An apparatus including a coil antenna; and near field communication (nfc) circuitry connected to the coil antenna. The nfc circuitry is configured to create a modulated signal from an input audio signal, and output the modulated signal to the coil antenna.
|
11. A method comprising:
receiving an analog audio signal by near field communication (nfc) circuitry;
modulating the audio signal by the nfc circuitry; and
outputting the modulated audio signal to a coil to generate a magnetic field induction signal from the coil, where the magnetic field induction signal comprises data of the analog audio signal, where the coil is at least a part of a near field communication antenna, where the nfc circuitry and the coil form at least part of a hearing aid compatibility (hac) system, where a near field communication (nfc) system is provided comprising the nfc circuitry and the coil, and where the nfc circuitry forms an amplifier of both the nfc system and the hac system,
where the nfc circuitry provides a pulse-width modulation (PWM) of the analog audio signal to produce a resultant modulated signal, amplifies the resultant modulated signal, and outputs the amplified modulated signal to at least a portion of the coil,
where the hac system is configured such that in a hac mode additional rounds/loops of the coil are used than when in a nfc mode to have an impedance for targeting the amplifier.
1. An apparatus comprising:
a coil, where the coil is at least a part of a near field communication antenna; and
near field communication (nfc) circuitry connected to the coil, where the nfc circuitry and the coil form at least part of a hearing aid compatibility (hac) system of the apparatus,
where the apparatus comprises a near field communication (nfc) system comprising the nfc circuitry and the coil, and where the nfc circuitry forms an amplifier of both the nfc system and the hac system,
where the nfc circuitry is configured to create a modulated signal from an input analog audio signal, and output the modulated signal to the coil to generate a magnetic field induction signal from the coil, where the magnetic field induction signal comprises data of the input analog audio signal, where the nfc circuitry forms the amplifier as an audio signal amplifier which is configured to use pulse-width modulation (PWM) on the input analog audio signal to produce the modulated signal,
where the hac system is configured such that in a hac mode additional rounds/loops of the coil are used than when in a nfc mode to have an impedance for targeting the audio signal amplifier.
15. A method comprising:
providing pulse-width modulation (PWM) of an analog audio signal by near field communication (nfc) circuitry to produce a resultant modulated signal, where the resultant modulated signal is formed from the analog audio signal received by the nfc circuitry;
sending the resultant modulated signal with amplification by the near field communication (nfc) circuitry from the near field communication (nfc) circuitry to at least one coil, where the coil is at least a part of a near field communication antenna, where the nfc circuitry and the coil form at least part of a hearing aid compatibility (hac) system, where a near field communication (nfc) system is provided comprising the nfc circuitry and the coil, and where the nfc circuitry forms an amplifier of both the nfc system and the hac system; and
the amplified resultant modulated signal generating a magnetic field induction signal at the coil, where the nfc circuitry and the coil form part of the hac system, and where the magnetic field induction signal is a hac signal comprising data of the analog audio signal, where the hac system is configured such that in a hac mode additional rounds/loops of the coil are used than when in a nfc mode to have an impedance for targeting the amplifier.
17. A non-transitory program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, the operations comprising:
sending an analog audio signal to near field communication (nfc) circuitry;
providing pulse-width modulation (PWM) of the analog audio signal by the near field communication (nfc) circuitry to produce a resultant modulated signal;, where the nfc circuitry is configured to form the resultant modulated signal based upon the analog audio signal; and
sending the resultant modulated signal with amplification by the near field communication (nfc) circuitry to a coil to generate a magnetic field induction signal at the coil as part of a hearing aid compatibility (hac) system,
where the magnetic field induction signal comprises data of the analog audio signal, where the coil is at least a part of a near field communication antenna, where the nfc circuitry and the coil form at least part of the hac system, where a near field communication (nfc) system is provided comprising the nfc circuitry and the coil, and where the nfc circuitry forms an amplifier of both the nfc system and the hac system, where the hac system is configured such that in a hac mode additional rounds/loops of the coil are used than when in a nfc mode to have an impedance for targeting the amplifier.
3. An apparatus as in
4. An apparatus as in
5. An apparatus as in
6. An apparatus as in
7. An apparatus as in
8. An apparatus as in
9. An apparatus as in
10. An apparatus as in
12. A method as in
13. A method as in
14. A method as in
16. A method as in
|
1. Technical Field
The exemplary and non-limiting embodiments relate generally to an apparatus having a hearing aid compatibility system and a near field communication system and, more particularly, to a common component used in the apparatus.
2. Brief Description of Prior Developments
Hand-held communications devices are being designed slimmer and more compact with various components and modules, and with larger displays. These design arrangements leave less room for earpiece integration. Therefore, smaller earpiece components are used. However, such smaller earpiece components can only produce limited magnetic field which is not well suited for hearing aid compatible (HAC) requirements.
The following summary is merely intended to be exemplary. The summary is not intended to limit the scope of the claims.
In accordance with one aspect, an apparatus is provided including a coil; and near field communication (NFC) circuitry connected to the coil. The NFC circuitry may be configured to create a modulated signal from an input audio signal, and output the modulated signal to the coil.
In accordance with another aspect, a method may comprise receiving an audio signal by near field communication (NFC) circuitry; and modulating the audio signal by the NFC circuitry.
In accordance with another aspect, a method may comprise sending a modulated signal from near field communication (NFC) circuitry to at least one coil, where the modulated signal is formed from an audio signal received by the NFC circuitry; and the modulated signal generating a magnetic field at the coil, where the NFC circuitry and the coil form part of a hearing aid compatibility (HAC) system.
In accordance with another aspect, a non-transitory program storage device is provided readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, the operations comprising sending an audio signal to near field communication (NFC) circuitry, where the NFC circuitry may be configured to form a modulated signal based upon the audio signal; and sending the modulated signal to a coil to generate a magnetic field at the coil as part of a hearing aid compatibility (HAC) system.
The foregoing aspects and other features are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
The apparatus 10 may be a hand-held communications device which includes a telephone application. The apparatus 10 may also comprise an Internet browser application, camera application, video recorder application, music player and recorder application, email application, navigation application, gaming application, and/or any other suitable electronic device application. Referring also to
The display 14 in this example may be a touch screen display which functions as both a display screen and as a user input. However, features described herein may be used in a display which does not have a touch, user input feature. The user interface may also include a keypad 28. However, the keypad might not be provided if a touch screen is used. The electronic circuitry inside the housing 12 may comprise a printed wiring board (PWB) having components such as the controller 20 thereon. The circuitry may include a sound transducer 30 provided as a microphone and a sound transducer 32 provided as a speaker or earpiece. The housing 12 may have sound holes for sound to travel to and from the sound transducers through the housing 12. The circuitry may include audio circuitry 31 connected to the controller 20 configured to drive the sound transducer 32.
Referring also to
The Near Field Communication Forum (NFC Forum) formed in 2004 promotes sharing, pairing, and transactions between NFC devices and develops and certifies device compliance with NFC standards. A smartphone or tablet with an NFC chip could make a credit card payment or serve as keycard or ID card. NFC devices may read NFC tags on a museum or retail display to get more information or an audio or video presentation. NFC may share a contact, photo, song, application, or video or pair Bluetooth devices.
NFC is a set of short-range wireless technologies, typically requiring a distance of 4 cm or less. NFC can operate at 13.56 MHz on ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to 424 kbit/s. NFC involves an initiator and a target; the initiator actively generates an RF field that may power a passive target. This enables NFC targets to take very simple form factors such as tags, stickers, key fobs, or cards that do not require batteries. NFC peer-to-peer communication is of course possible, where both devices are powered.
NFC tags contain data and are typically read-only, but may be rewriteable. They may be custom-encoded by their manufacturers or use the specifications provided by the NFC Forum, an industry association charged with promoting the technology and setting key standards. The tags may securely store personal data such as debit and credit card information, loyalty program data, PINs and networking contacts, among other information. The NFC Forum defines different types of tags which provide different communication speeds and capabilities in terms of configurability, memory, security, data retention and write endurance. Tags may offer between 96 and 512 bytes of memory, as a non-limiting example.
As with proximity card technology, near-field communication uses magnetic induction between two loop antennas located within each other's near field, effectively forming an air-core transformer. It operates within the globally available and unlicensed radio frequency ISM band of 13.56 MHz. Most of the RF energy is concentrated in the allowed 14 kHz bandwidth range, but the full spectral envelope may be as wide as 1.8 MHz when using ASK modulation. Theoretical working distance of a near field communication system with a compact standard antennas is up to 20 cm, but with a practical working distance of about 4 centimeters.
There are two modes:
NFC employs two different codings to transfer data. If an active device transfers data at 106 kbit/s, a modified Miller coding with 100 percent modulation can be used. In all other cases Manchester coding can be used with a modulation ratio of 10 percent. NFC devices may receive and transmit data at the same time. Thus, they may check for potential collisions if the received signal frequency does not match with the transmitted signal's frequency.
In the example shown in
As can be seen in
A Hearing Aid Compatibility (HAC) system is a system to interconnect a phone magnetically into a hearing aid device. In the past, a telecoil or T-coil of the HAC system was mounted inside both the hearing aid and the audio device such as the telephone handset. It allowed the signals to be coupled from the phone to the hearing aid without a wired electrical connection and it avoids the problems that microphones would have with the amplification of background noise.
A telecoil may be an induction coil. An induction coil may be a metal rod that is encircled by many turns of a copper wire. Placed in an alternating magnetic field, an alternating electrical current is “induced” in the copper wire. (Reciprocally, an electrical current in a wire creates a tiny magnetic field around it.) What happens is that the coil converts (changes) magnetic energy to electrical energy, in much the same way that a microphone converts sounds waves to electrical energy. Generally, the strength of the inductive pick-up may be determined by the number of turns of the copper wire around the metal axis rod. Larger rods permit more turns and more powerful telephone coils. “T” coils may include an integrated amplifier, which makes it feasible to reduce the physical size of the “T” coil.
When a hearing aid is switched to the “T” position, the telecoil may be set to detect only an electromagnetic field. The strength of the electrical current “induced” in the telecoil by the electromagnetic field is directly proportional to both the energy in the magnetic field and to the relative positions of the induction coil in the hearing aid to the magnetic field (in a telephone or wire loop). In some positions, little or no electrical current may be created in the induction coil. The magnetic field may simply “pass through” the coil without producing much, if any, electrical current. This is the reason why experienced hearing aid users may experiment with the positioning with unfamiliar telephones: to find the “hot spot” where the strongest signal is heard.
In the apparatus 10, according to one example embodiment, the HAC system may be formed by components of the NFC system 34. In particular, the HAC system may use the NFC antenna 38 as the coil for the HAC system, and also may use the NFC circuitry 36 as circuitry for the HAC system. Thus, the NFC antenna 38 is used for two purposes or functions: 1. as the NFC coil for the NFC system 34 and 2. as the HAC coil for the HAC system. In addition, the NFC circuitry 36 may be used for two purposes or functions: 1. as the NFC circuitry for the NFC system 34 and 2. as HAC circuitry for the HAC system. As seen in
An example embodiment comprising features described herein may utilize NFC circuitry and a NFC antenna (wherein the NFC antenna is already used for NFC) for the purpose of speech call suitable for hearing aid users. Advantages of such an example embodiment may include reduced cost of manufacture and a product design suitable for HAC requirement without adding further component and complexity.
An example embodiment relates to utilization of an “NFC” system which gives a specification for coil size and placement in a product; RF frequencies, amplitudes etc. Such coil 38 in the example embodiment may be a large (but thin); open air-filled coil printed on a flex or PWB, and optimized for NFC usage. This kind of coil may have compromised efficiency in HAC usage, but may provide a larger usage area which is easier to place against the ear for HAC use. The coil may not have a magnetic core, so it may be a smaller size (such as a discrete component soldered into a PWB). In other words, even though the coil is used for HAC, it does not need to be a telecoil. A telecoil may have a better efficiency in HAC, but may not meet NFC specifications. A telecoil also may have a very small “hot-spot” in HAC usage; meaning that the user has to move phone to find feasible audio signal. Use of the NFC coil as the coil for the HAC system may provide a much larger hot-spot because of the much larger size of the NFC coil versus a conventional telecoil.
In the example shown in
The inner rounds 66 may form an inner coil part 72. The inner coil part 72 may be located between the middle point (third connection point) 62 and the inner end (first connection point) 58. The HAC system may use the entire length of the coil 38, but the NFC system may only use a portion of the length of the coil. In this example the width of the trace 54 at the inner coil part (the inner rounds 66) is smaller than the width of the trace 54 at the outer coil part 68 (the outer rounds 64); transitioning at the middle point 62.
For use of the HAC system, the audio circuitry (see
The NFC circuitry 36 may be configured to modulate the input audio signal 46, such as using pulse-width modulation (PWM) for example, amplify the signal, and output the signal to the inner end 58 of the coil 38. The NFC circuitry generates the needed carrier-signal (=amplification) even without HAC modification. Features as described herein may modulate this carrier with an audio signal. The NFC circuitry 36 may effectively form a pulse width modulator and an amplifier; functionally illustrated by 49 and 51, respectively, in
This example illustrates that in an NFC mode of using the coil 38 a lesser number of rounds of the coil might be used (such as 3-4 rounds for example), and in a HAC mode of using the coil 38 more than the 3-4 rounds of the coil might be used to have a higher impedance for audio amp (such as a target 8 ohm for example). These additional rounds may be made thinner (such as a narrower line in a PWB for example) to save space and have a higher resistance. This example illustrates that the coil structure may comprise a tapped combined NFC and HAC coil with an intermediate connection point for the NFC connection, two different PWB line coil widths with a big width outer part (low resistance) for the NFC and a narrow width inner part for the HAC to get a higher impedance in an audio frequency area.
U.S. patent application Ser. No. 13/276,538 filed Oct. 19, 2011, and U.S. patent application Ser. No. 13/298,709 filed Nov. 17, 2011, which are hereby incorporated by reference in their entireties, disclose using a NFC antenna coil as a transducer for phone Hearing Aid Compatibility (HAC). HAC compliancy was made by driving the NFC antenna coil with an additional discrete audio amplifier when the NFC chipset is connected in parallel (through some filtering components). However, it may also be possible to create a HAC audio signal by modulating a NFC carrier signal. So an idea as described herein is to use a NFC chipset as kind of D-class switching audio amplifier instead of providing a separate dedicated audio amplifier for HAC.
When a separate audio amplifier is connected to a NFC coil, the antenna tuning may become very complicated. Audio lines in the printed wiring board (PWB) may affect antenna performance, and it may be difficult to isolate them as low-pass filtering components for audio frequencies are too big for mobile product implementation. If an audio signal is generated with a NFC chipset, less number of connection lines may be needed in the PWB or filtering components for audio amplification. The design may become more simple, savings in size and component cost.
By adjusting a NFC carrier signal pulse-width by an audio signal, a NFC chipset may be used similar to a D-class audio amplifier. The created audio signal may be driven to the NFC antenna coil to create the magnetic field needed for HAC. This way a phone may have HAC compliancy without any additional HAC-specific components (component cost savings, size savings).
When NFC components are used for just NFC, a dedicated chipset (such as a N×P PN544 chipset for example) may create a 13.56 MHz carrier signal. This signal is driven to the antenna coil, and inductive coupling is used for data communication. It may be possible to use the NFC chipset as a kind of D-class audio amplifier if the 13.56 MHz carrier signal PWM (pulse-width modulation) is modulated according to the audio signal. The modulated signal 46″ may be sent to the inner end 58 of the coil 38 as shown in
The components may be build to adjust NFC carrier frequency pulse-width by audio, and use this chipset as kind of D-class switching audio amplifier. Versus a conventional NFC chipset, an additional PWM input or D/A converter may be provided to the NFC chip/chipset to allow this functionality.
HAC compliancy may be provided without any additional components. When the NFC antenna coil with an additional audio amplifier (like stereo-IHF-amplifier “extra” channel), some additional serial resistor (or additional antenna coil rounds) may be provided to get load impedance of the antenna high enough. If the NFC chipset is used as an amplifier, output impedance is already optimized for the existing coil.
The principle of using the same hardware for both NFC and HAC is a novel concept. Using the same amplifier (the NFC circuitry 36) in addition to the same coil (NEC antenna 38) is a good extension of multi-use of components for different functions. The audio information in the modulated signal and generated magnetic field may be still in the audio band, not around the carrier. So, both the amplifier (NFC circuitry 36), and the HAC/NFC coil may be configured to pass audio band signals. After the amplifier and coil have been improved to handle also audio band signals, the benefit of one amplifier instead of two may be achieved. Possibly, a solution capable of simultaneous HAC audio and NFC signal could be implemented as well.
In another alternate example, the NFC circuitry 36 may be used with two different coils; one for the NFC system and a different one for the HAC system.
Referring also to
This example helps to illustrate, because of the filters 83, 84, how in a NFC mode the coil part 68 may be used and in a HAC mode both coil parts 68, 72 may be used. The figure clarifies the situation how these loops/rounds are configured can depend on the usage modes. For example, as noted above the HAC mode may use additional rounds/loops to have higher impedance for targeting the audio amplifier (such as a target 8 Ohm for example) where the additional (i.e. inner) rounds/loops may use thinner/narrower wire/line to save space and have a higher impedance. The filters 83, 84 may be used to distinguish between modes of use of the coil(s) and/or the controller may be used to distinguish between modes of use of the coil(s). Different parts of a single coil may be used with the different systems (NFC/HAC). Perhaps more than one coil may be used (not necessarily a single coil as shown in
The example embodiments shown in the drawings are not the only possibility of the shape of the coil(s). The inner coil part can have a different size and shape than the outer coil part, or the coils or coil parts could be at least partially stacked top of each other in other types of example embodiment. However, the coils/coil parts may be located somehow symmetrically to get out good magnetic flux for the HAC operation when the coils/coil parts are connected in series. Thus, the NFC coil part 64/68 may be used as both the coil of the NFC and at least part of the coil for the HAC; regardless of what additional coil part the HAC might use. Example embodiments might have only one coil or might have more than one coil.
As illustrated in
In one example, an apparatus 10 is provided comprising an antenna 38; and near field communication (NFC) circuitry 36 connected to the antenna. The NFC circuitry may be configured to create a modulated signal from an input audio signal, and output the modulated signal to the antenna.
The NFC circuitry may be a near field communication (NFC) chipset. The NFC circuitry may be configured to amplify the input audio signal as the modulated signal. The antenna may be a part of a hearing aid compatibility (HAC) antenna. The apparatus may further comprise a connection of the NFC circuitry to a first location 62 of the antenna and to another location 58 of the HAC antenna. The NFC circuitry and the hearing aid compatibility (HAC) antenna may form a hearing aid compatibility (HAC) system of the apparatus. The apparatus may comprise a near field communication (NFC) system comprising the NFC circuitry and the antenna, where the NFC circuitry forms a single amplifier of both the NFC system and the HAC system. The apparatus may comprise audio signal circuitry 31 connected to an input of the NFC circuitry to send the input audio signal 46 from the audio signal circuitry to the NFC circuitry. The NFC circuitry 36 may form an audio signal amplifier using pulse-width modulation (PWM) on the input audio signal to produce the modulated signal. The apparatus may comprise means for using the NFC circuitry for a hearing aid compatibility (HAC) system.
Referring also to
Referring also to
In another example, a non-transitory program storage device readable by a machine such as memory 24 or on a computer server for example, tangibly embodying a program of instructions executable by the machine for performing operations, may be provided where the operations comprise sending an audio signal to near field communication (NFC) circuitry, where the NFC circuitry is configured to form a modulated signal based upon the audio signal; and sending the modulated signal to an antenna to generate a magnetic field at the antenna as part of a hearing aid compatibility (HAC) system.
According to one example embodiment, an apparatus may comprise means for sending an audio signal to near field communication (NFC) circuitry, where the NFC circuitry is configured to form a modulated signal based upon the audio signal, and means for sending the modulated signal to a coil antenna to generate a magnetic field at the coil antenna as part of a hearing aid compatibility (HAC) system.
It should be understood that the foregoing description is only illustrative. Various alternatives and modifications can be devised by those skilled in the art. For example, features recited in the various dependent claims could be combined with each other in any suitable combination(s). In addition, features from different embodiments described above could be selectively combined into a new embodiment. Accordingly, the description is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4742278, | Jun 03 1987 | Inshore Holdings, LLC | Single connection gas discharge display and driver |
5917369, | Feb 25 1998 | National Semiconductor Corporation | Pulse width modulator with automatic gain control over-voltage modulator and limiter |
5973569, | Feb 25 1998 | National Semiconductor Corporation | Short-circuit protection and over-current modulation to maximize audio amplifier output power |
6518838, | Feb 05 1999 | Texas Instruments Incorporated | Circuit for compensating noise and errors from an output state of a digital amplifier |
6951305, | Nov 21 2001 | ABL IP Holding, LLC | Advertising compliance monitoring system |
7274292, | Jun 25 2004 | Intel Corporation | Proximity management system and method using radio-frequency identification tags |
7418106, | Jun 21 2004 | Nokia Technologies Oy | Apparatus and methods for increasing magnetic field in an audio device |
20030044033, | |||
20030152243, | |||
20050002534, | |||
20050111679, | |||
20060092063, | |||
20060133633, | |||
20070008140, | |||
20070026826, | |||
20070030061, | |||
20080226094, | |||
20090121835, | |||
20090285426, | |||
20090322640, | |||
20100130126, | |||
20110050164, | |||
20110130093, | |||
20110319018, | |||
20120063505, | |||
20120148060, | |||
20120287985, | |||
20130052947, | |||
20130103111, | |||
CN101232124, | |||
EP2026406, | |||
WO2007032890, | |||
WO2011095841, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 07 2012 | Nokia Technologies Oy | (assignment on the face of the patent) | / | |||
May 07 2012 | MAENPAA, OSSI E | Nokia Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028170 | /0982 | |
Jan 16 2015 | Nokia Corporation | Nokia Technologies Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035252 | /0955 |
Date | Maintenance Fee Events |
May 24 2016 | ASPN: Payor Number Assigned. |
Dec 13 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 13 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 28 2019 | 4 years fee payment window open |
Dec 28 2019 | 6 months grace period start (w surcharge) |
Jun 28 2020 | patent expiry (for year 4) |
Jun 28 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2023 | 8 years fee payment window open |
Dec 28 2023 | 6 months grace period start (w surcharge) |
Jun 28 2024 | patent expiry (for year 8) |
Jun 28 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2027 | 12 years fee payment window open |
Dec 28 2027 | 6 months grace period start (w surcharge) |
Jun 28 2028 | patent expiry (for year 12) |
Jun 28 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |