228240847 pdf
Aug 29 2012Reliant Technologies, LLCSilicon Valley BankSECURITY INTEREST - MEZZANINE LOAN0302480256 pdf
Nov 14 2013Reliant Technologies, LLCCAPITAL ROYALTY PARTNERS II L P SHORT-FORM PATENT SECURITY AGREEMENT0316740527 pdf
Nov 14 2013Reliant Technologies, LLCPARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L P SHORT-FORM PATENT SECURITY AGREEMENT0316740527 pdf
Nov 14 2013Reliant Technologies, LLCCAPITAL ROYALTY PARTNERS II - PARALLEL FUND A L P SHORT-FORM PATENT SECURITY AGREEMENT0316740527 pdf
Jan 23 2014PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L P Reliant Technologies, LLCRELEASE OF SECURITY INTEREST IN PATENTS0321260708 pdf
Jan 23 2014CAPITAL ROYALTY PARTNERS II L P Reliant Technologies, LLCRELEASE OF SECURITY INTEREST IN PATENTS0321260708 pdf
Jan 23 2014CAPITAL ROYALTY PARTNERS II - PARALLEL FUND A L P Reliant Technologies, LLCRELEASE OF SECURITY INTEREST IN PATENTS0321260708 pdf
Jan 23 2014Silicon Valley BankReliant Technologies, LLCRELEASE OF SECURITY INTEREST IN PATENTS0321250810 pdf
Dec 07 2018Reliant Technologies, LLCSOLTA MEDICAL, INC MERGER SEE DOCUMENT FOR DETAILS 0562440936 pdf
Mar 08 2019SANTARUS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019SOLTA MEDICAL, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019PRECISION DERMATOLOGY, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019ORAPHARMA, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019SALIX PHARMACEUTICALS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019Medicis Pharmaceutical CorporationTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019BAUSCH HEALTH US, LLCTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019Bausch & Lomb IncorporatedTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Mar 08 2019BAUSCH HEALTH AMERICAS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0485560758 pdf
Jun 08 2021BAUSCH HEALTH US, LLCTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021SANTARUS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021SOLTA MEDICAL, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021Bausch & Lomb IncorporatedTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021ORAPHARMA, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021PRECISION DERMATOLOGY, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021BAUSCH HEALTH AMERICAS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021SALIX PHARMACEUTICALS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Jun 08 2021Medicis Pharmaceutical CorporationTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0568110814 pdf
Feb 10 2022Bausch & Lomb IncorporatedThe Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022BAUSCH HEALTH US, LLCThe Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022Medicis Pharmaceutical CorporationThe Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022ORAPHARMA, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022SOLTA MEDICAL, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022SALIX PHARMACEUTICALS, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022SANTARUS, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022BAUSCH HEALTH AMERICAS, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Feb 10 2022PRECISION DERMATOLOGY, INC The Bank of New York MellonSECURITY AGREEMENT0591210001 pdf
Jun 10 2022Bausch Health Ireland LimitedThe Bank of New York MellonSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0603460705 pdf
Jun 10 2022SOLTA MEDICAL IRELAND LIMITEDThe Bank of New York MellonSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0603460705 pdf
Jun 10 2022BAUSCH HEALTH COMPANIES INC The Bank of New York MellonSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0603460705 pdf
Jun 10 2022BAUSCH HEALTH, CANADA INC The Bank of New York MellonSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0603460705 pdf
Sep 30 2022SALIX PHARMACEUTICALS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022BAUSCH HEALTH US, LLCTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022BAUSCH HEALTH AMERICAS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022Medicis Pharmaceutical CorporationTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022ORAPHARMA, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022SOLTA MEDICAL, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022PRECISION DERMATOLOGY, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022SALIX PHARMACEUTICALS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022SANTARUS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT FIRST LIEN 0615950066 pdf
Sep 30 2022BAUSCH HEALTH US, LLCTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022BAUSCH HEALTH AMERICAS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022Medicis Pharmaceutical CorporationTHE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022ORAPHARMA, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022PRECISION DERMATOLOGY, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022SANTARUS, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Sep 30 2022SOLTA MEDICAL, INC THE BANK OF NEW YORK MELLON, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT SECOND LIEN 0616060468 pdf
Date Maintenance Fee Events
Nov 25 2019M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 21 2023M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Jun 14 20194 years fee payment window open
Dec 14 20196 months grace period start (w surcharge)
Jun 14 2020patent expiry (for year 4)
Jun 14 20222 years to revive unintentionally abandoned end. (for year 4)
Jun 14 20238 years fee payment window open
Dec 14 20236 months grace period start (w surcharge)
Jun 14 2024patent expiry (for year 8)
Jun 14 20262 years to revive unintentionally abandoned end. (for year 8)
Jun 14 202712 years fee payment window open
Dec 14 20276 months grace period start (w surcharge)
Jun 14 2028patent expiry (for year 12)
Jun 14 20302 years to revive unintentionally abandoned end. (for year 12)