The application relates to channel state feedback reporting in wireless communication networks and in particular to modifications of the procedure for reporting CSI as specified by section 7.2 of 3GPP TS 36.213 V10.3.0. and the corresponding RRC protocol as specified by 3GPP TS 36.331 V10.2.0. The current cycle for CSI measurement and reporting is such that the UE performs separate CSI measurements for each report. However, the coverage area of CSI measurement reporting is lower than other uplink reporting such as e.g. ACK/NACK on PUCCH which supports subframe repetition, leading to an imbalance. Therefore, it is rather clear that it is highly beneficial to support coverage extension for CSI reports. The issue then arises as to how to realize the CSI coverage enhancement on top of existing/evolving CSI reporting framework. The application proposes to realize said CSI coverage enhancement by reporting (450) the same CSI report multiple times from the UE (110) to an eNB (220).
|
1. A method, comprising:
performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes; and
reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes,
wherein the method further comprises receiving at the user equipment from the base station a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
36. A method, comprising:
performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes;
receiving using radio resource control signaling a parameter indicating how many times a single channel state information report should be repeated, wherein a number of consecutive uplink subframes is determined by the user equipment using the parameter; and
reporting from the user equipment to a base station the single channel state information report on multiple physical uplink control channels on the consecutive uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes,
wherein reporting is performed on a schedule for periodic channel state information reporting.
17. A method, comprising:
signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes; and
receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes;
wherein the method further comprises sending from the base station to the user equipment a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
16. An apparatus comprising:
one or more processors; and
one or more memories including computer program code, the one or more memories and the computer program code configured to, with the one or more processors, cause the apparatus to perform at least the following:
performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes;
reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes; and
receiving at the user equipment from the base station a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
34. An apparatus comprising:
one or more processors; and one or more memories including computer program code, the one or more memories and the computer program code configured to, with the one or more processors, cause the apparatus to perform at least the following:
signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes;
receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes; and
sending from the base station to the user equipment a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
37. A method, comprising:
signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes;
receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes;
wherein the receiving is performed on a schedule for periodic channel state information reporting and the receiving further comprises receiving the single channel state information report on multiple physical uplink control channels on consecutive uplink subframes, and wherein the signaling further comprises sending, from the base station to the user equipment and using radio resource control signaling, a parameter indicating how many times the channel state information report should be repeated, wherein a number of consecutive uplink subframes may be determined by the user equipment using the parameter.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
26. The method of
27. The method of
28. The method of
29. The method of
30. The method of
32. The method of
33. The method of
35. A computer program product comprising a non-transitory computer-readable medium having program code embodied thereon, the program code executable by a device to cause the device to perform the method according to
|
This invention relates generally to wireless communication and, more specifically, relates to reporting of channel state information (CSI) networks.
This section is intended to provide a background or context to the invention disclosed below. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived, implemented or described. Therefore, unless otherwise explicitly indicated herein, what is described in this section is not prior art to the description in this application and is not admitted to be prior art by inclusion in this section.
The following abbreviations that may be found in the specification and/or the drawing figures are defined as follows:
Releases of certain communication systems are referenced below. A short description of these releases is now presented. The specification of a communication system known as evolved UTRAN (E-UTRAN, also referred to as UTRAN-LTE, universal terrestrial radio access network-long term evolution, or as E-UTRA) is currently nearing completion within the 3GPP (third generation partnership project). One specification of interest is 3GPP TS (technical standard) 36.300, V8.12.0 (April 2010), “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E UTRA) and Evolved Universal Terrestrial Access Network (E-UTRAN); Overall description; Stage 2 (Release 8)”. This system may be referred to, for convenience, as LTE Rel-8 (which also contains 3G HSPA, third generation high speed packet access, and its improvements). In general, the set of specifications given generally as 3GPP TS 36.xyz (e.g., 36.211, 36.311, 36.312, etc.) may be seen as describing the Release 8 LTE system. Release 9 (Rel-9) versions of these specifications have also been published, including 3GPP TS 36.300, V9.7.0 (March 2011). Release 10 (Rel-10) versions of these specifications have additionally been published, including 3GPP TS 36.300, V10.4.0 (June 2011).
There is a new study item (SI) proposal in RP-111359, “LTE Coverage Enhancements”, 3GPP TSG RAN #53 (13-16 Sep. 2011) (a copy of which is attached hereto as Exhibit A, which forms part of this disclosure), which concerns LTE coverage enhancements. The SI was approved in RAN#53. The goal of the SI is for example “to identify any potential issues due to coverage bottlenecks by taking coverage imbalances into account, for example between control and data channels, uplink and downlink, or initial access and data transmission”.
There are coverage bottlenecks that are identified and can be improved.
This section contains examples of possible implementations and is not meant to be limiting.
In an exemplary embodiment, a method is disclosed that includes performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes, and reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes. The single channel state information report corresponds to the one or more channel state information measurements of the selected ones of plurality of downlink subframes.
A further exemplary embodiment is a computer program comprising program code for executing the method of the previous paragraph. Another exemplary embodiment is the computer program according to this paragraph, wherein the computer program is a computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer.
An exemplary apparatus includes one or more processors and one or more memories including computer program code. The one or more memories and the computer program code are configured to, with the one or more processors, cause the apparatus to perform at least the following: performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes; and reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes.
Another exemplary embodiment apparatus comprises means for performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes; and means for reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes.
An exemplary computer program product includes a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code including: code for performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes; and code for reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes.
Yet another exemplary embodiment is a method that includes signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes, and receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes. The single channel state information report corresponds to the one or more channel state information measurements on the selected ones of plurality of downlink subframes.
A further exemplary embodiment is a computer program comprising program code for executing the method of the previous paragraph. Another exemplary embodiment is the computer program according to this paragraph, wherein the computer program is a computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer.
An exemplary apparatus includes one or more processors and one or more memories including computer program code. The one or more memories and the computer program code are configured to, with the one or more processors, cause the apparatus to perform at least the following: signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes; and receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes.
An exemplary computer program product includes a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code including: code for signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes; and code for receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes.
In the attached Drawing Figures:
This disclosure relates to the evolution of LTE-Advanced, which will most likely be part of LTE Rel-11. For reasons described in more detail below, the inventors have identified CSI coverage as a potential coverage bottleneck. More specifically, CSI signaling in the uplink coverage limited situation is examined and improved. The exemplary embodiments increase coverage area of CSI transmitted on PUCCH/PUSCH.
Neither subframe bundling nor HARQ is supported for CSI reporting in LTE Rel-8/9/10. This means that the coverage is already compromised in Rel-10. Thus, CSI will be one of the bottlenecks in UL coverage. The problem is demonstrated in the table in
It is noted that 5-bit periodic CQI transmitted on PUCCH has the same coverage area as 1-bit A/N without subframe repetition. The link budget difference between 5-bit CQI and the most commonly used 4-bit CQI is about 0.8 dB. However, 1-bit A/N (PUCCH) supports subframe repetition over four subframes already in Rel-8 (not shown in the table), leading to clear coverage imbalance between different UL channels, as 1-bit A/N (PUCCH) with subframe repetition would have a higher coverage area than shown in the table (shown as 96) and this coverage area is higher than the coverage area for 5-bit periodic CQI transmitted on PUCCH. This means there is an imbalance between coverage area between CQI and A/N on PUCCH, and therefore there is motivation to improve CQI coverage. The exemplary embodiments herein improve the coverage area for CQI transmitted on PUCCH.
Furthermore, considering the aperiodic CSI transmitted on PUSCH, the need for enhanced CSI feedback (related to enhanced carrier aggregation, CoMP, eICI, and the like) will aggravate the coverage problem, as there is a need to support CSI payloads in the order of 100 bits or even more, again without the benefit of HARQ or subframe bundling. On the other hand, it is known that cell edge UEs will receive the biggest benefit from the accurate CSI, as their coverage relies often on the correct choice of PRBs/MCS/PMI. Hence, it is rather clear that it is highly beneficial to support coverage extension for CSI reports. The issue then arises as to how to realize the CSI coverage enhancement on top of existing/evolving CSI reporting framework.
Subframe bundling, which is the coverage extension scheme applied for the UL-SCH, already exists. This is illustrated by 3GPP TS 36.213 V10.3.0 (September 2011). Exhibit C includes sections 7.2 through and including section 8 of 36.213, and this Exhibit forms part of the present disclosure. In particular, see section 8 of 36.213:
“For FDD and transmission mode 1, there shall be 8 uplink HARQ processes per serving cell for non-subframe bundling operation, i.e. normal HARQ operation, and 4 uplink HARQ processes for subframe bundling operation. For FDD and transmission mode 2, there shall be 16 uplink HARQ processes per serving cell for non-subframe bundling operation and there are two HARQ processes associated with a given subframe as described in [8]. The subframe bundling operation is configured by the parameter ttiBundling provided by higher layers.
“In case higher layers configure the use of subframe bundling for FDD and TDD, the subframe bundling operation is only applied to UL-SCH, such that four consecutive uplink subframes are used.”
See also section 7.2.2 of 36.213 (at page 61):
“If parameter ttiBundling provided by higher layers is set to TRUE and if an UL-SCH in subframe bundling operation collides with a periodic CSI reporting instance, then the UE shall drop the periodic CSI report of a given PUCCH reporting type in that subframe and shall not multiplex the periodic CSI report payload in the PUSCH transmission in that subframe. A UE is not expected to be configured with simultaneous PUCCH and PUSCH transmission when UL-SCH subframe bundling is configured.”
However, the current subframe bundling does not apply to periodic or aperiodic CSI.
In order to improve CSI coverage, the eNodeB may also request the UE to transmit the aperiodic CSI repeatedly by sending multiple triggers to the UE. However, this will waste PDCCH resources, as a separate UL grant is required for each case. Furthermore, coherent combining of the reports at the eNodeB is not possible since the contents of the CSI reports are not restricted from changing and likely will change from one subframe to another. The same issue will prevent efficient implementation-driven solution for the periodic CSI bundling on PUCCH as well.
The exemplary embodiments herein describe techniques for providing enhanced CSI coverage in the uplink direction. Additional description of these techniques is presented after a system into which the exemplary embodiments may be used is described.
Turning to
The eNB 220 includes one or more processors 150, one or more memories 155, one or more network interfaces (N/W I/F(s)) 161, and one or more transceivers 160 interconnected through one or more buses 157. The one or more transceivers 160 are connected to one or more antennas 158. The one or more memories 155 include computer program code 153. The one or more memories 155 and the computer program code 153 are configured to, with the one or more processors 150, cause a corresponding one of the eNBs 220 to perform one or more of the operations as described herein. The one or more network interfaces 161 communicate over a network such as the networks 170 and 131. Two or more eNBs 220 communicate using, e.g., network 170. The network 170 may be wired or wireless or both and may implement, e.g., an X2 interface.
The wireless network 100 may include a network control element (NCE) 205 that may include MME/SGW functionality, and which provides connectivity with a further network, such as a telephone network and/or a data communications network (e.g., the Internet). The eNB 220 is coupled via a network 131 to the NCE 250. The network 131 may be implemented as, e.g., an S1 interface. The NCE 250 includes one or more processors 175, one or more memories 171, and one or more network interfaces (N/W I/F(s)) 180, interconnected through one or more buses 185. The one or more memories 171 include computer program code 173. The one or more memories 171 and the computer program code 173 are configured to, with the one or more processors 175, cause the NCE 250 to perform one or more operations.
The computer readable memories 125, 155, and 171 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The processors 120, 150, and 175 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multi-core processor architecture, as non-limiting examples.
In general, the various embodiments of the user equipment 110 can include, but are not limited to, cellular telephones such as smart phones, personal digital assistants (PDAs) having wireless communication capabilities, portable computers having wireless communication capabilities, image capture devices such as digital cameras having wireless communication capabilities, gaming devices having wireless communication capabilities, music storage and playback appliances having wireless communication capabilities, Internet appliances permitting wireless Internet access and browsing, tablets with wireless communication capabilities, as well as portable units or terminals that incorporate combinations of such functions.
The exemplary embodiments herein concern CSI. It is noted that CSI is a generic term covering, e.g., CQI, PMI, PTI, and/or RI. See, e.g., section 7.2 of 3GPP TS 36.213 V10.3.0 (September 2011): “The time and frequency resources that can be used by the UE to report CSI which consists of channel quality indicator (CQI), precoding matrix indicator (PMI), precoding type indicator (PTI), and/or rank indication (RI) are controlled by the eNB.” Exhibit C includes sections 7.2 through and including section 8 of 36.213, and includes information about CQI and PMI and their feedback in current LTE systems (see section 7.2). For instance, periodic and aperiodic CQI are described. Exhibit C is attached hereto and forms part of the present disclosure. Further, it is noted that periodic reporting is configured semi-statically with RRC signaling and reports are transmitted in a set of predefined subframes with a given periodicity (e.g., every 5 milliseconds (ms), 10 ms, etc.). Aperiodic reports are triggered individually by the eNodeB: when the eNodeB sends an uplink grant with the aperiodic trigger, the UE shall send one aperiodic CSI report. Additionally, aperiodic reports are always transmitted on PUSCH. Periodic reports can be transmitted on PUCCH or on PUSCH, depending on UL grants and configuration.
The exemplary embodiments include a coverage enhancement scheme for the CSI to be transmitted on the uplink side. An exemplary embodiment includes each of the following parts:
1) Slowing down the CSI measurement cycle at the UE side; and
2) Reporting the same CSI report multiple times from the UE to an eNB.
Number (1) can be considered downsampling, as the UE measures the CSI once and keeps exactly the same measurement for a predetermined time window. By contrast, the current cycle for CSI measurement and reporting is such that the UE performs separate CSI measurements for each report.
The CSI measurement cycle can be defined by means of a time window (longer than one subframe), during which the triggered CSI shall correspond to the same DL subframe (known as the CSI reference resource using the terminology in the 3GPP specifications) and the same CSI measurement, and hence the contents of the CSI reports shall remain exactly the same. This allows for combining (e.g., averaging) of the reports by the eNodeB.
In the following, various use cases are provided as separate exemplary embodiments. The first exemplary use case concerns bundling of periodic CSI on PUCCH. In this embodiment, CSI report relates to periodic CSI on PUCCH (e.g., using PUCCH format 2) and the resources to transmit the same CSI report using multiple uplink subframes are arranged by the eNB 220 by configuring multiple PUCCH (e.g., Format 2) channels on consecutive subframes to the UE 110. This could be performed by, e.g., introducing a parameter “CSI burst length” into the periodic CSI reporting configuration (RRC signaling), indicating how many times the CSI report should be repeated or into how many uplink subframes the CSI report should be coded. Exhibit D contains pages from 3GPP TS 36.331 V10.2.0 (June 2011), describing Radio Resource Control and its protocol specification. Exhibit D is attached hereto, forms part of the present disclosure, and includes a section on “CQI-ReportConfig” and its information elements. The parameter “CSI burst length” may be introduced, for instance, into the information elements for “CQI-ReportConfig”.
A second use case concerns bundling of aperiodic CSI on PUSCH. In this embodiment, a CSI report relates to aperiodic CSI, and the resources to transmit the same CSI report using multiple uplink subframes are arranged by the eNB 220 allocating multiple PUSCH on consecutive subframes to the UE 110. An exemplary embodiment is to combine CSI bundling with subframe bundling supported by LTE Rel-8 (in other words, multiple PUSCHs are allocated by means of subframe bundling). A relevant option is to borrow the existing procedure (described above) defined for the control data transmission via PUSCH without UL-SCH data (i.e., the PUSCH contains all control data and no UL-SCH data) and to adapt the existing procedure to subframe bundling. The principle can be applied also in the case PUSCH contains UL-SCH data. In this case, the control signaling area (e.g., and formatting) are used on the PUSCH.
An alternative, implementation specific, way of achieving the coverage enhancements is to trigger aperiodic CSI reporting in multiple consecutive subframes when the downsampled CSI measurements have been configured and to combine (e.g., average) the reports, e.g., coherently at the eNodeB. The drawback of this option is that a separate UL grant is required for each uplink subframe used for CSI reporting.
Regarding the PUSCH and the UL-SCH, as is known, the PUSCH is used to transmit the UL-SCH and L1 and L2 control information. The UL-SCH is the transport channel used for transmitting uplink data. L1 and L2 control signaling can carry the following type of information: HARQ acknowledgements for received DL-SCH (downlink shared channel) blocks, CSI reports, and scheduling requests.
A third use case concerns bundling of periodic CSI on PUSCH. In this embodiment, PUSCH utilizes the subframe bundling mode. In order to guarantee the quality of bundled CSI, the following exemplary limitations for the CSI bundling are recommended:
1) In the case when periodic CSI collides with the first subframe of bundled PUSCH, CSI is bundled together with UL-SCH data (i.e., CSI is multiplexed with the data on the UL-SCH and CSI is transmitted in the whole set of bundled PUSCH subframes). That is, if the periodic CSI report is supposed to be sent on a particular set of subframes and one of those set of subframes is the first subframe of a bundled PUSCH, then there is a collision.
2) Otherwise (i.e., a periodic CSI collides with other than a first subframe of a bundled PUSCH), periodic CSI is dropped (i.e., just omitted) and only UL-SCH is transmitted.
As alternative solution, when the UE 110 receives scheduling for bundled PUSCH, the UE 110 checks if periodic CSI reporting will collide with the PUSCH transmission. If so, the UE will advance CSI transmission and corresponding measurements and bundle CSI together with UL-SCH data already from the first subframe. This again refers to the case when the CSI collides with a subframe of the bundle that is not the first one. So, if the UE is supposed to transmit the CSI in the subframe X, which happens to be, e.g., the second subframe of the bundle, the UE will instead advance the measurements and start reporting the CSI already in the first subframe of the bundle, i.e., in subframe X-1. The point here is not to avoid collision, but to ensure that the CSI gets bundled with the data to guarantee sufficient coverage.
Additional exemplary implementation details are as follows. Regarding CSI bundling configuration, for each UE, configured to CSI bundling mode, the following signaling may be used:
1) The signaling can be semi-static (e.g., RRC or MAC), and preferably UE specific. Semi-static means that the signaling is not fully dynamic (i.e., a subframe-level adjustment). RRC signaling may be the most probable signaling choice. The periodicity is typically on the order of hundreds of milliseconds. MAC level signaling is faster (e.g., up to 10 milliseconds). However, it is hard to put exact figures on this signaling, and the figures here are merely exemplary.
2) The signaling contains, e.g., configuration of the CSI measurement window 310.
The CSI measurement window 310 should be predefined and configured by proper signaling (e.g., RRC signaling). The CSI measurement window 310 can be defined in a UE-specific pattern which defines for how many downlink subframes the UE 110 needs to measure the CSI and how many uplink subframes to use for CSI reporting, if triggered. The following support in the signaling side is recommended to support this:
1) CSI measurement configuration, i.e., defining a set of subframes where the UE is expected to measure the CSI as in the CSI measurement window 310. Note that, in one example, CSI measurement occurs in selected one or more of the set of subframes, but does not necessarily occur in other (i.e., unselected) subframes of the set of subframes. In another exemplary embodiment, the CSI measurements occur in multiple selected subframes in the set (e.g., up to all of the subframes in the set), e.g., in order to improve averaging of the CSI. The CSI report therefore includes a single measurement result averaged using multiple CSI measurements.
2) CSI reporting coherence time: the time window during which the triggered CSI reports shall correspond to the same DL subframe.
3) One pattern or a single parameter (e.g., k) might be enough: simply define that the contents of CSI reports triggered in any DL subframe between subframe n and subframe n+k should comply with a given subframe (subframe n).
Concerning encoding the bundled CSI, there are few principles which can be applied to form the bundled CSI message:
1) Repetition coding (i.e., the same CSI report, e.g., packet, is just repeated multiple times corresponding to multiple transmission instants).
2) Incremental redundancy: CSI to be reported multiple times represents different redundancy versions of the same packet.
3) CSI to be reported multiple times from UE 110 to eNB 220 is split in a predetermined way among multiple transmission instances (e.g., in the case the number of transmission instants corresponds to N and the number of transmitted bits in the CSI report corresponds to M, the size of each sub-packet is given by ceil(M/N), where “ceil( )” is a ceiling function).
4) Concatenated coding. The inner code in concatenated coding can be restricted to each subframe while the outer code is spread over all bundled subframes.
Regarding bundling of aperiodic CSI transmission on PUSCH, as stated above, a suitable exemplary embodiment is to borrow the existing procedure defined for the control data transmission via PUSCH without UL-SCH data. In that case, subframe bundling can be dynamically selected for the aperiodic CSI. When the aperiodic CSI-only transmission is scheduled, NDI (new data indicator) bit (or some other suitable bit or code point such as some MCS value) in the scheduling grant can be used to indicate whether the aperiodic CSI report is subframe bundled or not. Other required configuration for bundling is predetermined via RRC. The configuration may include two different CSI configurations, one corresponding to bundled and the other to non-bundled aperiodic CSI.
Turning now to
In step 420, the eNB 220 transmits and the UE 110 receives the downlink subframes. Some of the downlink subframes may include a trigger for aperiodic CSI reporting. When considering aperiodic reporting, if the UE does not receive the trigger in 420, the remaining steps (e.g., 435 and subsequent steps) are not carried out. In Step 430, the UE 110 performs channel state information measurements for selected downlink subframes (and no measurements for other, unselected downlink subframes) in the set of subframes, as per the CSI measurement window 310. If downsampling is desired (and configured as per 410), the UE selects and performs CSI measurements in less than all of the set of subframes, such as shown in
In step 435, the UE 110 determines, through known techniques, the CSI report based on the CSI measurements. As is noted, for a CSI measurement configuration where multiple subframes from a set are measured for CSI, CSI averaging may be performed. In step 440, the UE 110 encodes the single CSI report over multiple (e.g., bundled) uplink subframes. Techniques for coding were described above. In step 450, the UE reports the single CSI report in multiple (e.g., bundled) uplink subframes (e.g., using multiple subframes on PUCCH, PUSCH, as described in detail above), based on coding and periodic/aperiodic reporting schedule (as described in detail above). In step 455, the eNB 220 decodes the CSI report from the (e.g., bundled) subframes. In step 460, the eNB 220 may also combine, in certain embodiments, the CSI to create a combined CSI. For instance, if repetition coding of the CSI report is performed, the multiple instances of the CSI report may be combined. Combining CSI reports should provide improved coverage for CSI reporting.
Exemplary advantages include the following non-limiting advantages:
1) Exemplary embodiments allow for the eNB to combine consecutive reports to achieve improved coverage for CSI reporting.
2) Exemplary embodiments are compatible with UL-SCH bundling (e.g., an exemplary proposed design completes the CSI part missing in the current UL-SCH bundling solution).
3) Cell edge UEs can utilize larger CSI reports (e.g., improved CSI can be provided by the cell edge UEs, allowing for more accurate link adaptation and hence enhanced coverage).
4) There is a positive impact on CSI measurement complexity at the UE (due to reduced CSI measurement cycle).
5) The UE/eNB complexity increase is minor (e.g., this can be seen as minor software update).
As described above, at least the following examples have been disclosed.
1. A method, comprising: performing, at a user equipment, one or more channel state information measurements on selected ones of a plurality of downlink subframes; and reporting from the user equipment to a base station a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements of the selected ones of plurality of downlink subframes.
2. The method of item 1, wherein reporting is performed on a schedule for periodic channel state information reporting and reporting further comprises reporting the single channel state information report on multiple physical uplink control channels on consecutive uplink subframes.
3. The method of item 2, further comprising, prior to reporting, receiving using radio resource control signaling a parameter indicating how many times the channel state information report should be repeated, wherein a number of consecutive uplink subframes is determined by the user equipment using the parameter.
4. The method of item 1, wherein reporting is performed on a schedule for aperiodic channel state information reporting and reporting further comprises reporting the single channel state information report on each of a set of multiple, bundled physical uplink channel subframes.
5. The method of item 4, wherein the set of multiple, bundled physical uplink channel subframes does not have uplink shared channel data and the reporting uses a control data area on each of the set of multiple, bundled physical uplink channel subframes.
6. The method of item 4, wherein the set of multiple, bundled physical uplink channel subframes has uplink shared channel data and the reporting uses a control data area on each of the set of multiple, bundled physical uplink channel subframes.
7. The method of item 1, wherein reporting is performed on a schedule for periodic channel state information reporting and reporting further comprises in response to a scheduled channel state information report colliding with a first uplink subframe of a set of uplink subframes to be bundled on a physical uplink shared channel, multiplexing the channel state information report and data together on an uplink shared channel on the set of uplink subframes bundled on the physical uplink shared channel.
8. The method of item 1, wherein reporting is performed on a schedule for periodic channel state information reporting and reporting further comprises in response to a scheduled channel state information report colliding with a particular uplink subframe other than a first uplink subframe of a set of subframes to be bundled on a physical uplink shared channel, omitting the channel state information report for the set of uplink subframes.
9. The method of item 1, wherein reporting is performed on a schedule for periodic channel state information reporting and reporting further comprises in response to a scheduled channel state information report colliding with a particular uplink subframe other than a first uplink subframe of a set of uplink subframes to be bundled on a physical uplink shared channel, advancing reporting of the channel state information report from the particular uplink subframe to the first uplink subframe in the set of uplink subframes to be bundled on the physical uplink shared channel, and multiplexing the channel state information report and data together on an uplink shared channel on the set of uplink subframes bundled on the physical uplink shared channel.
10. The method of item 1, further comprising receiving at the user equipment from the base station a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
11. The method of item 1, wherein reporting further comprises reporting a same single channel state information report in each of the multiple subframes.
12. The method of item 1, wherein the single channel state information report comprises a packet and reporting further comprises using a different version of the packet for each of the multiple subframes.
13. The method of item 1, wherein reporting further comprises splitting the single channel state information report in a predetermined way among each of the multiple subframes.
14. The method of item 1, wherein reporting further comprises subjecting the single channel state information report to concatenated coding, where an inner code is restricted to each of the plurality of subframes while an outer code is spread over all subframes in the plurality of subframes.
15. The method of any one of the preceding items, where a number of selected downlink subframes is less than all of the plurality of downlink subframes.
16. The method of item 15, wherein the number of selected downlink subframes is one.
17. The method of any one of the preceding items, wherein the plurality of downlink subframes is a set of downlink subframes, and wherein performing and reporting are repeated by the user equipment for multiple sets of downlink subframes.
18. An apparatus comprising: one or more processors; and
one or more memories including computer program code, the one or more memories and the computer program code configured to, with the one or more processors, cause the apparatus to perform the method of any one of the preceding items.
19. A computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for performing the method of any one of items 1 to 17.
20. A method, comprising: signaling from a base station to a user equipment information the user equipment uses to perform one or more channel state information measurements on selected ones of a plurality of downlink subframes; and receiving at the base station from the user equipment a single channel state information report in multiple uplink subframes, the single channel state information report corresponding to the one or more channel state information measurements on the selected ones of plurality of downlink subframes.
21. The method of item 20, wherein receiving is performed on a schedule for periodic channel state information reporting and receiving further comprises receiving the single channel state information report on multiple physical uplink control channels on consecutive uplink subframes.
22. The method of item 21, wherein signaling further comprises sending, from the base station to the user equipment and using radio resource control signaling, a parameter indicating how many times the channel state information report should be repeated, wherein a number of consecutive uplink subframes may be determined by the user equipment using the parameter.
23. The method of item 20, wherein receiving is performed on a schedule for aperiodic channel state information reporting and receiving further comprises receiving the single channel state information report on each of a set of multiple, bundled physical uplink channel subframes.
24. The method of item 23, wherein the set of multiple, bundled physical uplink channel subframes does not have uplink shared channel data and the receiving uses a control data area on each of the set of multiple, bundled physical uplink channel subframes.
25. The method of item 23, wherein the set of multiple, bundled physical uplink channel subframes has uplink shared channel data and the receiving uses a control data area on each of the set of multiple, bundled physical uplink channel subframes.
26. The method of item 20, wherein receiving is performed on a schedule for periodic channel state information reporting and receiving further comprises in response to a scheduled channel state information report colliding with a first uplink subframe of a set of uplink subframes bundled on a physical uplink shared channel, receiving the channel state information report multiplexed with data together on an uplink shared channel on the first uplink subframe of the physical uplink shared channel.
27. The method of item 20, wherein receiving is performed on a schedule for periodic channel state information reporting and receiving further comprises, in response to a scheduled channel state information report colliding with a particular uplink subframe other than the first uplink subframe of a set of subframes bundled on a physical uplink shared channel, determining the channel state information report has been omitted for the set of uplink subframes on the physical uplink shared channel.
28. The method of item 20, wherein receiving is performed on a schedule for periodic channel state information reporting and receiving further comprises in response to a scheduled channel state information report colliding with a particular uplink subframe other than the first uplink subframe of a set of uplink subframes bundled on a physical uplink shared channel, receiving the channel state information report in the first uplink subframe instead of in the particular uplink subframe in the set of uplink subframes on the physical uplink shared channel.
29. The method of item 20, further comprising sending from the base station to the user equipment a first indication allowing the user equipment to determine the number of selected downlink subframes and a second indication allowing the user equipment to determine how many times the user equipment should report the single channel state information from the user equipment to the base station.
30. The method of item 20, wherein receiving further comprises receiving a same single channel state information report in each of the multiple uplink subframes.
31. The method of item 20, wherein the single channel state information report comprises a packet and receiving further comprises receiving a different version of the packet for each of the multiple uplink subframes.
32. The method of item 20, wherein receiving further comprises receiving the single channel state information report that is split in a predetermined way among each of the multiple uplink subframes.
33. The method of item 20, wherein the single channel state information report was subjected to concatenated coding prior to transmission, where an inner code is restricted to each of the plurality of uplink subframes while an outer code is spread over all uplink subframes in the plurality of uplink subframes, and the method further comprises decoding the single channel state information from the plurality of uplink subframes based on the concatenated coding.
34. The method of any one of items 20 to 33, where a number of selected downlink subframes is less than all of the plurality of downlink subframes.
35. The method of item 34, wherein the number of selected downlink subframes is one.
36. The method of any one of items 20 to 35, wherein the plurality of downlink subframes is a set of downlink subframes, and wherein signaling and receiving are repeated by the user equipment for multiple sets of downlink subframes.
37. The method of any one of items 20 to 36, further comprising the base station combining channel state information in the channel state information reports to determine a combined channel state information.
38. An apparatus comprising: one or more processors; and one or more memories including computer program code, the one or more memories and the computer program code configured to, with the one or more processors, cause the apparatus to perform the method of any one of items 20 to 37.
39. A computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for performing the method of any one of items 20 to 37.
Embodiments herein may be implemented in software (executed by one or more processors), hardware (e.g., an application specific integrated circuit), or a combination of software and hardware. In an example embodiment, the software (e.g., application logic, an instruction set) is maintained on any one of various conventional computer-readable media. In the context of this document, a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer, with one example of a computer described and depicted, e.g., in
If desired, the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described functions may be optional or may be combined.
Although various aspects of the invention are set out in the independent claims, other aspects of the invention comprise other combinations of features from the described embodiments and/or the dependent claims with the features of the independent claims, and not solely the combinations explicitly set out in the claims.
It is also noted herein that while the above describes example embodiments of the invention, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the present invention as defined in the appended claims.
Lunttila, Timo Erkki, Tiirola, Esa Tapani, Hooli, Kari Juhani, Pajukoski, Kari Pekka
Patent | Priority | Assignee | Title |
10085164, | Apr 28 2011 | Qualcomm Incorporated | System and method for managing invalid reference subframes for channel state information feedback |
10461832, | Jul 20 2015 | DATANG MOBILE COMMUNICATIONS EQUIPMENT CO ,LTD | Channel status information feedback and control method and device |
10951382, | Jul 29 2015 | Samsung Electronics Co., Ltd. | Method and apparatus for CSI reporting |
11569966, | Jul 29 2015 | Samsung Electronics Co., Ltd. | Method and apparatus for CSI reporting |
11706007, | Feb 01 2017 | Sharp Kabushiki Kaisha | Base station apparatus, terminal apparatus, communication method, and integrated circuit |
Patent | Priority | Assignee | Title |
20090316626, | |||
20100202311, | |||
20130083748, | |||
20130114554, | |||
EP2139150, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 25 2012 | NOKIA SOLUTIONS AND NETWORKS OY | (assignment on the face of the patent) | / | |||
Jan 13 2014 | HOOLI, KARI JUHANI | NOKIA SOLUTIONS AND NETWORKS OY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032708 | /0519 | |
Jan 13 2014 | PAJUKOSKI, KARI PEKKA | NOKIA SOLUTIONS AND NETWORKS OY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032708 | /0519 | |
Jan 14 2014 | TIIROLA, ESA TAPANI | NOKIA SOLUTIONS AND NETWORKS OY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032708 | /0519 | |
Jan 16 2014 | LUNTTILA, TIMO ERKKI | NOKIA SOLUTIONS AND NETWORKS OY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032708 | /0519 | |
Jul 02 2018 | NOKIA SOLUTIONS AND NETWORKS OY | Nokia Technologies Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047271 | /0806 |
Date | Maintenance Fee Events |
Jan 23 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 25 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 09 2019 | 4 years fee payment window open |
Feb 09 2020 | 6 months grace period start (w surcharge) |
Aug 09 2020 | patent expiry (for year 4) |
Aug 09 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 09 2023 | 8 years fee payment window open |
Feb 09 2024 | 6 months grace period start (w surcharge) |
Aug 09 2024 | patent expiry (for year 8) |
Aug 09 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 09 2027 | 12 years fee payment window open |
Feb 09 2028 | 6 months grace period start (w surcharge) |
Aug 09 2028 | patent expiry (for year 12) |
Aug 09 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |