Techniques are presented to allow non-volatile memory system to operate by determining ranges of logical addresses that a host typically accesses as together. For example, the system's controller can determine that the host always, or most always, writes or reads a contiguous set of logical addresses as a single unit. The controller can exploit this information by operating on these ranges as single a unit for data operations it performs. To take one example, the memory system can treat such ranges as single units for on-system data compression prior to writing the data to non-volatile memory.
|
20. A non-volatile memory device comprising:
a non-volatile memory circuit; and
a controller circuit configured to
receive logically-addressed host data from a host;
store the host data in the non-volatile memory circuit;
monitor access patterns by the host of the host data stored in the non-volatile memory circuit;
determine ranges of contiguous logical addresses of the host data that are accessed by the host as single entities in response to the monitoring;
maintain a record of the ranges of contiguous logical addresses of the host data that are accessed by the host as single entities;
merge at least two of the ranges of contiguous logical addresses of the host data that are in the record into a single logical unit;
update the record to include the single logical unit; and
perform a data operation on the single logical unit.
13. A method of operating a non-volatile memory system, the memory system including one or more non-volatile memory circuits and a controller circuit that manages storage of logically-addressed host data received from a host in the one or more non-volatile memory circuits, the method comprising:
maintaining, by the controller circuit, a record of ranges of contiguous logical addresses that are accessed by the host as single entities;
treating, by the controller circuit, the ranges of contiguous logical addresses that are accessed by the host as single entities as single units for data operations; and
monitoring, by the controller circuit, access patterns by the host of the host data stored in the one or more non-volatile memory circuits and updating the record based on the monitoring, wherein the updating includes merging at least two of the ranges of contiguous logical addresses into a single logical unit; and
compressing the single logical unit.
1. A method of operating a non-volatile memory system including a controller circuit and one or more non-volatile memory circuits, the method comprising:
receiving, at the controller circuit, logically-addressed host data from a host;
storing the host data in the one or more non-volatile memory circuits;
monitoring, by the controller circuit, access patterns by the host of the host data stored in the one or more non-volatile memory circuits;
determining, by the controller circuit, ranges of contiguous logical addresses of the host data that are accessed by the host as single entities in response to the monitoring;
maintaining, by the controller circuit, a record of the ranges of contiguous logical addresses of the host data that are accessed by the host as single entities;
merging, by the controller circuit, at least two of the ranges of contiguous logical addresses of the host data that are in the record into a single logical unit;
updating, by the controller circuit, the record to include the single logical unit; and
performing, by the controller circuit, a data operation on the single logical unit.
2. The method of
splitting one of the ranges of contiguous logical addresses that is in the record into separate logical units for the data operation; and
updating the record in response to the splitting.
3. The method of
adding another range of contiguous logical addresses to the record.
4. The method of
deleting one of the ranges of contiguous logical addresses from the record.
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
12. The method of
determining, by the controller circuit, that the host consistently accesses a first range of the at least two ranges before the host accesses a second range of the at least two ranges.
14. The method of
creating an access table of the ranges of contiguous logical addresses;
creating a lookup table from the access table; and
determining the single units for data operations from the lookup table.
15. The method of
sequentially sorting start and end logical addresses of the ranges of contiguous logical addresses.
16. The method of
determining whether each of the ranges of contiguous logical addresses accessed by the controller circuit is consistently followed by another of the ranges of contiguous logical addresses accessed by the controller circuit in the lookup table.
17. The method of
18. The method of
19. The method of
21. The device of
22. The device of
23. The device of
24. The device of
25. The device of
|
This application relates to the operation of re-programmable non-volatile memory systems such as semiconductor flash memory, and, more specifically, to handling and efficient storage of data on such systems.
Solid-state memory capable of nonvolatile storage of charge, particularly in the form of EEPROM and flash EEPROM packaged as a small form factor card, has recently become the storage of choice in a variety of mobile and handheld devices, notably information appliances and consumer electronics products. Unlike RAM (random access memory) that is also solid-state memory, flash memory is non-volatile, and retaining its stored data even after power is turned off. Also, unlike ROM (read only memory), flash memory is rewritable similar to a disk storage device. In spite of the higher cost, flash memory is increasingly being used in mass storage applications. Conventional mass storage, based on rotating magnetic medium such as hard drives and floppy disks, is unsuitable for the mobile and handheld environment. This is because disk drives tend to be bulky, are prone to mechanical failure and have high latency and high power requirements. These undesirable attributes make disk-based storage impractical in most mobile and portable applications. On the other hand, flash memory, both embedded and in the form of a removable card is ideally suited in the mobile and handheld environment because of its small size, low power consumption, high speed and high reliability features.
Flash EEPROM is similar to EEPROM (electrically erasable and programmable read-only memory) in that it is a non-volatile memory that can be erased and have new data written or “programmed” into their memory cells. Both utilize a floating (unconnected) conductive gate, in a field effect transistor structure, positioned over a channel region in a semiconductor substrate, between source and drain regions. A control gate is then provided over the floating gate. The threshold voltage characteristic of the transistor is controlled by the amount of charge that is retained on the floating gate. That is, for a given level of charge on the floating gate, there is a corresponding voltage (threshold) that must be applied to the control gate before the transistor is turned “on” to permit conduction between its source and drain regions. In particular, flash memory such as Flash EEPROM allows entire blocks of memory cells to be erased at the same time.
The floating gate can hold a range of charges and therefore can be programmed to any threshold voltage level within a threshold voltage window. The size of the threshold voltage window is delimited by the minimum and maximum threshold levels of the device, which in turn correspond to the range of the charges that can be programmed onto the floating gate. The threshold window generally depends on the memory device's characteristics, operating conditions and history. Each distinct, resolvable threshold voltage level range within the window may, in principle, be used to designate a definite memory state of the cell.
It is common in current commercial products for each storage element of a flash EEPROM array to store a single bit of data by operating in a binary mode, where two ranges of threshold levels of the storage element transistors are defined as storage levels. The threshold levels of transistors correspond to ranges of charge levels stored on their storage elements. In addition to shrinking the size of the memory arrays, the trend is to further increase the density of data storage of such memory arrays by storing more than one bit of data in each storage element transistor. This is accomplished by defining more than two threshold levels as storage states for each storage element transistor, four such states (2 bits of data per storage element) now being included in commercial products. More storage states, such as 16 states per storage element, are also being implemented. Each storage element memory transistor has a certain total range (window) of threshold voltages in which it may practically be operated, and that range is divided into the number of states defined for it plus margins between the states to allow for them to be clearly differentiated from one another. Obviously, the more bits a memory cell is configured to store, the smaller is the margin of error it has to operate in.
The transistor serving as a memory cell is typically programmed to a “programmed” state by one of two mechanisms. In “hot electron injection,” a high voltage applied to the drain accelerates electrons across the substrate channel region. At the same time a high voltage applied to the control gate pulls the hot electrons through a thin gate dielectric onto the floating gate. In “tunneling injection,” a high voltage is applied to the control gate relative to the substrate. In this way, electrons are pulled from the substrate to the intervening floating gate. While the term “program” has been used historically to describe writing to a memory by injecting electrons to an initially erased charge storage unit of the memory cell so as to alter the memory state, it has now been used interchangeable with more common terms such as “write” or “record.”
The memory device may be erased by a number of mechanisms. For EEPROM, a memory cell is electrically erasable, by applying a high voltage to the substrate relative to the control gate so as to induce electrons in the floating gate to tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim tunneling.) Typically, the EEPROM is erasable byte by byte. For flash EEPROM, the memory is electrically erasable either all at once or one or more minimum erasable blocks at a time, where a minimum erasable block may consist of one or more sectors and each sector may store 512 bytes or more of data.
The memory device typically comprises one or more memory chips that may be mounted on a card. Each memory chip comprises an array of memory cells supported by peripheral circuits such as decoders and erase, write and read circuits. The more sophisticated memory devices also come with a controller that performs intelligent and higher level memory operations and interfacing.
There are many commercially successful non-volatile solid-state memory devices being used today. These memory devices may be flash EEPROM or may employ other types of nonvolatile memory cells. Examples of flash memory and systems and methods of manufacturing them are given in U.S. Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762. In particular, flash memory devices with NAND string structures are described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory devices are also manufactured from memory cells with a dielectric layer for storing charge. Instead of the conductive floating gate elements described earlier, a dielectric layer is used. Such memory devices utilizing dielectric storage element have been described by Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545. An ONO dielectric layer extends across the channel between source and drain diffusions. The charge for one data bit is localized in the dielectric layer adjacent to the drain, and the charge for the other data bit is localized in the dielectric layer adjacent to the source. For example, U.S. Pat. Nos. 5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a trapping dielectric sandwiched between two silicon dioxide layers. Multi-state data storage is implemented by separately reading the binary states of the spatially separated charge storage regions within the dielectric.
In order to improve read and program performance, multiple charge storage elements or memory transistors in an array are read or programmed in parallel. Thus, a “page” of memory elements are read or programmed together. In existing memory architectures, a row typically contains several interleaved pages or it may constitute one page. All memory elements of a page will be read or programmed together.
In the production of memory systems there is an ongoing search for solutions that will enable a memory system to store more data on less silicon. Compression of host data once it is on the memory system is one of the methods to achieve this, where the memory system can compress data in groups of sequential logical address ranges. One of the fundamental challenges of compressing data by the storage device is that it is hard to determine and characterize the groups of data that should be compressed together. The result is that a host may wish to access some data that has been compressed as part of a larger set of data, resulting in inefficiencies since the larger set of data need to be de-compressed in order to access the desired data.
A general set of aspects present a method of operating a non-volatile memory system that includes a controller circuit and one or more non-volatile memory circuits. The method includes receiving at the controller circuit from a host data identified by the host by logical addresses. The controller circuit monitors access patterns by the host for host data stored on the non-volatile memory system. Based on the monitoring, the controller circuit determines contiguous ranges of logical addresses that are accessed by the host as single entities and maintains a record of the contiguous ranges of logical addresses that are accessed by the host as single entities. The controller circuit treats the contiguous ranges of logical addresses that are accessed by the host as single entities as a single unit for a data operation.
Other aspects relate to a method of operating a non-volatile memory system, where the memory system includes one or more non-volatile memory circuits and a controller circuit that manages the storage of data received from a host that are identified by logical addresses on the non-volatile memory circuits. According to the method the controller circuit maintains a record of contiguous ranges of logical addresses that are accessed by the host as single entities. In the management of host data the controller circuit treats the contiguous ranges of logical addresses that are accessed by the host as single entities as single units. The controller circuit monitors access patterns by the host for host data stored on the non-volatile memory and updating the record based on the monitoring, wherein the updating of the record includes merging of adjacent contiguous ranges of logical addresses into a single unit for the data operations by the controller circuit.
Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, whose description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
Memory System
In many implementations, the host 80 communicates and interacts with the memory chip 100 via the controller 102. The controller 102 co-operates with the memory chip and controls and manages higher level memory operations. For example, in a host write, the host 10 sends data to be written to the memory array 100 in logical sectors allocated from a file system of the host's operating system. A memory block management system implemented in the controller stages the sectors and maps and stores them to the physical structure of the memory array.
One preferred block management system is disclosed in United States Patent Publication No. US-2010-0172180-A1, the entire disclosure of which is incorporated herein by reference.
A firmware 60 provides codes to implement the functions of the controller 102. An error correction code (“ECC”) processor 62 processes ECC during operations of the memory device. The controller also includes some RAM memory 66 and, as discussed below, may also include a compression/decompression component 64. In some memory system embodiments, the controller 102 is implemented within the host.
Physical Memory Structure
There are many commercially successful non-volatile solid-state memory devices being used today. These memory devices may employ different types of memory cells, each type having one or more charge storage element. Typical non-volatile memory cells include EEPROM and flash EEPROM. Examples of EEPROM cells and methods of manufacturing them are given in U.S. Pat. No. 5,595,924. Examples of flash EEPROM cells, their uses in memory systems and methods of manufacturing them are given in U.S. Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In particular, examples of memory devices with NAND cell structures are described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of memory devices utilizing dielectric storage element have been described by Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in U.S. Pat. Nos. 5,768,192 and 6,011,725.
In practice, the memory state of a cell is usually read by sensing the conduction current across the source and drain electrodes of the cell when a reference voltage is applied to the control gate. Thus, for each given charge on the floating gate of a cell, a corresponding conduction current with respect to a fixed reference control gate voltage may be detected. Conversely, a threshold voltage is defined as the voltage on the control gate that will just turn on the cell with the given charge. Similarly, the range of charge programmable onto the floating gate defines a corresponding threshold voltage window or a corresponding conduction current window.
Alternatively, instead of detecting the conduction current among a partitioned current window, it is possible to set the threshold voltage for a given memory state under test at the control gate and detect if the conduction current is lower or higher than a threshold current. In one implementation the detection of the conduction current relative to a threshold current is accomplished by examining the rate the conduction current is discharging through the capacitance of the bit line or a known capacitor.
As can be seen from the description above, the more states a memory cell is made to store, the more finely divided is its threshold window. For example, a memory device may have memory cells having a threshold window that ranges from −1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store 16 states, each state may occupy from 200 mV to 300 mV in the threshold window. This will require higher precision in programming and reading operations in order to be able to achieve the required resolution.
The memory array 200 is typically organized as a two-dimensional array of memory cells arranged in rows and columns and addressable by word lines and bit lines. The array can be formed according to an NOR type or an NAND type architecture.
When an addressed memory transistor 10 within an NAND string is read or is verified during programming, its control gate is supplied with an appropriate voltage via a common word line. At the same time, the rest of the non-addressed memory transistors in the NAND string 50 are fully turned on by application of sufficient voltage on their control gates. In this way, a conductive path is effective created from the source of the individual memory transistor to the source terminal of the NAND string and likewise for the drain of the individual memory transistor to the drain terminal of the cell. Memory devices with such NAND string structures are described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935.
Detecting Access Sequences for Data Compression on Non-Volatile Memory Devices
As noted in the Background section, there is an ongoing search to store data with higher density on memory devices, such as through decreasing device scales and multi-state storage. Another technique is to compress host data on the memory system prior to storage, where this is compression on the memory device itself, as opposed any compression done by the host itself prior to sending the data to the memory system. As the memory system will typically have no knowledge of the details of, or any relationships among, various set of data, under previous approaches the memory system would be left to compress data in groups of sequential logical addresses ranges per write commands. As a result, it is hard to determine and characterize the groups of data that should be compressed together and a host may want to access a set of data that the memory system compressed as part of a larger set. In order to then access the smaller data set, the larger set needs to be read, transferred to the controller and decompressed, adversely affecting performance. Consequently, the system either needs to suffer these sorts of problems or inefficiently compress data in small units. The techniques of this section address this problem by having the memory system itself detect non-sequential or sequential access sequences by the host and compressing the data accordingly. Consequently, the techniques of this section allow the memory system to adapt itself to host behaviors, where complimentary approaches and techniques are presented in U.S. Pat. No. 7,427,027 US patent application number 2013-0151755.
The exemplary embodiments of this section relate to where the controller circuit determines and maintains a record of contiguous ranges of logical addresses that are accessed by the host as single entities for purposes of on-system data compression. Although the following discussion is given primarily in terms of data compression, similar techniques can be applied to other operations on the memory system where it can be useful to identify and exploit logical addresses that the host accesses (i.e., reads, writes) as contiguous units. To take one example, the memory system can take the determined sequences of logical addresses as a group for internal memory management operations, such moving them together during internal garbage collection activities. This can help to reduce internal fragmentation and improve overall garbage collection efficiency. As another example, the memory system can manage the determined ranges as a group and keep them in the same type of physical media, such as storing them in the same format (binary or multi-state) to provide uniform performance for the whole of the group. For another example, the monitor the frequency of access to groups of data and the whole of frequently accessed groups in memory blocks having faster access times (such as binary instead of multistate or 2 bits per cell instead of a 3 bit per cell format). The knowledge that a host always, or usually, accesses a range of contiguous logical addresses as a unit can also be used to improve read performance by incorporating read ahead; that is, when the controller find that a first logical block address (LBA) of a group is accessed, the controller can predict that following LBAs from the same group will be subsequently be accessed. The techniques can also be applied to improve power failure immunity, because the memory system may chose that if it risks one LBA from the group with potential loss of data due to write of that LBA, it may as well waive loss of data in the rest of the group until all LBAs from the group are written, thereby reducing the amount of internal data backup operations due to new data coming from the host.
Although more widely application, the techniques of this section also be presented in the sort of memory system context described above, where the system includes one or more non-volatile memory chips (such as NAND type flash memory) and a controller chip that assigns host data identified by a logical addresses to physical locations on the memory chips. For example, the memory system a non-volatile memory card, solid state drive (SSD), or embedded system (such as of the “iNAND” type) for mobile phone or tablet applications. Such an arrangement can often be particularly beneficial in embedded or iNAND applications as the expected compression level in iNand is can be much higher than removable storage application, since people tend to keep in removable storage mainly media files (jpg, mp3, mp4, etc.) which are already compressed when received from the host. More generally, though, the arrangement may be used in a wide variety of applications as it is not dependent upon a particular file system structure or file knowledge.
As to the specifics of the compression, this is preferable done on the controller in a way that is as transparent to the host. The compression/decompression engine is schematically represented as a separate block 64 on the on the controller circuit 102 of
More specifically, this section addresses the problem by detecting non-sequential or sequential access sequences and compressing the data accordingly. An exemplary algorithm for this can detect host access sequences that can be compressed as one unit and access (such as for host read and writes) sequences are built from access “atoms”, where each atom represents a sequential logical address range that is always, or most always, accessed as a single unit by the host. Considering such an algorithm at a high level, the process can create access atoms input table to record sequential logical address ranges, such as in terms of logical block addresses (LBAs) range that are always accessed as one unit by the host, where, more generally, “always can be relaxed to almost always or typically. From this, the controller can create an atom lookup table that can store, for each atom, indices that appear in the access atoms' input table. The system can then scan the access atoms' input table and, for each atom, determine what is the next atom in the access atom input table; compare the indices of current atom to the next atom. If all indices match, the two atoms are united to a new atom (done by deleting the first atom from the atoms lookup table), with the two atoms marked the as new atom. If not all indices match, the first atom is deleted (done by deleting the first atom from the atoms lookup table). The process can them move on to the next atom in the access atom input table.
The controller circuitry can maintain the table in either volatile memory, such as RAM 66 of
Considering an exemplary embodiment in more detail,
Having built an input table, the access atoms can be determined. The exemplary embodiment does this by sorting the input table as illustrated schematically in
The process of looking for sequences of atoms starts from atom A (the first atom in the array), where the next atom is B. The controller check to see that atom A is always followed by atom B and that atom B does not follow any atoms other than A. If this is true than A and B are a sequence. Continuing to
Starting from the new atom AB, the next atom on
Starting from the new atom ABC in
Adjustment parameters can be used in algorithm. For example, these could include a MAX_LBA_RANGE_FOR_COMPRESSION parameter that defines the maximum size for compression and when adding an atom to a sequence the controller would check to see that the size does not exceed this maximum allowed value. Another adjustable parameter can be MAX_LBA_RANGE_TO_SKIP, which can define the maximum size that the algorithm can skip while searching for new a compression sequence. This value can be configured according to the read cache size, enabling the system to store the skipped range. These parameters could be held in a register on the controller circuit, for example.
The exemplary embodiment described above can be extended in a number of ways. For example, the algorithm can be enabled to detect an access sequence that is not made up of fully consecutive atoms (using the MAX_LBA_RANGE_TO_SKIP parameter described in in the previous paragraph). For example, for an access pattern of ABC, ABDC, ABEC, the algorithm can skip an atom to define access sequence=>ABC (insertion). In another case, for the access patterns found of AB, ABDC, ABEC, the algorithm can add an atom to define access sequence (deletion)=>ABC. The access sequence ABCD, ABCDE, ACDE, ABDE (insertion+deletion) can have several options, where the longest is ABCDE. Any of these can further optimize on-memory compression of host data.
The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5070032, | Mar 15 1989 | SanDisk Technologies LLC | Method of making dense flash EEprom semiconductor memory structures |
5095344, | Jun 08 1988 | SanDisk Technologies LLC | Highly compact EPROM and flash EEPROM devices |
5172338, | Apr 13 1989 | SanDisk Technologies LLC | Multi-state EEprom read and write circuits and techniques |
5260555, | Jun 15 1990 | Kabushiki Kaisha Toshiba | IC memory card having direct and indirect access card interface functions |
5313421, | Jan 14 1992 | SanDisk Technologies LLC | EEPROM with split gate source side injection |
5315541, | Jul 24 1992 | SanDisk Technologies LLC | Segmented column memory array |
5343063, | Dec 18 1990 | SanDisk Technologies LLC | Dense vertical programmable read only memory cell structure and processes for making them |
5418752, | Apr 13 1989 | Kabushiki Kaisha Toshiba | Flash EEPROM system with erase sector select |
5570315, | Sep 21 1993 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
5595924, | May 25 1994 | SanDisk Technologies LLC | Technique of forming over an irregular surface a polysilicon layer with a smooth surface |
5661053, | May 25 1994 | SanDisk Technologies LLC | Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers |
5694356, | Nov 02 1994 | SanDisk Technologies LLC | High resolution analog storage EPROM and flash EPROM |
5768192, | Jul 23 1996 | MORGAN STANLEY SENIOR FUNDING | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
5784599, | Dec 15 1995 | Hewlett Packard Enterprise Development LP | Method and apparatus for establishing host bus clock frequency and processor core clock ratios in a multi-processor computer system |
5838950, | Oct 15 1992 | PMC-SIERRA, INC | Method of operation of a host adapter integrated circuit |
5903495, | Mar 18 1996 | Kabushiki Kaisha Toshiba | Semiconductor device and memory system |
6011725, | Aug 01 1997 | MORGAN STANLEY SENIOR FUNDING | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
6040622, | Jun 11 1998 | SanDisk Technologies LLC | Semiconductor package using terminals formed on a conductive layer of a circuit board |
6046935, | Mar 18 1996 | Kabushiki Kaisha Toshiba | Semiconductor device and memory system |
6055593, | Dec 31 1996 | Intel Corporation | Dual information structures for different electronic data storage card environments |
6182162, | Mar 02 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Externally coupled compact flash memory card that configures itself one of a plurality of appropriate operating protocol modes of a host computer |
6222762, | Jan 14 1992 | SanDisk Technologies LLC | Multi-state memory |
6279114, | Nov 04 1998 | SanDisk Technologies LLC | Voltage negotiation in a single host multiple cards system |
6327639, | Dec 11 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for storing location identification information within non-volatile memory devices |
6373746, | Sep 28 1999 | TOSHIBA MEMORY CORPORATION | Nonvolatile semiconductor memory having plural data storage portions for a bit line connected to memory cells |
6381405, | Oct 31 1991 | Canon Kabushiki Kaisha | Information recording apparatus |
6385667, | Mar 02 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | System for configuring a flash memory card with enhanced operating mode detection and user-friendly interfacing system |
6408292, | Aug 04 1999 | MEC MANAGEMENT, LLC | Method of and system for managing multi-dimensional databases using modular-arithmetic based address data mapping processes on integer-encoded business dimensions |
6721854, | Oct 28 1999 | International Business Machines Corporation | Controller device, disk controller, auxiliary storage, computer device, and method for controlling auxiliary storage |
6820148, | Aug 17 2000 | SanDisk Technologies LLC | Multiple removable non-volatile memory cards serially communicating with a host |
6901457, | Nov 04 1998 | SanDisk Technologies LLC | Multiple mode communications system |
6901498, | Dec 09 2002 | INNOVATIVE MEMORY SYSTEMS, INC | Zone boundary adjustment for defects in non-volatile memories |
6925007, | Oct 31 2001 | SanDisk Technologies LLC | Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements |
6941403, | Aug 17 2000 | SanDisk Technologies LLC | Multiple removable non-volatile memory cards serially communicating with a host |
6971582, | Oct 19 2001 | Samsung Electronics Co., Ltd. | Memory card, digital device, and method of data interfacing between memory card and digital device |
7107420, | Aug 29 2003 | International Business Machines Corporation | Apparatus and method to adjust data transfer rate |
7427027, | Jul 28 2004 | SanDisk Technologies LLC | Optimized non-volatile storage systems |
7529905, | Oct 13 2005 | SanDisk Technologies, Inc | Method of storing transformed units of data in a memory system having fixed sized storage blocks |
7574553, | Jun 16 2006 | BENHOV GMBH, LLC | Digital component power savings in a host device and method |
7769945, | Jan 18 2007 | Western Digital Israel Ltd | Method and system for facilitating fast wake-up of a flash memory system |
7821864, | Apr 28 2005 | Network Appliance, Inc. | Power management of memory via wake/sleep cycles |
7926720, | Jul 28 2004 | SanDisk Technologies LLC | Optimized non-volatile storage systems |
20010036232, | |||
20020013881, | |||
20020039325, | |||
20020040412, | |||
20020112101, | |||
20020120797, | |||
20020169824, | |||
20020194552, | |||
20030028699, | |||
20030131208, | |||
20050086553, | |||
20050144367, | |||
20050185463, | |||
20050251617, | |||
20080043562, | |||
20080189452, | |||
20080270639, | |||
20100172180, | |||
20100199109, | |||
20100205462, | |||
20100274962, | |||
20100306227, | |||
20110022859, | |||
20110099405, | |||
20110167186, | |||
20130151755, | |||
JP10170564, | |||
JP1109081332, | |||
JP2000181784, | |||
JP2001297316, | |||
JP2003036202, | |||
JP2003036205, | |||
JP9330387, | |||
WO9945460, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 14 2013 | MARCU, ALON | SanDisk Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031630 | /0464 | |
Nov 15 2013 | SanDisk Technologies LLC | (assignment on the face of the patent) | / | |||
Nov 15 2013 | ROSTOKER, TAL | SanDisk Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031630 | /0464 | |
May 16 2016 | SanDisk Technologies Inc | SanDisk Technologies LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 038807 | /0807 |
Date | Maintenance Fee Events |
Jan 23 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 01 2024 | REM: Maintenance Fee Reminder Mailed. |
Sep 16 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 09 2019 | 4 years fee payment window open |
Feb 09 2020 | 6 months grace period start (w surcharge) |
Aug 09 2020 | patent expiry (for year 4) |
Aug 09 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 09 2023 | 8 years fee payment window open |
Feb 09 2024 | 6 months grace period start (w surcharge) |
Aug 09 2024 | patent expiry (for year 8) |
Aug 09 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 09 2027 | 12 years fee payment window open |
Feb 09 2028 | 6 months grace period start (w surcharge) |
Aug 09 2028 | patent expiry (for year 12) |
Aug 09 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |