A silicon carbide transistor used as an ultraviolet light sensor. The light sensor is mounted inside a probe for detecting ultraviolet light generated by combustion inside an engine. The silicon carbide transistor generates a light voltage that is converted to a digital signal. The digital signal is used in a feedback loop for an engine control module for real time engine control in operating environments. The silicon carbide transistor is mounted inside a glow plug sized engine probe mounted in the cylinder head and the probe includes a quartz window allowing ultraviolet light access between the combustion chamber and the silicon carbide transistor so that the silicon carbide transistor can be mounted proximate the combustion chamber but behind the cooling jackets inside the engine head.
|
1. A light sensor apparatus for sensing ultraviolet light, the apparatus comprising:
a handle wafer,
a silicon carbide epitaxial layer supported by the handle wafer,
the silicon carbide epitaxial layer including a silicon carbide lateral bipolar junction transistor including a base connection, emitter connection, collector connection and substrate connection;
an interconnect layer including a light penetration zone allowing the ultraviolet light to reach the silicon carbide lateral bipolar junction transistor.
2. The apparatus of
the silicon carbide epitaxial layer further including a collector bias circuit electrically connected to the collector connection through the interconnect layer.
3. The apparatus of
the silicon carbide epitaxial layer further including a base bias circuit electrically connected to the base connection through the interconnect layer.
4. The apparatus of
the silicon carbide epitaxial layer further including an emitter bias circuit electrically connected to the emitter connection through the interconnect layer.
5. The apparatus of
the silicon carbide epitaxial layer further including a substrate bias circuit electrically connected to the substrate connection through the interconnect layer.
6. The apparatus of
at least one package lead wire bonded to the interconnect layer.
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
|
This application claims priority to and is a continuation-in-part of U.S. Provisional Patent Application Ser. No. 61/930,642, filed on Jan. 23, 2014 entitled INTEGRATED SILICON CARBIDE ULTRAVIOLET SENSOR AND ITS APPLICATION IN IGNITION SIGNATURE SENSORS FOR ENGINE OPTIMIZATION; and U.S. Provisional Patent Application Ser. No. 61/931,864, filed on Jan. 27, 2014 entitled DIGITAL REAL-TIME HOMOGENOUS CHARGE COMPRESSION IGNITION ULTRAVIOLET SIGNATURE FEEDBACK FOR HEUI ENGINE OPTIMIZATION which are hereby incorporated by reference in its entirety.
Not Applicable.
Not Applicable.
A portion of the disclosure of this patent document contains material which is subject to intellectual property rights such as but not limited to copyright, trademark, and/or trade dress protection. The owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent files or records but otherwise reserves all rights whatsoever.
1. Field of the Invention
The present invention relates to improvements in light sensors, probes utilizing the sensors, communication with the sensor, and utilization of the information obtained from the sensor, specifically in real-time, operating-environment engine control and optimization in engines generating ultraviolet light with useful information, for example diesel engines. More particularly, the invention relates to improvements in integrated circuits and sensors in planar semiconductor processes including a silicon carbide lateral bipolar junction transistor that is monolithically integrated to create an ultraviolet sensor and pre-amplifier for further integration in very large scale integrated circuits. One use of the invention relates to the field of electronic sensors and controls for internal combustion engines and the development of digital real time homogenous charge compression ignition ultraviolet signature feedback for hydraulically actuated electronic unit injection, HEUI, engine optimization.
2. Description of the Known Art
As will be appreciated by those skilled in the art, light sensors, engine probes, and engine control systems are known in various forms.
For light sensors, silicon-based imaging technologies will absorb ultraviolet, visible and infrared photons and generate electron-hole pairs. If the application requires sensitivity only to ultraviolet light, costly steps must be taken to filter out the visible and infrared spectrum by using filtering optics or additional thin film processing.
In Silicon CMOS or Silicon CCD technologies, ultraviolet photons are absorbed very close to the silicon surface. Therefore, ultraviolet imagers must not have polysilicon, nitride or thick oxide layers that impede the absorption of ultraviolet photons. Modern ultraviolet imagers are hence backside thinned, most with only a very thin layer of Argon coating on top of the silicon imaging surface. Backside thinning drives up the cost of the ultraviolet imager, the associated packaging, and reduces mechanical reliability.
Although backside thinning is now ubiquitous in mobile imagers, ultraviolet response is not. To achieve a stable ultraviolet response, the imager surface requires special surface treatment, regardless of whether the imager is Silicon CMOS or Silicon CCD. Many backside-thinned imagers developed for visible imaging have thick oxide layers that can discolor and absorb ultraviolet after extended ultraviolet exposure. Some backside-thinned imagers have imaging surfaces that are passivated by a highly-doped Boron layer that extends too deep into the silicon epitaxy, causing a large fraction of ultraviolet photo-generated electrons to be lost to recombination.
Ultraviolet response and backside thinning are achievable in all line scan imagers, but not all area imagers. No global shutter area Silicon CCD can be backside thinned. The situation is better in Silicon CMOS area imagers, though still not without trade-offs. Silicon CMOS area imagers with rolling shutters can be backside thinned. Conventional Silicon CMOS global shutter area imagers have storage nodes in each pixel that need to be shielded when thinned, but only if these ultraviolet sensitive imagers will also be imaging in the visible spectrum. In backside-thinned area imagers, it is not possible to effectively shield part of the pixel from incident illumination, without severely degrading the imager's fill factor, the ratio of the light sensitive area to the total pixel area. There are other types of Silicon CMOS global shutter area imagers that do not have light sensitive storage nodes, but have higher noise, lower full well, rolling shutter, or a combination of these. Silicon also has a limited operating range typically above negative 40° C. and below 125° C.
In another field, the use of homogenous charge compression ignition, HCCI, in diesel engines produces an optical emission with an infrared, visible, and ultraviolet spectrum. The spectral response of this emission produces a unique photon signature that depends on fuel type, engine health, and evolution of pollutants in the combustion process. A portion of the optical signature can be transduced to an electrical signature by the emitted photons that have an energy greater than the excitation band-gap energy of a solid state semiconductor photo-detector. The state of the art is to capture this signature in a laboratory environment using optically accessible engines. The sensor electronics and signal processing used in the laboratory instruments are sensitive, bulky, and not suitable to real-time signal processing, thus preventing the use of the HCCI signature in practical engine control algorithms. More importantly these instruments require precise temperature management to improve the signal to noise ratio of the HCCI emission signature with respect to the back ground radiation of the engine block. These instruments also require complex optical filters and prisms to discriminate photons of different energies or wavelengths, for example, infrared, visible and ultraviolet wavelengths. Thus, the information gathered from these instruments is used to improve over-all design of diesel engines but is not applicable to the run-time operation of practical engines. The optical signature of the HCCI contains useful information such as the timing of the ignition, intensity, and duration of the combustion, the evolution of the combustion process, and engine health. As such, the optical signature is used in diesel engine diagnostic equipment. The required proximity of the light sensors in these diagnostic tools requires complicated procedures and short test times. Consequently less invasive diagnostic techniques involving measurement of exhaust and blow-back are more commonly used in evaluating engine health.
The HCCI optical signature has been correlated to the pressure signature through studies in HCCI heat release rate. Consequently, other solutions capture the pressure signature of the HCCI. Solutions using the pressure signature involve moving parts, such as deformable diaphragms and spring loaded systems and therefore suffer reliability issues. Consequently, reliable diesel engine design is limited to mechanical feedback systems such as flywheel sensors to control the timing of diesel fuel injection based only on crank angle, which severely limits the ability for run-time optimization of diesel engine performance.
Patents disclosing information of interest include: U.S. Pat. No. 3,504,181, issued to Chang, et al. on Mar. 31, 1970 entitled Silicon carbide solid state ultraviolet radiation detector;
U.S. Pat. No. 5,093,576, issued to Edmond, et al. on Mar. 3, 1992 entitled High sensitivity ultraviolet radiation detector;
U.S. Pat. No. 5,670,784, issued to Cusack, et al. on Sep. 23, 1997 entitled High temperature gas stream optical flame sensor;
U.S. Pat. No. 6,344,663, issued to Slater, Jr, et al. on Feb. 5, 2002 entitled Silicon carbide CMOS devices. Other publications include United States Patent Application 20060261876 A1, filed by Agarwal; Anant K. et al. on Nov. 23, 2006 entitled Optically triggered wide bandgap bipolar power switching devices and circuits. Each of these patents and publications are hereby expressly incorporated by reference in their entirety.
Other references teaching information that may be considered include:
“CCD vs. CMOS—Teledyne DALSA Inc.” [Online]. Available: http://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/. [Accessed: 26 Aug. 2013].
R. Augusta, D. E. Foster, J. Ghanhi, J. Eng, and P. M. Najt, “Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion,” 1520-2006. [Online]. Available: http://papers.sae.org/2006-01-1520/. [Accessed: 11 Dec. 2013].
M. Jansons, A. Brar, F. Estefanous, R. Florea, D. Taraza, H. Nacim, and W. Bryzik, “Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine,” 1071-2008. [Online]. Available: http://papers.sae.org/2008-01-1071/. [Accessed: 11 Dec. 2013].
“Measurements of Thermal Stratification in an HCCI Engine | Combustion Research Facility.” [Online]. Available: http://crf.sandia.gov/index.php/measurements-of-thermal-stratification-in-an-hcci-engine/.UrRupxDt5rg. [Accessed: 20 Dec. 2013].
Snap-on Tools, “Snap-on MT1480A Gasoline & Diesel Engine Tack/Timing Meter User Manual.” Snap-on Tools, 1990.
“A QC Success Story With The Michigan Army National Guard's Diesel Engine Rebuilding Programme.” [Online]. Available: http://www.picoauto.com/applications/diesel-engine-rebuild.html. [Accessed: 20 Dec. 2013].
T. Yoshikawa and R. Reitz, “Effect of Radiation on Diesel Engine Combustion and Heat Transfer,” J. Therm. Sci. Technol., vol. 4, no. 1, pp. 86-97, 2009.
“Optrand Products.” [Online]. Available: http://www.optrand.com/products.htm. [Accessed: 23 Sep. 2013].
Motortechnischen Zeitschrift, “Beru Glow Plug Pressure Sensor.” [Online]. Available: http://www.beru.com/download/produkte/fachaufsatz_psg_en.pdf. [Accessed: 19 Dec. 2013].
CATERPILLAR, “Diesel Engine Control Systems Application and Installation Guide.” CATERPILLAR, 2008.
Each of these publications are also hereby expressly incorporated by reference in their entirety.
From these prior references it may be seen that these prior art patents are very limited in their teaching and utilization, and an improved sensor, probe, communication system, and engine control system are needed to overcome these limitations.
The present invention is directed to an improved light sensor, applications, and methods. In accordance with one exemplary embodiment of the present invention, a high sensitivity ultraviolet light sensor is provided. One advantage of this is providing a sensor with high sensitivity to a controlled bandwidth of ultraviolet light. Another advantage is providing a sensor with no sensitivity to visible or infrared light. A still further advantage is providing a sensor with high reliability in the presence of ultraviolet light. Yet a further advantage is a silicon carbide sensor with high reliability when operating at temperature extremes including temperatures below negative 55° C. or above 400° C. thereby greatly exceeding the range of silicon. Another advantage is a sensor that is integrated monolithically with silicon carbide, SiC, bipolar and complimentary metal-oxide-semiconductor, BiCMOS, biasing circuits, and other signal amplification and signal conditioning circuits availed by large-scale integration.
Another embodiment of the present invention is a miniaturized electronic sensor that uses a wide band-gap solid-state photo-detector to capture an HCCI optical signature within or in close proximity to a diesel engine. The sensor selectively transforms the deep ultraviolet portion of the HCCI optical signature to an electrical analog signature that is subsequently converted to a real-time digital signature. An example of such signature is that which is created by the emission peak of the hydroxyl radical at a wavelength of 310 nanometers and with energy of 4 electron-volts.
A still further embodiment of the present invention is the use of the sensor in a new feedback loop for the run-time optimization of diesel engines. The feedback comes from measuring the ultraviolet signature from the homogenous charge compression ignition, HCCI process. The ultraviolet signature from each combustion chamber in a diesel engine is converted to a digital data stream. Information is extracted from the data stream with a signal processing module. Extracted information includes, but is not limited to: ignition timing, combustion duration, combustion intensity, fuel type, fuel quality, and evolution of pollutants. Other information can be derived from this data such as engine health, performance, and efficiency.
These and other objects and advantages of the present invention, along with features of novelty appurtenant thereto, will appear or become apparent by reviewing the following detailed description of the invention.
In the following drawings, which form a part of the specification and which are to be construed in conjunction therewith, and in which like reference numerals have been employed throughout wherever possible to indicate like parts in the various views:
As shown in
The silicon carbide lateral bipolar junction transistor 136 is created in a silicon carbide complementary metal oxide semiconductor, CMOS, process such as those described in the prior art, and is electrically biased with integrated electrical devices and electrical interconnects that are made available in the process. A lateral bipolar junction transistor 136 is formed using process drafting rules and is formed with its terminals connected from the top surface 110 of the sensor 10. Ultraviolet light 120 shining on the lateral bipolar junction transistor 136 modulates the collector-emitter current, effectively transducing ultraviolet light to current. The ultraviolet light-modulated current is amplified by additional circuitry such as CMOS and BiCMOS amplifier circuit topologies.
Reference numerals used throughout the detailed description and the drawings correspond to the following elements:
From the foregoing, it will be seen that this invention well adapted to obtain all the ends and objects herein set forth, together with other advantages which are inherent to the structure. It will also be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Many possible embodiments may be made of the invention without departing from the scope thereof. Therefore, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
When interpreting the claims of this application, method claims may be recognized by the explicit use of the word ‘method’ in the preamble of the claims and the use of the ‘ing’ tense of the active word. Method claims should not be interpreted to have particular steps in a particular order unless the claim element specifically refers to a previous element, a previous action, or the result of a previous action. Apparatus claims may be recognized by the use of the word ‘apparatus’ in the preamble of the claim and should not be interpreted to have ‘means plus function language’ unless the word ‘means’ is specifically used in the claim element. The words ‘defining,’ ‘having,’ or ‘including’ should be interpreted as open ended claim language that allows additional elements or structures. Finally, where the claims recite “a” or “a first” element of the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
Holmes, James A., Francis, Matthew
Patent | Priority | Assignee | Title |
10527490, | Aug 25 2015 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure |
10527491, | Aug 25 2015 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure |
10553633, | May 30 2014 | Klaus Y.J., Hsu; Wispro Technology Cosulting Corporation Limited | Phototransistor with body-strapped base |
10573775, | Jul 25 2017 | Bi CMOS pixel | |
10665703, | Apr 13 2017 | Raytheon Systems Limited | Silicon carbide transistor |
10720380, | Jun 13 2017 | BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS | Flip-chip wire bondless power device |
10739253, | Jun 07 2016 | YOUV LABS, INC | Methods, systems, and devices for calibrating light sensing devices |
10876886, | Oct 19 2018 | YOUV LABS, INC | Methods, systems, and apparatuses for accurate measurement of health relevant UV exposure from sunlight |
11031513, | May 16 2016 | Integrated silicon carbide ultraviolet sensors and methods | |
11307136, | Dec 22 2017 | SICPA HOLDING SA | Light sensor and decay-time scanner |
11353361, | Oct 19 2018 | YouV Labs, Inc. | Methods, systems, and apparatuses for accurate measurement of health relevant UV exposure from sunlight |
11428572, | Oct 19 2018 | YouV Labs, Inc. | Methods, systems, and apparatuses for accurate measurement of health relevant UV exposure from sunlight |
11450568, | Apr 13 2017 | Raytheon Systems Limited | Silicon carbide integrated circuit |
11536239, | May 21 2019 | Cummins Inc | Variable energy ignition systems, methods, and apparatuses |
11626325, | Apr 13 2017 | Raytheon Systems Limited | Method of making a silicon carbide integrated circuit |
11840996, | May 21 2019 | Cummins Inc. | Variable energy ignition systems, methods, and apparatuses |
9798458, | Aug 25 2015 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure |
9880052, | Aug 25 2015 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure |
9880725, | Aug 25 2015 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure |
D829112, | Aug 25 2016 | The Joan and Irwin Jacobs Technion-Cornell Innovation Institute | Sensing device |
Patent | Priority | Assignee | Title |
3504181, | |||
5093576, | Mar 15 1991 | Cree, Inc | High sensitivity ultraviolet radiation detector |
5459332, | Mar 31 1994 | The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Semiconductor photodetector device |
5670784, | Aug 26 1994 | Ametek Aerospace Products | High temperature gas stream optical flame sensor |
6344663, | Jun 05 1992 | Cree, Inc | Silicon carbide CMOS devices |
20100276699, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 01 2016 | CLARK, DAVID TRANN | Raytheon Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0705 | |
Nov 01 2016 | YOUNG, ROBERT | Raytheon Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0705 | |
Nov 04 2016 | RAMSAY, EWAN | Raytheon Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0705 | |
Nov 09 2016 | THOMPSON, ROBIN F | Raytheon Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0705 | |
Feb 03 2017 | HOLMES, JAMES A | OZARK INTEGRATED CIRCUITS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0338 | |
Feb 03 2017 | FRANCIS, MATTHEW | OZARK INTEGRATED CIRCUITS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041169 | /0338 |
Date | Maintenance Fee Events |
Nov 11 2019 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Dec 11 2023 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Jun 14 2019 | 4 years fee payment window open |
Dec 14 2019 | 6 months grace period start (w surcharge) |
Jun 14 2020 | patent expiry (for year 4) |
Jun 14 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 14 2023 | 8 years fee payment window open |
Dec 14 2023 | 6 months grace period start (w surcharge) |
Jun 14 2024 | patent expiry (for year 8) |
Jun 14 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 14 2027 | 12 years fee payment window open |
Dec 14 2027 | 6 months grace period start (w surcharge) |
Jun 14 2028 | patent expiry (for year 12) |
Jun 14 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |