A trocar wound closure system includes a suture passing needle and a guide for directing the needle through the wound site. A distal portion of the needle includes a capture rod with a slot. An obturator tube with a cutout section can be axially actuated to align the cutout section with the slot, and then moved out of alignment so as to capture the suture. The guide includes at least two tracks for directing the needle through the tissue track. A snare loop is located adjacent to the exit of each track, and configured to be actuated from a radially extended configuration to a retracted configuration so as to capture the suture section inserted through each loop. Radially expandable arms at distal section are movable between an expanded configuration and a slender configuration.
|
1. A surgical guide device to be placed through a tissue track, comprising:
a barrel defining a first channel and a second channel, the first channel comprising a first exit for directing a first suture portion into a body cavity, the second channel comprising a second exit for directing a second suture portion into the body cavity;
a distal tip comprising radially expandable arms;
a first snare cord positioned adjacent to the first exit;
a second snare cord positioned adjacent to the second exit; and
an actuator coupled to the first and second snare cords, the actuator being configured to move the first and second snare cords in unison between a radially extended configuration and a retracted configuration,
wherein the first snare cord in the radially extended configuration comprises a first self-supported snare loop extending generally perpendicular to a long axis of the guide, and
wherein the second snare cord in the radially extended configuration comprises a second self-supported snare loop extending generally perpendicular to a long axis of the guide.
9. A surgical guide device to be placed through a tissue track, comprising:
a barrel defining a first channel and a second channel, the first channel comprising a first exit for directing a first suture portion into a body cavity, the second channel comprising a second exit for directing a second suture portion into the body cavity;
a distal tip comprising radially expandable arms;
a first snare cord positioned adjacent to the first exit and protruding radially outward from the distal tip in a first direction;
a second snare cord positioned adjacent to the second exit and protruding radially outward from the distal tip in a second direction; and
an actuator coupled to the first and second snare cords, the actuator being movable with respect to the barrel so as to move the first and second snare cords in unison between a radially extended configuration and a retracted configuration,
wherein the first snare cord and the second snare cord are detached and separate from any sharp needles, and
wherein the first snare cord in the radially extended configuration comprises a first self-supported snare loop extending generally perpendicular to a long axis of the guide, and
wherein the second snare cord in the radially extended configuration comprises a second self-supported snare loop extending generally perpendicular to a long axis of the guide.
2. The device of
the plunger is slidable with respect to the barrel to move the radially expandable arms between a slender configuration and the flared-out configuration; and
the plunger and radially expandable arms are biased to a flared-out configuration.
3. The device of
4. The device of
6. The device of
the actuator moves proximally with respect to the barrel to move the first and second snare cords in unison to the retracted configuration; and
the actuator moves distally with respect to the barrel to move the first and second snare cords in unison to the radially extended configuration.
7. The device of
the first snare cord comprises a first mono-filament wire; and
the second snare cord comprises a second mono-filament wire.
8. The device of
the first snare cord comprises a first multi-filament wire; and
the second snare cord comprises a second multi-filament wire.
10. The device of
the plunger is slidable with respect to the barrel to move the radially expandable arms between a slender configuration and the flared-out configuration; and
the plunger and radially expandable arms are biased to a flared out configuration.
11. The device of
the actuator moves proximally with respect to the barrel to move the first and second snare cords in unison to the retracted configuration; and
the actuator moves distally with respect to the barrel to move the first and second snare cords in unison to the radially extended configuration.
13. The device of
the first snare cord comprises a first mono-filament wire; and
the second snare cord comprises a second mono-filament wire.
14. The device of
the first snare cord comprises a first multi-filament wire; and
the second snare cord comprises a second multi-filament wire.
|
This application relates to, claims priority from, and incorporates herein by reference, as if fully set forth, U.S. Provisional Patent Application Ser. No. 61/610,354 filed on Mar. 13, 2012 and entitled “METHOD AND SNARE GUIDE APPARATUS FOR PASSING SUTURE.”; U.S. Provisional Patent Application Ser. No. 61/723,262 filed on Nov. 6, 2012 and entitled “METHOD AND SAFETY NEEDLE APPARATUS FOR PASSING SUTURE.”
1. Field of the Invention
This invention relates to surgical instruments for approximation, ligation and fixation of tissue using a suture, and particularly to the approximation of tissue separated by mean of an endosurgical trocar being inserted into a body cavity.
2. Description of Prior Art and Related Information
Numerous methods currently exist for performing laparoscopic procedures. One of the more commonly used methods is known as closed laparoscopy which utilizes a sharp needle (e.g., Veress needle) to puncture the abdominal wall and insufflate the abdominal cavity with an inert gas such as carbon dioxide through the needle. This process of insufflating the cavity separates the abdominal wall from the underlying organs creating a gap for the surgeon to work within. A trocar/cannula system is then used to maintain the insufflated cavity and provide a working portal for which instruments can be passed into and out of the abdominal cavity to perform various surgical procedures. When the procedure is completed, it is desirable for the surgeon to close the incision site using suture material to minimize the risk of adverse post-operative events.
One of the post-operative complications associated with this procedure is the incidence of trocar site hernias, where a portion of an organ or fatty tissue protrudes out through the hole in the abdominal wall created by the trocar access portal. It is believed that improper closure, or complete lack of closure, of the incision site at the peritoneum is the primary cause of these hernias which form during the post-operative period ranging from several days to several months following the procedure. Traditional methods of wound site close require an additional set of instruments (suture passers, guides, etc.) to be introduced into the surgery. A number of these instruments have been previously disclosed. However, the prior art related to trocar wound site closure instrumentation are typically cumbersome to use and do not provide for a simple, reproducible, and reliable means of closing the wound site.
A preferred system according to the invention comprises a surgical instrument as well as a surgical instrument set that may have certain functions. First, the system may have the capabilities to provide entry into the abdominal cavity and subsequently insufflating the cavity for use in laparoscopic surgical procedures. In the preferred embodiment, the system comprises a needle apparatus having a sharp needle tip and an insufflation channel to facilitate penetration into the abdominal cavity and insufflation. A unique obturator tip is provided to shield the sharp needle tip upon insertion into the cavity. Second, the system may have the capabilities to close the fascial/peritoneal layer at the trocar wound site in a quick, consistent and reproducible manner at the end of the procedure. To facilitate closure of the wound, the system includes the same needle used in combination with a guide apparatus which has suture capture features disposed at or near the distal tip.
The needle apparatus may also serve as a suture passer, in that it has the ability to carry and retrieve suture through tissue layers for suturing closed the wound site. The needle apparatus also has the ability to insufflate the abdomen during the laparoscopic procedure. The needle apparatus may comprise several components including: a handle, actuation mechanism, a connector for connecting the needle to a gas line, a capture rod, an outer needle shaft, and a spring loaded safety tip on a hollow obturator tube.
In a preferred embodiment, a handle at the proximal end of the needle apparatus allows for single-handed or double-handed use. The handle may also contain a finger loop or loops for additional security while holding the needle. An actuator mechanism may be disposed adjacent to the handle and configured for the deployment and retraction of the capture rod used to secure the suture material within the tip of the needle. The preferred actuator mechanism may include a sliding plunger that translates along the long axis of the handle that moves the capture rod between a first position in an axially extended configuration and a second position in an axially retracted configuration. The actuator may be spring loaded in one direction such that the capture rod is biased to the retracted position. This may allow the suture to be passively captured without actuation of the plunger. The handle and actuator means may be constructed from metals (such as stainless steel, titanium or aluminum) or plastics (such as polyacetal, nylon, polypropylene, poly-ether-ether-ketone, or polycarbonate), or any combination of the two.
A long outer needle shaft may be connected to the proximal handle and extends distally over a length that may range from 2-38 centimeters, or more preferably between 10-20 centimeters. The outer needle shaft may have a sharp tip, or needle peak, at the distal-most point to ease the insertion of the needle through the various tissue layers. The outer shaft may house an obturator tube that has a hollow, unobstructed inner lumen, with a blunt tip. The obturator tube may also house a capture rod used for securing the suture for passing through tissue. The outer needle shaft, obturator tube and capture rod would optimally be constructed from metals such as stainless steel, titanium or aluminum.
The distal-most end of the obturator tube may have a blunt or rounded plug or surface at the tip. The entire obturator tube may be spring loaded to allow for the blunt tip to translate away from the tip of the needle when it is loaded, and passively travel back to the tip of the needle when it is unloaded. The obturator spring may be housed within the handle. The spring loaded obturator would serve as a safety mechanism for protecting the internal organs within the abdomen after the needle is passed through the abdominal wall.
A portion of the wall of the outer needle shaft may be cutout near the distal tip which may be used to create a slot to accommodate the suture during the suture passing process. Similarly, a portion of the wall of the obturator tube may be cut out near the distal tip of the tube to provide an opening for the capture rod to secure the suture to the wall of the outer needle shaft. The window cutout in the obturator tube must be long enough such that it can accommodate the suture as it travels back and forth. Lastly, the capture rod has a slot with one or more ramped faces. A distal ramped surface on the capture rod slot is used to capture the suture against the outer needle shaft. A proximal ramped surface may assist in pushing the suture out of the window in the obturator tube, facilitating the release of the suture from the needle.
The needle capture rod is used to secure the suture to the needle for suture passing activities. Initially the actuator may be pressed to extend the capture rod and expose the slot in the capture rod. A section of suture may be placed into the slot, and the actuator is released to retract the capture rod. As the capture rod retracts, the suture becomes trapped between the distal surface of the slot in the capture rod and the cutout in the outer needle shaft. When the suture needs to be released, the actuator may be pressed again to extend the capture rod. As the capture rod is extended the proximal face of the slot may push the suture material out of the cutout in the obturator tube and away from the needle shaft.
In another preferred embodiment, a luer connector or other quick connect type device may be disposed on the proximal handle to provide an entry passageway for the gas to enter into the needle. The unobstructed inner lumen of the obturator tube may allow for the passage of an inert gas for insufflation of the abdomen.
The guide apparatus may serve dual purposes, as it first may be used to guide the needle through the abdominal wall in a repeatable manner, and second used to capture the suture material after it is passed into the abdominal wall. The guide may comprise a slotted barrel, collapsible barrel tip, plunger, main shaft, cap, suture capturing snare cord, and guide tubes along with various fasteners and springs.
The slotted barrel may have two slotted channels to accommodate the passage of the needle. The entries and exits of the two channels may be spaced 180 degrees radially apart from each other such that the stitch can be placed on opposing sides of the wound. The channels' purpose is to guide the needle repeatably through the same tissue thickness and into the suture snare cord, where the suture can be released. The trajectory of the channels is referenced off the inner wall of the peritoneum such that approximately 5-15 millimeters of tissue bite is achieved from the periphery of the wound. The proximal ends of the channels may have a widened and or tapered opening to ease the entry of the needle into the channels. Slots in the channels will allow for the middle section of the length of suture to be released from the constraints of the guide channels. The width of the slots in the channels should be large enough for the suture to easily be released from the channels, yet small enough to not allow the needle to exit the channel or get caught against it.
The guide may comprise a main shaft that is slidably disposed within the slotted barrel of the guide. The main shaft may be used to actuate the expanding arms, comprising living hinges in the preferred embodiment on the collapsible barrel tip. One or more expanding arms may be used to locate the guide against the inner peritoneal wall as a reference point to ensure consistent tissue bite depth of the needle, as previously described. The main shaft may be spring loaded in a proximal position such that the expanding arms are biased to a radially expanded position where the outer profile of the arms exceeds the diameter of the slotted barrel. As the main shaft moves distally, the arms may be contracted such that aligns their outer diameter with the outer diameter of the slotted barrel in a continuous slender fashion. The main shaft may be connected at the distal end to the barrel tip, and connected to the plunger on the proximal end.
The distal end of the barrel tip may have a blunt tip to minimize the potential of harm or damage to the adjacent tissues during insertion. Moving proximally away from the blunt tip, the outer wall of the barrel tip may have a tapered region that gradually radially increases to the outer profile of the guide as designated by the outer diameter of the slotted barrel. The tapered section may facilitate the ease of insertion of the guide into the trocar wound site.
The barrel tip may have one or more stop tabs that provide a hard stop for the barrel tip as the expanding arms are actuated, to prevent excessive flexion in the hinge material. Along the length of the stop tabs, a cutout section may exist for the snare loop to be retracted into for capturing the suture material against the guide.
The guide may have a slider that is used to actuate the snare cord material. The slider may be slidably disposed on the slotted barrel. Two snare cords may be connected at their ends to the slider body, with a loop formed at the distal tip of the guide. The slider may be spring loaded such that the snare cords are biased into a radially extended position. As the slider is pulled proximally, the snare cord is retracted against the extension arms of the barrel tip. As the slider is released distally, the snare cord is radially extended out and away from the barrel to create two snare loops for the suture to be passed into. The slider may have two tabs that can be used to pull the slider proximally using one or more fingers on each tab. The snare cords may be constructed from a mono- or multi-filament wire that has the flexibility to easily bend and conform to various geometries yet stiff enough to create a self-supported snare loop that extends generally perpendicular to the long axis of the guide. Materials that may be used to construct the snare cord include plastics such as nylon, polyethylene, polyester or polypropylene or metals such as stainless steel or nitinol.
A plunger at the proximal end of the guide may be used to provide a counterforce when pulling on the slider. As the plunger is pushed and the slider is simultaneously pulled, the snares will move into the retracted position first, and then the expanding arms are retracted into the slender configuration. As the slider is released, the spring forces will extend the snares to the extended position and the expanding arms will be converted to the radially expanded condition.
In another embodiment, the snares may include a basket element to prevent the needle from traversing deeply into the abdominal cavity and causing potential harm.
The basic procedural steps of the utilization of the suturing system may flow as follows. At the end of the surgical procedure, the trocar is removed from the body exposing the wound. The slider on the guide is pulled up against the plunger to contract the flexing arms and retract the snares such that the profile of the guide is at its minimum. The guide can then be inserted into the wound with the plunger continually pulled against the slider. The slider and plunger are then released expanding the arms and deploying the snares. The guide can be pulled upward and away from the body cavity until the arms rest against the inner wall of the peritoneum. A short tail at one end of the suture is secured by the capture rod in the tip of the needle. The needle, with suture, is then passed through a first needle channel in the guide and is advanced through the guide, tissue and snare, into the abdominal cavity. The needle then releases the suture into the cavity, and is retracted from the body. A second short tail at the second free end of the suture is then secured by the capture rod in the needle. The needle, with suture, is then passed through the second needle channel in the guide and advanced through the guide, tissue and snare, into the abdominal cavity. The needle then releases the suture into the abdominal cavity and removed from the guide and body. The remaining loop of suture outside the body may then be released from each of the slots in the needle tracks. The slider on the guide is then again pulled against the plunger to retract the snares, capturing the free ends of suture, and contract the flexing arms allowing the guide to be removed from the wound, carrying the suture with it. Once outside the body, the snares may need to be deployed enough to release the free ends of the suture. Lastly, a knot may be tied and pushed down into the wound to close the trocar puncture site.
In an alternative procedure, the guide may be used to place a
The basic procedural steps for abdominal entry and insufflation of the cavity may flow as follows. The needle is used to enter the abdominal cavity using standard closed laparoscopic techniques. A gas line is connected to the handle allow for an inert gas to be passed into the abdominal cavity. The inert gas is then turned on until the cavity reaches an appropriate level of insufflation to allow for the procedure to be performed with appropriate visualization. The needle is then removed, and a trocar is inserted into the puncture site to perform the procedure.
The various embodiments of the invention can now be better understood by turning to the following detailed description wherein illustrated embodiments are described. It is to be expressly understood that the illustrated embodiments are set forth as examples and not by way of limitations on the invention as ultimately defined in the claims.
In a preferred embodiment, a system is provided for closing trocar wound sites. The system comprises a suture engagement device and a guide to direct the device through the body tissues.
An improved needle and guide instrument set is further described below as it allows for the surgical placement of suture to be completed “blind,” namely, without the aid of an endoscope for direct visualization of the abdominal cavity. This may be advantageous in certain surgical procedures where an endoscope is not being used or does not provide adequate visualization of the surgical site.
A preferred embodiment of a suture engagement device or suture passing needle, or simply needle, 100 is shown in
In
Cross sectional views of the preferred embodiment of the needle 100 are shown in
In
An oblique view of the preferred guide 130 is shown in
As the slider 156 translates with respect to the barrel 131, the suture snare loops 146 move between two positions of radially extended shown in
Further, as the plunger 153 translates with respect to the barrel 131, the radially expanding arms 147 at the distal barrel tip 140 move between two positions of radially expanded, or flared out, as shown in
As shown in
The barrel tip 140 may comprise a separate component that is assembled to the main barrel 131. Two tabs 166 on the main barrel 131 may be placed radially opposite to each other. Slots 167 in the barrel tip 140 may allow for the tip 140 to initially slide past the tabs 166 on the main barrel 131. The slots 167 may have an undercut section 168 that may be engaged by rotating the tip 140 and pulling it distally. The gap that is created between the tip 140 and the barrel 131 may be filled with a deformable c-shaped clip 169 to prevent the tip 140 from dislodging from the barrel 131.
The slider 156 is slidably disposed on the main barrel 131 as it can travel between a distal position shown in
In the preferred embodiment, the guide 130 provides two different, diagonal pathways for a suture passing needle apparatus and thus comprises first and second channels 132, 136 as more clearly shown in
The internal workings of the guide 130 are shown in
Two springs are used to bias the guide 130 into the configurations shown in
In
In the case of a laparoscopic surgery involving use of a trocar, the guide 130 may be placed through the tissue layers of the open trocar wound site as shown in
Once the guide 130 is secured against the peritoneal wall 163, the suture engaging device 100, with a first free end section 44 of suture 125 engaged, may be inserted through a channel 132 while carrying the section 44 of suture 125, as shown in
The second free end section 46 of suture 125 may then be engaged by the suture engaging device 100, and inserted through the opposing channel 136 to place the second end suture section 46. As shown in
In
Step 204 comprises engaging and capturing a first section of a suture with a suture capture mechanism disposed at the distal end of a suture engaging device having a shaft. In step 205 the suture engaging device with secured suture is inserted through a first track of the guide, through various tissue layers, and ultimately ending inside the body cavity as it passes through the first snare loop. Step 206 comprises releasing the first suture section from the suture engaging device and retracting the device from the body and guide. The first section of the suture may remain inside the body cavity and loosely encapsulated within the boundaries of the expanded first snare loop.
Step 207 comprises engaging and capturing a second section of the same suture with the suture capture feature on the suture engaging device. In step 208, the suture engaging device with secured suture is inserted through a second track of the guide, through various tissue layers, ending inside the body cavity as it passes through the second snare loop. Step 209 comprises releasing the suture from the suture engaging device and retracting the device from the body and guide while leaving the second section of the suture inside the body cavity and loosely encapsulated within the boundaries of the second snare loop.
In step 210, the suture material may be passed through the slots in the channels on the guide to release the suture from the constraint of the channel. Step 210 comprises retracting the snare loops back against the guide and securing the suture between the outer guide wall and the snare loop. In step 211, the guide may be actuated such that the securing mechanism is radially contracted and converting the guide into the slender configuration. It can be appreciated that step 210 and 211 may be combined such that they occur simultaneously or seamlessly with a single motion. In step 213 the guide can be removed from the body cavity with the two captured sections of the suture. Step 214 comprises releasing the suture from the snare loops on the guide. The procedure may then be completed at step 215 by forming a single stitch loop to close the surgical wound.
In
In
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiments have been set forth only for the purposes of examples and that they should not be taken as limiting the invention as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the invention includes other combinations of fewer, more or different ones of the disclosed elements.
The words used in this specification to describe the invention and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification the generic structure, material or acts of which they represent a single species.
The definitions of the words or elements of the following claims are, therefore, defined in this specification to not only include the combination of elements which are literally set forth. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, what can be obviously substituted and also what incorporates the essential idea of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1870942, | |||
4608965, | Mar 27 1985 | ANSPACH, WILLIAM E , JR | Endoscope retainer and tissue retracting device |
4779616, | Feb 04 1986 | Smith & Nephew, Inc; INSTRUMENT MAKAR, INC | Surgical suture-snagging method |
5122122, | Nov 22 1989 | Tyco Healthcare Group LP | Locking trocar sleeve |
5171233, | Apr 25 1990 | EV3 INC | Snare-type probe |
5201741, | Jul 24 1990 | Andrew Surgical, Inc. | Surgical snare with shape memory effect wire |
5203773, | Oct 18 1991 | Tyco Healthcare Group LP | Tissue gripping apparatus for use with a cannula or trocar assembly |
5222508, | Oct 09 1992 | Method for suturing punctures of the human body | |
5269772, | Jan 24 1992 | Laparoscopic cannula assembly and associated method | |
5281237, | Sep 25 1992 | Surgical stitching device and method of use | |
5312351, | Jan 29 1993 | Combined pneumo-needle and trocar apparatus | |
5330488, | Mar 23 1993 | Verres needle suturing kit | |
5336231, | May 01 1992 | Parallel channel fixation, repair and ligation suture device | |
5364408, | Sep 04 1992 | Boston Scientific Scimed, Inc | Endoscopic suture system |
5368601, | Apr 30 1992 | LSI Solutions, Inc | Trocar wound closure device |
5391182, | Aug 03 1993 | TYCO HEALTHCARE GROUP AG; Covidien AG | Apparatus and method for closing puncture wounds |
5439469, | Nov 05 1993 | Conmed Corporation | Wound closure device |
5458608, | Jun 03 1993 | Surgin Surgical Instrumentation Inc.; SURGIN SURGICAL INSTRUMENTATION, INC | Laparoscopic instruments and methods |
5496332, | Oct 20 1994 | Cordis Corporation | Wound closure apparatus and method for its use |
5501691, | Mar 23 1993 | Verres needle suturing device | |
5501692, | Jan 28 1994 | Laparoscopic suture snare | |
5507755, | Aug 03 1993 | TYCO HEALTHCARE GROUP AG; Covidien AG | Apparatus and method for closing puncture wounds |
5507758, | Aug 25 1993 | COOPERSURGICAL, INC | Insertable suture grasping probe guide, and methodology for using same |
5562688, | Mar 25 1994 | Apparatus facilitating suturing in laparoscopic surgery | |
5653717, | Aug 28 1995 | Conmed Corporation | Wound closure device |
5716369, | Mar 25 1994 | Apparatus facilitating suturing in laparoscopic surgery | |
5792148, | Mar 15 1995 | INNOTECH SWEDEN AB | Device and method for removal of ticks from humans and animals |
5817111, | Mar 28 1997 | Open loop suture snare | |
5817112, | Sep 22 1997 | Surgical Inventions & Innovations, Inc | Christoudias fascial closure device |
5830232, | Apr 14 1997 | Device for closing an opening in tissue and method of closing a tissue opening using the device | |
5836955, | Sep 19 1996 | Medtronic Ave, Inc | Wound closure apparatus and method |
5857999, | May 05 1995 | Conmed Corporation | Small diameter introducer for laparoscopic instruments |
5882340, | Apr 15 1992 | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member | |
5935107, | Oct 07 1996 | Applied Medical Resources Corporation | Apparatus and method for surgically accessing a body cavity |
5954732, | Sep 10 1997 | Applied Medical Resources Corporation | Suturing apparatus and method |
5954734, | Aug 25 1993 | COOPERSURGICAL, INC | Insertable suture passing grasping probe and methodology for using same |
5972005, | Feb 17 1998 | Advanced Cardiovascular Systems, INC | Wound closure assembly and method of use |
5984948, | Apr 14 1997 | Device for closing an opening in tissue and method of closing a tissue opening using the device | |
6136010, | Mar 04 1999 | Abbott Laboratories | Articulating suturing device and method |
6183485, | Aug 25 1993 | COOPERSURGICAL, INC | Insertable suture passing grasping probe and methodology for using same |
6743207, | Apr 19 2001 | Boston Scientific Scimed, Inc | Apparatus and method for the insertion of a medical device |
7625392, | Feb 03 2006 | Wound closure devices and methods | |
7731726, | Dec 03 2003 | St. Jude Medical Puerto Rico LLC | Suture based vascular closure apparatus and method incorporating a pre-tied knot |
8545522, | Apr 19 2005 | Device for wound suturing and hemostasis in the thoracic and the abdominal wall mainly in endoscopic operations | |
20020010480, | |||
20020107526, | |||
20040068273, | |||
20040249395, | |||
20050021055, | |||
20050192597, | |||
20060030868, | |||
20070093859, | |||
20070149987, | |||
20070203507, | |||
20080033459, | |||
20080045979, | |||
20080097485, | |||
20080243183, | |||
20080255589, | |||
20090018554, | |||
20100004581, | |||
20100016870, | |||
20100042118, | |||
20100191260, | |||
20100256673, | |||
20100324573, | |||
20110082473, | |||
20110082475, | |||
20110112557, | |||
20110245850, | |||
20120035623, | |||
20120296373, | |||
EP432363, | |||
EP941698, | |||
EP2412317, | |||
WO2010081096, | |||
WO9925254, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 06 2013 | SUTURE EASE, INC. | (assignment on the face of the patent) | / | |||
Mar 28 2014 | HENEVELD, SCOTT | SUTURE EASE, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032553 | /0856 | |
Apr 28 2016 | SUTURE EASE, LLC | SUTURE EASE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038414 | /0710 |
Date | Maintenance Fee Events |
Sep 12 2019 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 28 2023 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Jul 19 2019 | 4 years fee payment window open |
Jan 19 2020 | 6 months grace period start (w surcharge) |
Jul 19 2020 | patent expiry (for year 4) |
Jul 19 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 19 2023 | 8 years fee payment window open |
Jan 19 2024 | 6 months grace period start (w surcharge) |
Jul 19 2024 | patent expiry (for year 8) |
Jul 19 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 19 2027 | 12 years fee payment window open |
Jan 19 2028 | 6 months grace period start (w surcharge) |
Jul 19 2028 | patent expiry (for year 12) |
Jul 19 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |