A method, article of manufacture, and apparatus for managing data. In some embodiments, this includes an initial instruction for a file stored in a first storage system, determining that the initial instruction is not supported by the first storage system, identifying a combination of instructions to the first storage system after determining that the initial instruction is not supported by the first storage system, wherein the combination of instructions is based on the initial instruction, performing the identified combination of instructions on the file stored in the first storage system, and storing results of the performed identified combination of instructions.

Patent
   9411832
Priority
Feb 25 2013
Filed
Mar 15 2013
Issued
Aug 09 2016
Expiry
Mar 30 2033
Extension
15 days
Assg.orig
Entity
unknown
0
89
EXPIRED
1. A method for managing data, comprising:
storing a file in a first storage system having a first file system, wherein the first storage system is selected by a storage abstraction layer based at least in part on whether file system functionality associated with usage statistics of the file is supported by the first file system of the first storage system;
receiving an initial instruction associated with performing a first action in relation to a file stored in a first storage system;
determining that the initial instruction associated with performing the first action is not supported by the first storage system based at least in part on metadata associated with the first storage system, wherein the metadata associated with the first storage system is stored in meta store that includes information respectively associated with one or more storage systems;
in response to determining that the initial instruction associated with performing the first action is not supported by the first storage system, identifying a combination of instructions to the first storage system, wherein the identifying of the combination of instructions includes storing an update in a second file and merging the second file with the file after the update is complete, wherein the combination of instructions is based on the initial instruction and performs the first action by performing a series of actions that have a collective result that is equivalent to a result of the first action, and wherein the combination of instructions are determined based at least in part on the metadata associated with the first storage system, and wherein the metadata associated with the first storage system indicates a mechanism for accessing a file system corresponding to the first storage system;
performing the identified combination of instructions on the file stored in the first storage system; and
storing results of the performed identified combination of instructions.
5. A system for managing data, comprising a storage device and a processor configured to:
store a file in a first storage system having a first file system, wherein the first storage system is selected by a storage abstraction layer based at least in part on whether file system functionality associated with usage statistics of the file is supported by the first file system of the first storage system
receive an initial instruction associated with performing a first action in relation to a file stored in a first storage system;
determine that the initial instruction associated with performing the first action is not supported by the first storage system based at least in part on metadata associated with the first storage system, wherein the metadata associated with the first storage system is stored in meta store that includes information respectively associated with one or more storage systems;
in response to determining that the initial instruction associated with performing the first action is not supported by the first storage system, identify a combination of instructions to the first storage system, wherein to identify the combination of instructions includes to store an update in a second file and merging the second file with the file after the update is complete, wherein the combination of instructions is based on the initial instruction and performs the first action by performing a series of actions that have a collective result that is equivalent to a result of the first action, and wherein the combination of instructions are determined based at least in part on the metadata associated with the first storage system, and wherein the metadata associated with the first storage system indicates a mechanism for accessing a file system corresponding to the first storage system;
perform the identified combination of instructions on the file stored in the first storage system; and
store results of the performed identified combination of instructions.
9. A computer program product for processing data, comprising a non-transitory computer readable medium having program instructions embodied therein for:
storing a file in a first storage system having a first file system, wherein the first storage system is selected by a storage abstraction layer based at least in part on whether file system functionality associated with usage statistics of the file is supported by the first file system of the first storage system;
receiving an initial instruction associated with performing a first action in relation to a file stored in a first storage system;
determining that the initial instruction associated with performing the first action is not supported by the first storage system based at least in part on metadata associated with the first storage system, wherein the metadata associated with the first storage system is stored in meta store that includes information respectively associated with one or more storage systems;
in response to determining that the initial instruction associated with performing the first action is not supported by the first storage system, identifying a combination of instructions to the first storage system, wherein the identifying of the combination of instructions includes storing an update in a second file and merging the second file with the file after the update is complete, wherein the combination of instructions is based on the initial instruction and performs the first action by performing a series of actions that have a collective result that is equivalent to a result of the first action, and wherein the combination of instructions are determined based at least in part on the metadata associated with the first storage system, and wherein the metadata associated with the first storage system indicates a mechanism for accessing a file system corresponding to the first storage system;
performing the identified combination of instructions on the file stored in the first storage system; and
storing results of the performed identified combination of instructions.
2. The method as recited in claim 1, wherein the initial instruction includes a truncate instruction.
3. The method as recited in claim 2, wherein the combination of instructions includes copy a first portion of the file, delete the file, and rename the first portion of the file.
4. The method as recited in claim 1, wherein the initial instruction includes an update instruction.
6. The system as recited in claim 5, wherein the initial instruction includes a truncate instruction.
7. The system as recited in claim 6, wherein the combination of instructions includes copy a first portion of the file, delete the file, and rename the first portion of the file.
8. The system as recited in claim 5, wherein the initial instruction includes an update instruction.
10. The computer program product as recited in claim 9, wherein the initial instruction includes a truncate instruction.
11. The computer program product as recited in claim 10, wherein the combination of instructions includes copy a first portion of the file, delete the file, and rename the first portion of the file.
12. The computer program product as recited in claim 9, wherein the initial instruction includes an update instruction.
13. The method of claim 1, wherein the determining that the initial instruction associated with the first action is not supported by the first storage system and the identifying of the combination of instructions are performed, or caused to be performed, by the storage abstraction layer.
14. The method of claim 13, wherein the storage abstraction layer selects a file system of the one or more storage systems in which the file is to be stored based at least in part on a usage statistic of the file and the metadata associated with the corresponding file storage system.
15. The method of claim 13, wherein in response to a second storage system being added, the storage abstraction layer updates the meta store to include information corresponding to the second storage system.
16. The method of claim 1, wherein the information respectively associated with the one or more storage systems comprises one or more of an Application program Interface (API) information of a corresponding interface of the one or more storage systems, an attribute of the one or more storage systems, and metadata associated with the one or more storage systems.
17. The method of claim 1, wherein the combination of instructions comprises a plurality of actions that are collectively mapped to the initial instruction.

This application claims priority to U.S. Provisional Patent Application No. 61/769,043 for INTEGRATION OF MASSIVELY PARALLEL PROCESSING WITH A DATA INTENSIVE SOFTWARE FRAMEWORK filed on Feb. 25, 2013, which is incorporated herein by reference for all purposes.

This invention relates generally to databases, and more particularly to systems and methods for managing datasets in databases.

With the large amounts of data generated in recent years, data mining and machine learning are playing an increasingly important role in today's computing environment. For example, businesses may utilize either data mining or machine learning to predict the behavior of users. This predicted behavior may then be used by businesses to determine which plan to proceed with, or how to grow the business.

The data used in data mining and analytics is typically not stored in a uniform data storage system. Many data storage systems utilize different file systems, and those different file systems are typically not compatible with each other. Further, the data may reside in geographically diverse locations.

One conventional method to performing data analytics across different databases includes copying data from one database to a central database, and performing the data analytics on the central database. However, this results in an inefficient use of storage space, and creates issues with data consistency between the two databases.

There is a need, therefore, for an improved method, article of manufacture, and apparatus for managing data.

The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:

FIG. 1 illustrates a database system in accordance with some embodiments.

FIG. 2 is a flowchart of a method to manage data in accordance with some embodiments.

A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. While the invention is described in conjunction with such embodiment(s), it should be understood that the invention is not limited to any one embodiment. On the contrary, the scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications, and equivalents. For the purpose of example, numerous specific details are set forth in the following description in order to provide a thorough understanding of the present invention. These details are provided for the purpose of example, and the present invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the present invention is not unnecessarily obscured.

It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, or a computer readable medium such as a computer readable storage medium or a computer network wherein computer program instructions are sent over optical or electronic communication links. Applications may take the form of software executing on a general purpose computer or be hardwired or hard coded in hardware. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention.

An embodiment of the invention will be described with reference to a data storage system in the form of a storage system configured to store files, but it should be understood that the principles of the invention are not limited to this configuration. Rather, they are applicable to any system capable of storing and handling various types of objects, in analog, digital, or other form. Although terms such as document, file, object, etc. may be used by way of example, the principles of the invention are not limited to any particular form of representing and storing data or other information; rather, they are equally applicable to any object capable of representing information.

FIG. 1 illustrates a database system in accordance with some embodiments. Primary Master 102 accepts queries, plans queries, and dispatches queries to Segments 106 for execution. Primary Master 102 also collects results from Segments 106. Segments 106 are each a compute unit of the database system. Rack 108 can store multiple segments as hosts (hosts not shown in FIG. 1). Standby Master 100 is a warm backup of the primary host. Primary Master 102 and Standby Master 100 communicate to Rack 108 via the network connection. The tables of the database system are stored in Storage Nodes 112. Access, including read and write, are done through Storage Abstraction Layer 110. Primary Master 102, in some embodiments, may include a meta store (not shown in FIG. 1).

The meta store includes information about the different files systems in Storage Nodes 112, such as API information of the file system's interface, and different attributes and metadata of the file system. The meta store also includes information on the binary location of the Storage Abstraction Layer 110. As new file systems are added to the database system, the new file systems are registered (e.g. provided API information, other attributes, etc.) with the meta store. Once the new file systems are added, instances of that file system may be created to store data objects, such as databases and tables.

The storage nodes may be different file systems. For example, one storage node may be Hadoop File System (HDFS), while another storage node may be NFS. Having multiple file systems presents some challenges. One challenge is that file systems do not support all the same commands. The Storage Abstraction Layer helps address this challenge.

In some embodiments, the Storage Abstraction Layer selects a file system instance. A file system instance means a physical storage system for a specific file system. As discussed above, there may be several different file systems, and several different instances. The instances may be of the same file system, or they may be of different file systems. Different file systems may have different semantics or different performance characteristics. For example, some file systems allow you to update data, while other file systems only let you append data. The Storage Abstraction Layer chooses a file system based on the file system's attributes.

For example, in some embodiments, if a user wanted to modify or update a file that is stored on an underlying storage system which does not support file modification, the Storage Abstraction Layer may recognize the update command and move the file from the underlying storage system to another which does support file modification. The move may be temporary (e.g. move the file back after the user is finished with the file), or the move may be permanent.

In some embodiments, the Storage Abstraction Layer may choose to store a data object in a file system that does not allow updating. This may be preferable in cases where the data object is only read and never modified, and the file system is efficient for retrieving data. Thus, the Storage Abstraction Layer may take into account the usage statistics of the data object to determine what file system to use to store the data.

In some embodiments, the Storage Abstraction Layer may perform semantic adaptation. This may be preferable when the underlying file system may not be able to communicate directly with segments. This may occur when the interface the Storage Abstraction Layer exposes to the segment execution engine does not match with the semantics of the underlying file system. Other examples include instances where the functionality required by the segments is not supported by the underlying file system.

For example, a user may wish to truncate a file. However, the file may be stored on a segment where the underlying storage does not allow truncating files. The user is not aware of this because the user is not aware of where the files are physically stored. Typically, without a Storage Abstraction Layer, the underlying file system would not be able to understand the truncate command.

One example of semantic adaption includes adapting the truncate command. Suppose that a segment requires a piece of data to be truncated. However, the underlying file system does not support the truncate functionality. The Storage Abstraction Layer may be able to put various commands together to mimic a truncate command. Since the Storage Abstraction Layer has access to the metadata of the file system stored in the meta store, it knows what commands are allowed in the file system, as well as how to access the file system via APIs. Suppose that the file to be truncated is File A, and File A consists of 20 bytes. The segment wants the last 10 bytes to be deleted. With this requirement, the Storage Abstraction Layer may employ semantic adaptation to complete the truncation even when the underlying file system does not support a truncate command. In some embodiments, the Storage Abstraction Layer may first copy the first 10 bytes of File A to a temporary file, called File B. Then, the original File A is deleted, leaving only the temporary File B. After the original File A is deleted, the temporary File B is renamed to File A. File A is now only half of the original File A. In other words, File A has been truncated, even though the underlying file system did not support truncation. The Storage Abstraction Layer, by understanding how to access the underlying file system via the meta store, sent a series of commands to mimic a truncate. This series of commands may be stored in the meta store so that future truncate requests may make use of it.

Another example of semantic adaption includes a file update command. As mentioned above, some file systems do not allow for updating a file. Suppose a segment required that a file be updated. However, the file is stored in a file system that does not allow files to be updated. In some embodiments, the Storage Abstraction Layer may record the modifications in separate file as a new version. For example, if File A was to be modified, the separate file may be called File A_ver2. The segment (or user) will see that changes are being made to File A, but in fact, File A remains unchanged and the changes are being stored in File A_ver2. After the segment is finished modifying or updating the file, there may be two files stored—one is File A, and the other is File A_ver2. When subsequent users want to access File A, the Storage Abstraction Layer may cause the two files to be merged. With File A merged with File A_ver2 and called File A, the new File A will include all the changes made by the previous user. In other words, File A has been modified, even though the underlying file system did not support updating.

With the Storage Abstraction Layer, many different file systems may be supported. New and different storage systems with different file systems may be “plugged” into the database, without affecting the ability for the database to run its queries or jobs, as long as the meta store is updated with information about the new file system, such as its APIs.

FIG. 2 illustrates a method to manage data in accordance with some embodiments. In step 200, an initial instruction for a file stored in a first storage system is received. In step 202, it is determined that the initial instruction is not supported by the first storage system. In step 204, a combination of instructions to the first storage system is identified after determining that the initial instruction is not supported by the first storage system, wherein the combination of instructions is based on the initial instruction. In step 206, the identified combination of instructions is performed on the file stored in the first storage system. In step 208, results of the performed identified combination of instructions are stored.

For the sake of clarity, the processes and methods herein have been illustrated with a specific flow, but it should be understood that other sequences may be possible and that some may be performed in parallel, without departing from the spirit of the invention. Further, though the techniques herein teach creating one SwR sample in parallel, those with ordinary skill in the art will readily appreciate that the techniques are easily extendable to generate many SwR samples. Additionally, steps may be subdivided or combined. As disclosed herein, software written in accordance with the present invention may be stored in some form of computer-readable medium, such as memory or CD-ROM, or transmitted over a network, and executed by a processor.

All references cited herein are intended to be incorporated by reference. Although the present invention has been described above in terms of specific embodiments, it is anticipated that alterations and modifications to this invention will no doubt become apparent to those skilled in the art and may be practiced within the scope and equivalents of the appended claims. More than one computer may be used, such as by using multiple computers in a parallel or load-sharing arrangement or distributing tasks across multiple computers such that, as a whole, they perform the functions of the components identified herein; i.e. they take the place of a single computer. Various functions described above may be performed by a single process or groups of processes, on a single computer or distributed over several computers. Processes may invoke other processes to handle certain tasks. A single storage device may be used, or several may be used to take the place of a single storage device. The disclosed embodiments are illustrative and not restrictive, and the invention is not to be limited to the details given herein. There are many alternative ways of implementing the invention. It is therefore intended that the disclosure and following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.

Ma, Tao, Chang, Lei, Wang, Zhanwei, Jian, Lirong, Ma, Lili, Sherry, Gavin

Patent Priority Assignee Title
Patent Priority Assignee Title
5655116, Feb 28 1994 Alcatel Lucent Apparatus and methods for retrieving information
5706514, Mar 04 1996 Hewlett Packard Enterprise Development LP Distributed execution of mode mismatched commands in multiprocessor computer systems
6718372, Jan 07 2000 EMC IP HOLDING COMPANY LLC Methods and apparatus for providing access by a first computing system to data stored in a shared storage device managed by a second computing system
6745385, Sep 01 1999 Microsoft Technology Licensing, LLC Fixing incompatible applications by providing stubs for APIs
6996582, Oct 03 2002 VALTRUS INNOVATIONS LIMITED Virtual storage systems and virtual storage system operational methods
7035931, Feb 28 2000 JPMORGAN CHASE BANK, N A , AS SUCCESSOR AGENT Volume location service for a distributed file system
7069421, Jan 28 1999 ADVANCED SILICON TECHNOLOGIES, LLC Side tables annotating an instruction stream
7313512, Oct 18 2002 Microsoft Technology Licensing, LLC Software license enforcement mechanism for an emulated computing environment
7613947, Nov 30 2006 NetApp, Inc System and method for storage takeover
7689535, May 30 2007 Red Hat, Inc. Method for providing a unified view of a domain model to a user
7702625, Mar 03 2006 TWITTER, INC Building a unified query that spans heterogeneous environments
7716261, Jun 27 2000 BMC Corporation Method and apparatus for verifying storage access requests in a computer storage system with multiple storage elements
7720841, Oct 04 2006 International Business Machines Corporation Model-based self-optimizing distributed information management
7739316, Aug 21 2003 Microsoft Technology Licensing, LLC Systems and methods for the implementation of base schema for organizing units of information manageable by a hardware/software interface system
7827201, Apr 27 2007 Network Appliance, Inc Merging containers in a multi-container system
7949693, Aug 23 2007 International Business Machines Corporation Log-structured host data storage
7958303, Apr 27 2007 STRIPE, INC Flexible data storage system
7978544, May 30 2007 Red Hat, Inc. Methods for providing a unified view of a domain model to a user
8028290, Aug 30 2006 Microsoft Technology Licensing, LLC Multiple-core processor supporting multiple instruction set architectures
8051113, Sep 17 2009 NetApp, Inc. Method and system for managing clustered and non-clustered storage systems
8131739, Aug 21 2003 Microsoft Technology Licensing, LLC Systems and methods for interfacing application programs with an item-based storage platform
8180813, Dec 08 2009 NetApp, Inc. Content repository implemented in a network storage server system
8185488, Apr 17 2008 EMC IP HOLDING COMPANY LLC System and method for correlating events in a pluggable correlation architecture
8195769, Jan 11 2001 RPX Corporation Rule based aggregation of files and transactions in a switched file system
8200723, Apr 21 2009 Network Appliance, Inc. Metadata file system backed by database
8219681, Mar 26 2004 EMC IP HOLDING COMPANY LLC System and method for managing provisioning of storage resources in a network with virtualization of resources in such a network
8301822, Sep 23 2009 Western Digital Israel Ltd Multi-protocol storage device bridge
8312037, Aug 28 2008 Amazon Technologies, Inc. Dynamic tree determination for data processing
8352429, Aug 31 2009 Veritas Technologies LLC Systems and methods for managing portions of files in multi-tier storage systems
8417681, Jan 11 2001 RPX Corporation Aggregated lock management for locking aggregated files in a switched file system
8452821, Jun 29 2007 Microsoft Technology Licensing, LLC Efficient updates for distributed file systems
8533183, Mar 10 2009 Hewlett-Packard Development Company, L.P. Optimizing access time of files stored on storages
8577911, Mar 23 2010 GOOGLE LLC Presenting search term refinements
8682853, May 16 2008 PARACCEL, INC System and method for enhancing storage performance in analytical database applications
8682922, Mar 20 2012 Schlumberger Technology Corporation Method and system for accessing a virtual seismic cube
8971916, Dec 09 2011 EMC IP HOLDING COMPANY LLC Locating a data storage system
20020049782,
20020133810,
20020146035,
20030172094,
20030229637,
20040054748,
20040088282,
20040143571,
20050165777,
20050216788,
20060005188,
20060010433,
20060136653,
20060146057,
20060149793,
20060173751,
20060248528,
20080059746,
20080281802,
20080313183,
20090007105,
20090089344,
20090132609,
20090265400,
20090328225,
20100036840,
20100042655,
20100145917,
20100241673,
20100287170,
20110113052,
20110137966,
20110153662,
20110153697,
20110313973,
20120023145,
20120036107,
20120066274,
20120095952,
20120095992,
20120185913,
20120310916,
20120311572,
20120317388,
20130166543,
20130185735,
20130198716,
20130246347,
20130275653,
20140149392,
20140188845,
20140337323,
20150120711,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 15 2013EMC Corporation(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Aug 09 20194 years fee payment window open
Feb 09 20206 months grace period start (w surcharge)
Aug 09 2020patent expiry (for year 4)
Aug 09 20222 years to revive unintentionally abandoned end. (for year 4)
Aug 09 20238 years fee payment window open
Feb 09 20246 months grace period start (w surcharge)
Aug 09 2024patent expiry (for year 8)
Aug 09 20262 years to revive unintentionally abandoned end. (for year 8)
Aug 09 202712 years fee payment window open
Feb 09 20286 months grace period start (w surcharge)
Aug 09 2028patent expiry (for year 12)
Aug 09 20302 years to revive unintentionally abandoned end. (for year 12)