A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
|
1. A system comprising:
a network; and
a plurality of instruments, wherein:
each instrument in the plurality of instruments is configured to receive a plurality of cassettes;
each instrument in the plurality of instruments comprises a particle transfer system including a plurality of valve shafts and a first actuator assembly;
each instrument in the plurality of instruments comprises a computer; and
each instrument in the plurality of instruments comprises a communication device, wherein the communication device is configured to couple the instrument to the network;
wherein the first actuator assembly is configured to move the plurality of valve shafts between a first position and a second position; and
the first actuator assembly is configured to rotate each valve shaft from the plurality of valve shafts when the plurality of valve shafts is in the second position.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
14. The system of
|
This application is a continuation of U.S. patent application Ser. No. 14/525,976, entitled “Instrument for Cassette for Sample Preparation,” filed Oct. 28, 2014, which is a continuation of U.S. patent application Ser. No. 13/459,469 (now U.S. Pat. No. 8,900,877), entitled “Instrument for Cassette for Sample Preparation,” filed Apr. 30, 2012, which is a continuation U.S. patent application Ser. No. 13/234,770 (now U.S. Pat. No. 8,168,443), entitled “Instrument for Cassette for Sample Preparation,” filed Sep. 16, 2011, which is a continuation of U.S. patent application Ser. No. 13/044,109 (now U.S. Pat. No. 8,029,746), entitled “Instrument for Cassette for Sample Preparation,” filed Mar. 9, 2011, which is a continuation of U.S. patent application Ser. No. 12/821,446 (now U.S. Pat. No. 7,910,062), entitled “Instrument for Cassette for Sample Preparation,” filed Jun. 23, 2010, which is a continuation of U.S. patent application Ser. No. 12/005,860 (now U.S. Pat. No. 7,754,148), entitled “Instrument for Cassette for Sample Preparation,” filed Dec. 27, 2007, which claims priority to U.S. Provisional Application Ser. No. 60/882,150, entitled “Instrument for Cassette for Sample Preparation,” filed Dec. 27, 2006, each of which is incorporated herein by reference in its entirety.
The present invention relates to the field of biotechnology devices and, in particular, to devices and methods for preparing samples.
DNA can be used to develop new drugs or to link someone to a crime. However, before this can be done, the DNA must be isolated from a sample. These samples include, for example, blood, urine, human cells, hair, bacteria, yeast and tissue. Each of these samples include cells, which include nucleic acid. Nucleic acid is a nucleotide chain, which conveys genetic information. The most common forms of nucleic acid are DNA and RNA.
In order to isolate the nucleic acid from the samples, prior art devices use a tray having several exposed cavities. The sample is placed into one of the cavities and conventional processing steps are used to isolate the DNA from the sample.
This prior art system has several disadvantages, including contamination, and inability to perform parallel processing or asynchronous processing. Since the cavities are exposed, contaminants can easily affect the DNA. In addition, the prior art system requires the preparation of several samples at one time. In addition, these prior art systems require a significant amount of time to process multiple samples.
In one embodiment, the present invention relates to an instrument for preparing samples. The instrument includes, for example, a parallel tray motor driving system; a close-loop heater control and detection system; a parallel magnetic particle transfer system; a parallel reagent release system; a reagent parallel pre-mix pumping system; a parallel wash buffer pumping system; and an instrument interface controller to control the biological sample processing instrument that includes the parallel tray motor driving system, the close-loop heater control and detection system, the parallel magnetic particle transfer system, the parallel reagent release system, the parallel reagent pre-mix pumping system, and the parallel wash buffer pumping system.
In another embodiment, the present invention relates to a system for preparing samples. The system includes, for example, an enclosure; a parallel tray motor driving system in the enclosure to insert one or more magazines which contain one or more cassettes into the enclosure, the cassette having a sample therein; a close-loop heater control and detection system in the enclosure; a parallel magnetic particle transfer system in the enclosure; a parallel reagent release system in the enclosure; a parallel reagent pre-mix pumping system in the enclosure; and a parallel wash buffer pumping system in the enclosure.
The invention is described by way of example with reference to the accompanying drawings, wherein:
The illustrated instrument 100 includes a display 104 and openings 108. The openings 108 are configured to receive magazines 120. The magazines 120 each contain a series of cassettes 124. Each cassette includes a sample of cells to be prepared. A protocol may be selected by a user at the display 104 for preparing the sample in the cassette 124 within the instrument 100. The instrument 100 then automatically prepares the sample within the instrument according to the selected protocol.
In the embodiment illustrated in
The mixing chamber 414 has a top surface 462, a bottom surface 464 and opposing side surfaces 466, 468. The top surface 462 of the mixing chamber 414 includes an opening 470 therein.
The first lid 452 is configured to provide access to the opening 470 in the top surface 460 of the mixing chamber 414. The first lid 452 and the opening 470 are coaxial. The first lid 452 is shown being movably attached to the housing 412, such that when the lid 452 is open or off, the opening 470 is accessible and if the lid 452 is closed or on, the opening 470 is not accessible.
A thin film 474 forms one wall of the mixing chamber 414. The thin chamber 474 is breakable, such that the mixing chamber 414 is accessible when the thin film 474 has been broken or ruptured.
The first holding chamber 416, second holding chamber 418, third holding chamber 420 and fourth holding chamber 422 are shown located next to the mixing chamber 414 and aligned vertically with one another. Each of the holding chambers 416, 418, 420, 422 has an opening 476 next to the thin film 474 of the mixing chamber 414.
The cassette 400 further includes magnetic iron particles in the form of magnetic beads in the first holding chamber 416. The cassette 400 further includes a binding solution in the second holding chamber 418. The cassette 400 further includes a lysis solution in the third holding chamber 420. The cassette 400 further includes a proteinase K (PK) solution in the fourth holding chamber 422. The magnetic iron particles (in the form of magnetic beads), lysis solution, binding solution, and proteinase K (PK) can also be provided in any chamber of the cassette 400 based on desired protocol.
The first, second, third and fourth plungers 424, 426, 428 and 430 are located in the first, second, third and fourth holding chambers 416, 418, 420 and 422, respectively.
Each of the plungers 416, 418, 420, 422 includes a base 478, a shaft 480 and a piercing element 482. The shaft 480 extends from the base 478. The piercing element 482 is at the end of the shaft 480 opposing the base 478 and is pointed. The piercing element 482 is configured to break or rupture the thin film 474 of the mixing chamber 414.
The first pump 444 is a bellows pump having a pumping portion and a nozzle portion. The nozzle portion of the first pump 444 is located inside the mixing chamber 414. The pumping portion of the first pump 444 is located outside the mixing chamber, such that the pumping portion is actuatable.
A heating element 456 is provided at the bottom surface 464 of the mixing chamber 414 for heating the contents of the mixing chamber 414. The heating element 456 may be a variable heating element.
The opposing side surface 468 of the mixing chamber 414 also includes an opening 484. A first valve 432 is provided between the opening 484 in the side 468 of the mixing chamber 414 and the first washing chamber 438.
The first valve 432 has a first stationary piece 486 and a second moveable piece 488, the second piece 488 being moveable relative to the first piece 486. The first stationary piece 486 includes a first opening 490 and a second opening 492 and has a surface 494. The second piece 488 has an opening 495 therein for receiving the magnet 460. The second piece 488 has a surface 496 with a cavity 498 therein. The magnet 460 is shaped to correspond to the opening 495 in the second piece 488. The magnet 460 is moveable in the opening 495 of the second piece 488, and is removable from the second piece 488.
The cassette 400 includes a washing solution in the first washing chamber 438. The second pump 446 is also a bellows pump, and the nozzle portion of the second pump 446 is located in the first washing chamber 438.
The second valve 434 is provided between the first washing chamber 438 and the second washing chamber 440. The second valve 434 is structurally and functionally the same as the first valve 432, and also includes a first stationary piece 486 and a second moveable piece 488. The first stationary piece 486 includes a first opening 490 and a second opening 492 and has a surface 494. The second moveable piece has a surface 496 with a cavity 498 therein.
The cassette 400 includes a washing solution in the second washing chamber 440. The third pump 448 is also a bellows pump, and the nozzle portion of the third pump 448 is located in the second washing chamber 440.
The third valve 436 is provided between the second washing chamber 440 and the elution chamber 442. The third valve 436 is structurally and functionally the same as the first valve 432, and also includes a first stationary piece 486 and a second moveable piece 488. The first stationary piece 486 includes a first opening 490 and a second opening 492 and has a surface 494. The second moveable piece has a surface 496 with a cavity 498 therein.
The cassette 400 includes a washing solution in the elution chamber 442. The fourth pump 450 is also a bellows pump, and the nozzle portion of the fourth pump 450 is located in the elution chamber 442.
A heating element 458 is provided at the bottom surface of the elution chamber 442 for heating the contents of the elution chamber 442. The heating element 458 may be a variable heating element.
The elution chamber 442 includes an opening 499 at its top surface for accessing the contents of the elution chamber 442.
The second lid 442 is configured to provide access to the opening 499 in the top surface of the elution chamber 442. The second lid 454 is coaxial with the opening 499. The second lid 454 is shown being movably attached to the housing 412, such that when the lid 454 is open or off, the opening 499 is accessible and if the lid 454 is closed or on, the opening 499 is not accessible.
In use, the first lid 452 is removed to provide access to the opening 470 of the mixing chamber 414. A sample of cells is placed into the cassette 400 and, in particular, into the mixing chamber 414. The cells in the sample include nucleic acid.
The PK solution is then added to the sample. The PK solution is added by moving the plunger 430 in the fourth holding chamber 422. A force is applied to the base 478 of the plunger 430 to move the plunger 430. As the piercing element 482 of the plunger 430 advances toward the mixing chamber 414, the piercing element 482 punctures and ruptures the thin film 474. The break in the thin film 474 provides access to the mixing chamber 414. Continued motion of the plunger 430 transfers the contents (e.g., PK solution) of the first holding chamber 422 into the mixing chamber 414.
The PK solution is mixed with the sample by pumping the mixture with, for example, the first pump 444. The PK solution breaks up/destroys the walls of the cells of the sample, creating bulk material and nucleic acid in the bulk material.
The lysis solution is then added to the sample in a manner similar to the PK solution. The lysis solution is typically a salt or detergent. The lysis solution is used to solulibize the bulk material. The lysis solution typically does not solulibize proteins.
The heating element 456 may be used to heat the lysis solution and sample. As described hereinabove, the temperature of the heating element 456 may be variable, and is selected to optimize the effectiveness of the lysis solution.
The binding solution is then added to the sample, PK solution and lysis buffer solution. The binding solution is typically hydrophobic and increases salt in the solution. The binding solution causes the nucleic acid to be magnetically charged.
The magnetic beads are then added to the solution and pumped. The magnetic beads bind to the magnetically charged nucleic acid.
The magnetic beads, together with the nucleic acid, are bound to the first valve 432. The removable positionable magnet 460 is placed in the first valve 432 and slid to a position in the first valve 432 to attract the magnetic beads, which are bound to the nucleic acid, from the mixing chamber 414 to the first valve 432.
The magnetic beads, together with the nucleic acid, are then moved from the mixing chamber 414 and received in the first washing chamber 438.
The magnet 460 is inserted into the opening 494 of the second piece 488. The magnet 460 is inserted to a position corresponding to the openings 490 and 492 of the first piece 486. The magnet 460 attracts the magnetic beads from the mixing chamber 414 through the opening 490 in the first piece 486 and into the cavity 498 in the second piece 488. The second piece 488 is rotated such that the magnetic beads are sealed in the cavity 498 of the second piece 488, between surfaces of the second piece 488 and the first piece 486. The second piece 488 is rotated past the surface 494 of the first piece 486, such that the cavity 498 is accessible in the opening 492 of the first piece 486. The magnet 460 is then removed from the opening 494 in the second piece 488 to release the magnetic beads from the cavity 498 in the second piece 488.
The magnetic beads and nucleic acid are then washed with the washing solution by pumping the solution with the second pump 446. The magnetic beads, together with the nucleic acid, are then bound to the second valve 434 by inserting the magnet 460 into the second valve 434.
The magnetic beads, together with the nucleic acid, are then moved from the first washing chamber 438 to the second washing chamber 440 using the second valve 434. The second valve 434 transfers the magnetic beads and nucleic acid from the first washing chamber 438 to the second washing chamber 440.
The magnetic beads and nucleic acid are then washed with the washing solution a second time by pumping the solution with the third pump 448. The magnetic beads, together with the nucleic acid, are then bound to the third valve 436 by positioning the magnet 460 in the third valve 436.
The magnetic beads and nucleic acid are then moved from the second washing chamber 440 to the elution chamber 442. The magnetic beads and nucleic acid are transferred from the second washing chamber 440 to the elution chamber 442.
An elution buffer solution is then mixed with the magnetic beads and nucleic acid by pumping the solution with the fourth pump 450. The heating element 458 may be used to heat the elution buffer, magnetic beads and nucleic acid. The temperature may be variable and may be selected to optimize release of the nucleic acid from the magnetic beads.
The magnetic beads alone are then bound again to the third valve 436 by positioning the magnet 460 in the third valve 436.
The magnetic beads alone are then moved from the elution chamber 442 back into the second washing chamber 440, leaving the nucleic acid in the elution chamber 442. The magnetic beads are transferred from the elution chamber 442 to the second washing chamber 440.
The prepared sample of nucleic acid may be accessed from the opening 499 in the elution chamber 442. The second lid 54 is removed to provide access to the opening 499 in the elution chamber 42.
In one embodiment, a pipette or a multi-channel pipette may be used to place the sample in the cassette and/or access the sample or a plurality of samples in the cassette(s).
It will be appreciated that the cassette may vary from that illustrated and described above. For example, seals may be provided in the cassette as need. In another example, although the cassette 400 has been described as having a mixing chamber 414, two washing chambers 438 and 440 and an elution chamber 442, it is envisioned that only one washing chamber or no washing chamber may alternatively be provided.
In another example, the valves may have a different arrangement than that described above. In another example, although the cassette has been described as using a single removable magnet 460, it is envisioned that each valve may include a positionable magnet, such that the magnet does not need to be removed. The magnet 460 may be rotatable, and used to rotate the second piece of the valves. Alternatively, the magnet may only slide inside of each of the valves, and the second piece is rotated independent of the magnet. It is envisioned that a cassette 400 that does not use valves as described herein may be used to transfer the magnetic particles from the mixing chamber to the elution chamber. In such an embodiment, a slideable magnet may be provided to transfer the magnetic particles from one chamber to the next.
It is envisioned that the housing 412 may be transparent, such that the procedure can be viewed. In one embodiment the thin film 474 is a lamination. In one embodiment, the lids 452 and 454 may be screw-top lids. In one embodiment, the lids 452, 454 include a hydrophobic membrane, which allows gasses to vent through the lid, but docs not allow the liquids to escape the cassette 400. In one embodiment, pump 450 is insertable into opening 499. In one embodiment, pump 450 can also be used as a pipette to remove the sample from the cassette 400. It is also envisioned that the mixing chamber 414 may be provided without a puncturable thin film 474. In such an embodiment, the plungers 424, 426, 428 and 430 would not need a piercing element 482. Instead, the plungers 424, 426, 428 and 430 would have a sealing element to prevent leakage of the contents of the holding chamber 416, 418, 420 and 422, associated with each plunger 424, 426, 428 and 430, respectively, until the plunger was moved.
In one embodiment, a total of about 200 μL sample is placed into the cassette. The sample is mixed with a total of about 50 μL of the PK solution by pumping the mixture of the sample and PK solution for about one minute. A total of about 200 μL of the lysis solution is added to the sample and PK solution, and the solutions are pumped for about one minute to mix the solutions. The mixture is then heated at about 60° C. for about ten minutes, and the mixture is allowed to cool for about 5 minutes. The mixture is further pumped while it cools. A total of about 500 μL of binding solution is added to the mixture. The solutions are pumped for about one minute. The magnetic beads are added to the solution and pumped for about two minutes. The magnetic beads are transferred and washed as described above. A total of about 700 μL of washing solution is provided in each of the washing chambers. A total of about 200 μL of elution solution is provided in the elution chamber. The magnetic beads are mixed with the elution solution by pumping the mixture for about one minute. The mixture is then heated at about 90° C. for about two minutes. The process continues as previously described. It will be appreciated that the amounts, times and temperatures described above may vary from that described above.
Although the cassette 400 has been described as using a PK solution, lysis solution, binding solution and magnetic beads to release the nucleic acid and magnetic beads, it is envisioned that it may be possible to practice the invention without using each of the above solutions. In addition, although the solution was described as using a PK solution to break up the cells, it is envisioned that any enzyme which causes cells to break up to release nucleic acid may be used with the invention. Furthermore, it will be appreciated that additional solutions may be provided, as needed, to prepare the sample. One of skill in the art will also understand that the cassette 400 may be modified to have fewer holding chambers if fewer solutions are used or additional holding chambers if additional solutions are used.
Instrument 500 includes an enclosure 502, an instrument handle 504, stackable holders 506, an instrument module 508, a computer module 510, a touch panel display 512, an instrument run time indicator 514, first and second automatic eject/load trays 516, 518, first and second tray doors 520, 522, and first and second tray safety guards 524, 526.
The instrument module 508 is within the enclosure 502 and is configured to perform the protocol selected to prepare the sample. The protocol is selected by the user using the touch screen display 512. In one embodiment, the display 512 is a touch screen display. For example, the display 512 may be, for example, a 7″ to 12″ touch screen LCD display. The user's selection at the display 512 is communicated to the computer module 510 which communicates with the instrument module 508 via a controller area network bus (CAN-BUS) to coordinate processing within the instrument 500.
The stackable holders 506 enable multiple instruments 500 to be stacked on top of one another such that even more samples can be processed at any given time. In one embodiment, one computer module 510 and display 512 may be provided to control processing within multiple stacked instruments.
The first and second automatic eject/load trays 516, 518 are configured to receive a magazine (e.g., magazine 200) having one or more cassettes therein (e.g., cassette 400). The magazines are automatically loaded into the instrument 500 by the automatic eject/load trays 516, 518. The first and second cassette doors 520, 522 are closed and engage with the first and second tray safety guards 524, 526 to secure the magazine and cassettes within the enclosure 502 of the instrument 500 for preparation of the sample. It will be appreciated that in alternative embodiments the trays 516, 518 and/or doors 520, 522 may be manually opened and closed.
In one embodiment, the instrument run time indicator 514 is an LED or other exemplary light source. The instrument run time indicator 514 is illuminated to indicate to a user about the instrument ID and run status. In one embodiment, the computer module 510 provides an indication to the instrument run time indicator 514 to illuminate the communication status between the controller and the instrument.
Each of the cooling system 612, tray motor driving system 614, heater control and detection system 616, magnetic particle transfer system 618, reagent release system 620, reagent pre-mix pumping system 622 and wash buffer pumping system 624 communicate with the instrument interface parallel controller 608. In one embodiment, the instrument interface parallel controller is configured to control the subsystems 612-624 such that up to twenty-four samples can be prepared at a given time. It will be appreciated, however, that the instrument can be configured to prepare fewer than or greater than twenty-four samples. It will be appreciated that the system components 600 communicate with one another to enable parallel processing of the sample(s) within the instrument 500.
The instrument interface parallel controller 608 also communicates with the instrument real time MCU 610, the cooling system 612 and the sub-system computer 606. The sub-system computer 606 communicates with the main computer 602. The main computer 602 communicates with the touch screen display panel 604.
In one embodiment, the main computer 602, sub-system computer 606, and/or the instrument interface parallel controller 608 are a digital processing system. The digital processing system may include a microprocessor, an ASIC (application specific integrated circuit), FPGA (field-programmable gate array), DSP (digital signal processor), or the like. In one embodiment, the display panel 604 is a 7″ high definition (HD) liquid crystal display (LCD) with a touch panel. The display panel 604 is on an external surface of the instrument 500 such that the user can interact with the display panel 604. The main computer 602 may be a stand alone system that includes the computer module 510 and display 512. The sub-system computer 606 and instrument interface parallel controller 608 are within the enclosure 502 of the instrument 500. As described above with reference to
In one embodiment, the tray motor driving system 614 is configured to control the automatic load/eject trays 516, 518 (from
In one embodiment, the heater control and detection system 616 is configured to control and detect the temperature of the cassette or cassettes. The heater control and detection system may also control the heaters within the cassette to perform a close loop temperature ramping and detection. Alternatively or in addition to controlling the heaters within the cassette, the heater control and detection system 614 may include heaters that are configured as a programmable temperature controller to heat the contents of the cassette to a predefined temperature, as needed, according to the selected protocol.
In one embodiment, the magnetic particle transfer system 618 is configured to transfer magnetic particles within the cassette (e.g., cassette 400) according to the selected protocol. In one embodiment, the magnetic particle transfer system 618 manipulates the valves 432, 434, 436 to transfer the magnetic particles as described above with reference to
In one embodiment, the reagent release system 620 is configured to release the reagents within the cassette. For example, the reagent release system is configured to release the PK solution, lysis solution, binding solution and magnetic beads from their respective holding chambers 416, 418, 420 and 422 and into the mixing chamber 414, as described above with reference to
In one embodiment, the reagent pre-mix pumping system 622 is configured to mix the reagents in the mixing chamber 414 as described above with reference to
In one embodiment, the wash buffer pumping system 624 is configured to pump the washing solution in the cassette, as described above with reference to
The bus 662 or other internal communication means is for communicating information, and the main processor unit 640 is coupled to the bus 662 for processing information. SDRAM 646, NOR flash 648, NAND flash 650, and SD card 652 (referred to as memory) are for storing information and instructions to be executed by the main processor unit 640, for storing temporary variables or other intermediate information during execution of instructions by main processor unit 640, for storing static information and instructions for main processor unit 640, and the like.
The system may further be coupled to a display device, such as a cathode ray tube (CRT) or a liquid crystal display (LCD) 644, coupled to bus 662 through bus 662 for displaying information to a computer user. An alphanumeric input device 675, including alphanumeric and other keys, may also be coupled to bus 662 through bus 662 for communicating information and command selections to the main processor unit 640. An additional user input device is cursor control device, such as a mouse, a trackball, stylus, or cursor direction keys coupled to bus 662 through bus 662 for communicating direction information and command selections to main processor unit 640, and for controlling cursor movement on display device 644.
Another device, which may optionally be coupled to computer system, is a communication device, such as UART 654, CANBUS 656, USB 658, and Ethernet 660, for accessing other nodes of a distributed system via a network. The communication device may include any of a number of commercially available networking peripheral devices such as those used for coupling to an Ethernet, token ring, Internet, control area network (CAN), wide area network (WAN), and wireless network (WIFI). The communication device may further be a null-modem connection via UART, or any other mechanism that provides connectivity between the computer system and the outside world, or any other mechanism that provides connectivity between the controller computer system and instrument modules. Note that any or all of the components of this system illustrated in
It will be appreciated by those of ordinary skill in the art that any configuration of the system may be used for various purposes according to the particular implementation. The control logic or software implementing the present invention can be stored in SDRAM 646, NOR Flash 648, NAND flash 650, SD card 652, FPGA, CPLD or other storage medium locally or remotely accessible to main processor unit 640.
It will be apparent to those of ordinary skill in the art that the system, method, and process described herein can be implemented as software stored in memory and executed by main processor unit 640. This control logic or software may also be resident on an article of manufacture comprising a computer readable medium having computer readable program code embodied therein and being readable by the storage device and for causing the main processor unit 640 to operate in accordance with the methods and teachings herein.
The present invention may also be embodied in a handheld or portable device containing a subset of the computer hardware components described above. For example, the handheld device may be configured to contain only the bus 662, the main processor unit 640, and SDRAM 646. The handheld device may also be configured to include a set of buttons or input signaling components with which a user may select from a set of available options. The handheld device may also be configured to include an output apparatus such as a liquid crystal display (LCD) or display element matrix for displaying information to a user of the handheld device. Conventional methods may be used to implement such a handheld device. The implementation of the present invention for such a device would be apparent to one of ordinary skill in the art given the disclosure of the present invention as provided herein.
The present invention may also be embodied in a special purpose appliance including a subset of the computer hardware components described above. For example, the appliance may include a main processor unit 640, SDRAM 646 and bus 662, and only rudimentary communications mechanisms, such as a small touch-screen that permits the user to communicate in a basic manner with the device. In general, the more special-purpose the device is, the fewer of the elements need to be presented for the device to function. In some devices, communications with the user may be through a touch-based screen, USB devices, or similar mechanism.
It will be appreciated by those of ordinary skill in the art that any configuration of the system may be used for various purposes according to the particular implementation. The control logic or software implementing the present invention can be stored on any machine-readable medium locally or remotely accessible to processor. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g. a computer). For example, a machine readable medium includes read-only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, electrical, optical, acoustical or other forms of propagated signals (e.g. carrier waves, infrared signals, digital signals, etc.).
In the embodiment illustrated in
The illustrated databus 664 is also coupled with a MCU 676. The stepper motor controller 666 is also coupled with the motor sensor 678, motor driver 2 680 and motor driver 3 682. The main stepper controller 668 is also coupled with the motor driver 1 684 and protect sensor 686. The ADC reader 670 is also coupled with the ADC 688. The input data device 672 is also coupled with the door sensor 690, main motor home sensor 692, and cassette sensor 694. The output data device 674 is also coupled with the fan 696 and the heater 698.
The tray driving motor assembly module 700 includes an alignment plate 702, a first drive shaft retention block 704, a second drive shaft retention block 706, a load driving shaft 708, a main driving motor 710, a first parallel shaft 712, a second parallel shaft 714, a first parallel linear drive 716, a second parallel linear drive 718, a first load resistance tray 720, a first door 722, a second load resistance tray 724 and a second door 726.
The main drive motor 710 is coupled with the load driving shaft 708 via the retention blocks 704, 706 to automatically load and eject the rack trays 720, 724 into the instrument. The trays 720, 724 also slide along the parallel shafts 712, 714 with the main drive motor 710 and the drives 716, 718 to load and eject the racks 720, 724. The motor 710 and/or drivers 712, 714 can also be used to open and close the doors 722, 726.
The reagent release and pre-mix assembly module 800 includes a precision vertical engagement driving motor 802, a vertical drive shaft 803, a stand 804, a first plunger assembly 806, a second plunger assembly 808, a first parallel horizontal pump activation motor 810, a second parallel horizontal pump activation motor 812, first, second, third and fourth horizontal parallel linear driving shafts and bearings 814, 816, 818 and 820, and first, second, third and fourth vertical parallel linear bearings 822, 824, 826 and 828.
In one particular embodiment, each of the plunger assemblies 806, 808 includes twelve plungers (e.g., one plunger for each cassette in the magazine). It will be appreciated that the plunger assemblies 806, 808 may have fewer than or greater than twelve plungers.
With reference to
The plunger assemblies 806, 808 are actuated in a vertical direction to align the plungers 806, 808 with one of the holding chambers of the cassette 400. The plunger assemblies 806, 808 are also actuated horizontally to force the contents of the holding chambers into the mixing chamber of the cassette 400. The plunger assemblies 806, 808 are then repositioned vertically to align with another holding chamber and are similarly actuated horizontally to force the contents of the holding chamber into the mixing chamber according to the selected protocol. In one embodiment, the plunger assemblies 806, 808 are also actuated to actuate the pump 444 that mixes the contents of the mixing chamber of the cassette 400.
The heater and temperature sensor assembly module 1000 includes a precision vertical engagement driving motor 1002, a vertical position sensor 1004, a rack 1006, a first vertical linear bearing 1008, a second vertical linear bearing 1010, a plurality of heater and thermal sensor connectors 1012 and a plurality of individually controlled parallel heaters and thermal sensors 1014. In one embodiment, the plurality of individually controlled parallel heaters and thermal sensors 1014 are self-aligned with the plurality of heater and thermal sensor connectors 1012.
In one particular embodiment, the heater and temperature sensor assembly module 1000 includes twenty-four heater and thermal sensor connectors 1012 and twenty-four individually controlled parallel heaters and thermal sensors 1014. It will be appreciated that the heater and temperature sensor assembly module 1000 may include fewer than or greater than twenty-four connectors 1012 and/or heaters/sensors 1014.
The vertical linear bearings 1008, 1010 are coupled with the vertical engagement driving motor 1002 to vertically position the rack 1006. The plurality of heater and thermal sensor connectors 1012 and plurality of individually controlled parallel heaters and thermal sensors 1014 are coupled with respective sides of the rack 1006. The plurality of heater and thermal sensor connectors 1012 and plurality of individually controlled parallel heaters and thermal sensors 1014 are vertically positionable by vertically positioning the rack 1006. The vertical precision position sensor 1004, coupled with the rack 1006, can be used to accurately position the plurality of heater and thermal sensor connectors 1012 and plurality of individually controlled parallel heaters and thermal sensors 1014.
The wash buffer pumping assembly module 1200 includes a rack 1202, a plurality of parallel vertical pump engagement plungers 1204, a first parallel vertical pump activation motor 1206, a second parallel vertical pump activation motor 1208, and first, second, third and fourth vertical parallel linear driving shafts and bearings 1210, 1212, 1214 and 1216. As shown in
The first vertical pump activation motor 1206 is coupled with the first and second vertical parallel linear driving shafts and bearings 1210, 1212 to vertically position a first set of parallel vertical pump engagement plungers 1204a. Similarly, the second vertical pump activation motor 1206 is coupled with the third and fourth vertical parallel linear driving shafts and bearings 1214, 1216 to vertically position a second set of parallel vertical pump engagement plungers 1204b.
The plungers from the vertical pump engagement plungers 1204 engage with the cassette (e.g., cassette 400) to actuate the pumps 446, 448, 450 in the wash chambers 438, 440 and elution chamber 442 according to the selected protocol.
The magnetic particles transfer assembly module 1400 includes a rack 1402, a precision vertical engagement driving motor 1402, a first particle transfer linear motor 1404, a second particle transfer linear motor 1406, first, second, third and fourth gear rack retention roller bearings 1408, 1410, 1412 and 1416, first and second vertical linear bearings 1418 and 1420, first and second driving gear racks 1422, 1423, a plurality of parallel precision gears 1424 and a plurality of parallel magnets and valve key shafts 1426. As shown in
In one particular embodiment, the magnetic particles transfer assembly module 1400 includes twenty-four parallel precision gears 1424 and twenty-four parallel magnets and valve key shafts 1426. It will be appreciated that the magnetic particles transfer assembly module 1400 may have fewer than or greater than twenty-four gears 1424 and magnets and key shafts 1426.
The precision vertical engagement driving motor 1402 is coupled with vertical bearings 1418, 1420 and the rack 1403 to vertically position the rack 1403. The plurality of parallel magnets and valve key shafts 1426 are positioned on the rack 1403 and are vertically positioned when the rack 1403 is vertically positioned. The vertical precision position sensor 1448 is coupled with the rack 1403 and motor 1402 to accurately position the plurality of parallel magnets and valve key shafts 1426 in the cassette (e.g., cassette 400).
The particle transfer linear motors 1404, 1405 are positioned on either end of the rack 1403 and are coupled with the linear driving shafts 1428, 1430, shaft and gear rack link blocks 1432-1438, driving gear racks 1422, gears 1424, to horizontally position and rotate the plurality of parallel magnets and valve key shafts 1426 via the gears 1424 to transfer magnetic particles as described above with reference to
The foregoing description with attached drawings is only illustrative of possible embodiments of the described method and should only be construed as such. Other persons of ordinary skill in the art will realize that many other specific embodiments are possible that fall within the scope and spirit of the present idea. The scope of the invention is indicated by the following claims rather than by the foregoing description. Any and all modifications which come within the meaning and range of equivalency of the following claims are to be considered within their scope.
Ching, Jesus, Hu, David Hsiang, Yu, Steve Jia Chang, Lee, Phillip You Fai
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2940448, | |||
3607094, | |||
3802782, | |||
4004150, | May 01 1975 | Analytical multiple component readout system | |
4201578, | Nov 03 1977 | Eastman Kodak Company | Blocked competing developers for color transfer |
4439039, | Jul 11 1980 | Labsystems Oy | Photometer |
4448534, | Mar 30 1978 | DADE MICROSCAN INC | Antibiotic susceptibility testing |
4495149, | Sep 18 1981 | Toa Medical Electronic Co., Ltd. | Optical-type automatic analyzing and measuring apparatus |
4626684, | Jul 13 1983 | FLOW LABORATORIES, INC | Rapid and automatic fluorescence immunoassay analyzer for multiple micro-samples |
4762420, | Apr 01 1986 | IBG SYSTEMS LIMITED, A COMPANY OF GREAT BRITAIN | Photometric reading device for serological analysis |
5035505, | Aug 02 1989 | Hitachi, Ltd. | Atomic absorption spectroscopy photometer |
5073029, | Feb 16 1990 | EQM Research, Inc. | Multisource device for photometric analysis and associated chromogens |
5139745, | Mar 30 1990 | Gen-Probe Incorporated | Luminometer |
5188455, | Nov 13 1990 | The Pennsylvania Research Corporation; PENNSYLVANIA RESEARCH CORPORATION, THE | Apparatus for remote mixing of fluids |
5229297, | Feb 03 1989 | CLINICAL DIAGNOSTIC SYSTEMS INC | Containment cuvette for PCR and method of use |
5234665, | May 25 1990 | Suzuki Motor Corporation | Apparatus for measuring aggregation patterns on a microplate |
5242660, | Feb 28 1992 | Sample preparation device | |
5242837, | Dec 24 1990 | Method for the rapid detection of analytes involving specific binding reactions and the use of light attenuating magnetic particles | |
5283624, | Oct 18 1989 | Hitachi, Ltd. | Multi-element simultaneous analysis atomic absorption spectroscopy photometer and multi-element simultaneous analytic method |
5290513, | Jul 18 1991 | Berthold Technologies GmbH & Co KG | Radiation measuring device, particularly for luminescence measurements |
5307144, | Dec 02 1991 | Seikagaku Kogyo Kabushiki Kaisha | Photometer |
5333675, | Feb 25 1986 | Applied Biosystems, LLC | Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps |
5348853, | Dec 16 1991 | BIOTRONICS CORPORATION A CORP OF MASSACHUSETTS | Method for reducing non-specific priming in DNA amplification |
5389524, | Jul 28 1989 | Kemisk Vaerk Koge A/S | Method and a system for quantitatively monitoring a chemical component dissolved in a liquid medium |
5397709, | Aug 27 1993 | Becton Dickinson and Company | System for detecting bacterial growth in a plurality of culture vials |
5411876, | Feb 16 1990 | Roche Molecular Systems, Inc | Use of grease or wax in the polymerase chain reaction |
5415839, | Oct 21 1993 | Abbott Laboratories | Apparatus and method for amplifying and detecting target nucleic acids |
5436718, | Jul 30 1993 | GE HEALTHCARE SV CORP | Mutli-functional photometer with movable linkage for routing optical fibers |
5475610, | Nov 29 1990 | Applied Biosystems, LLC | Thermal cycler for automatic performance of the polymerase chain reaction with close temperature control |
5494646, | Apr 14 1993 | Sampling device and sample adequacy system | |
5500188, | Mar 01 1984 | Molecular Devices Corporation | Device for photoresponsive detection and discrimination |
5508197, | Jul 25 1994 | Regents of the University of California, The | High-speed thermal cycling system and method of use |
5511558, | Jun 06 1994 | Becton, Dickinson and Company | Blood collection assembly having additive dispensing means and method for sample collection using same |
5525300, | Oct 20 1993 | Agilent Technologies, Inc | Thermal cycler including a temperature gradient block |
5525466, | Jun 07 1991 | Siemens Healthcare Diagnostics Inc | Multiple output referencing system for evanescent wave sensor |
5538849, | Dec 29 1992 | Toyo Boseki Kabushiki Kaisha | Apparatus for automated assay of DNA probe and method for assaying nucleic acid in sample |
5541072, | Apr 18 1994 | Veridex, LLC | Method for magnetic separation featuring magnetic particles in a multi-phase system |
5576197, | Apr 07 1995 | MOLECULAR BIO-PRODUCTS, INC | Polymerase chain reaction container and methods of using the same |
5578818, | May 10 1995 | GE Healthcare Bio-Sciences Corp | LED point scanning system |
5580523, | Apr 01 1994 | Wellstat BioCatalysis, LLC | Integrated chemical synthesizers |
5585242, | Apr 06 1992 | Abbott Laboratories | Method for detection of nucleic acid using total internal reflectance |
5589136, | Jun 20 1995 | Lawrence Livermore National Security LLC | Silicon-based sleeve devices for chemical reactions |
5616301, | Sep 10 1993 | Roche Diagnostics Corporation | Thermal cycler |
5627041, | Sep 02 1994 | BIOMETRIC IMAGING, INC | Disposable cartridge for an assay of a biological sample |
5639423, | Aug 31 1992 | Regents of the University of California, The | Microfabricated reactor |
5645801, | Oct 21 1993 | Abbott Laboratories | Device and method for amplifying and detecting target nucleic acids |
5656493, | Mar 28 1985 | Applied Biosystems, LLC | System for automated performance of the polymerase chain reaction |
5657118, | Jan 23 1996 | Device and method for detection/measurement of light | |
5661301, | Feb 07 1996 | PENN STATE RESEARCH FOUNDATION, THE | Spectroscopy and mapping of atoms, molecules and surface features via difference frequency generation with a scanning tunneling microscope or related instruments |
5665975, | Nov 02 1993 | AFFYMAX, INC | Optical detectior including an optical alignment block and method |
5674743, | Jan 23 1995 | Amersham Biosciences Corp | Methods and apparatus for DNA sequencing |
5686300, | Sep 11 1995 | Becton Dickinson and Company | Fluorescence detector |
5705628, | Sep 20 1994 | Whitehead Institute for Biomedical Research | DNA purification and isolation using magnetic particles |
5738825, | Jul 20 1993 | Unaxis Balzers Aktiengesellschaft | Optical biosensor matrix |
5746978, | Jun 15 1994 | Boehringer Mannheim GmbH | Device for treating nucleic acids from a sample |
5759784, | May 06 1994 | Pharmacia Biotech AB | Method of nucleic acid transfer |
5811312, | Aug 31 1993 | NISSUI PHARMACEUTICAL CO , LTD | Optical measurement apparatus and method therefor |
5825478, | Nov 15 1996 | OPTICAL SOLUTIONS, INC | Multifunctional photometer apparatus |
5827480, | Jul 28 1993 | Applied Biosystems, LLC | Nucleic acid amplification reaction apparatus |
5837144, | Jun 16 1994 | Boehringer Mannheim GmbH | Method of magnetically separating liquid components |
5861124, | Jul 15 1993 | HAMAMATSU PHOTONICS K K | Method and apparatus for detecting denaturation of nucleic acid |
5863801, | Jun 14 1996 | Sarnoff Corporation | Automated nucleic acid isolation |
5882903, | Nov 01 1996 | Sarnoff Corporation | Assay system and method for conducting assays |
5897783, | Sep 24 1992 | Amersham International plc | Magnetic separation method |
5904899, | May 15 1997 | Tosoh Corporation | Assaying apparatus and a vessel holder device in use with the assaying apparatus |
5935522, | Jun 04 1990 | University of Utah Research Foundation | On-line DNA analysis system with rapid thermal cycling |
5989499, | May 02 1997 | Biomerieux, Inc | Dual chamber disposable reaction vessel for amplification reactions |
6004512, | Dec 08 1995 | BIO-RAD LABORATORIES, INC | Sample cartridge slide block |
6015674, | Apr 29 1994 | Applied Biosystems, LLC | Apparatus and method for detecting nucleic acid amplification products |
6027945, | Jan 21 1997 | Promega Corporation | Methods of isolating biological target materials using silica magnetic particles |
6043506, | Aug 13 1997 | BIO-RAD LABORATORIES, INC | Multi parameter scanner |
6050719, | Jan 30 1998 | Affymetrix, Inc | Rotational mixing method using a cartridge having a narrow interior |
6057163, | Apr 28 1998 | Turner Designs | Luminescence and fluorescence quantitation system |
6061128, | Sep 04 1997 | Beckman Coulter, Inc | Verification device for optical clinical assay systems |
6071748, | Sep 20 1997 | MOLECULAR DEVICES, INC | Light detection device |
6096272, | May 23 1997 | Becton Dickinson and Company | Automated microbiological testing apparatus and methods therefor |
6211989, | Feb 24 1997 | Applied Biosystems, LLC | Light-scanning device |
6222619, | Sep 18 1997 | University of Utah Research Foundation | Diagnostic device and method |
6228634, | Mar 03 1997 | Regents of the University of Minnesota | Thermal cycling or temperature control device and method using alumina plate |
6232608, | Aug 18 1998 | MOLECULAR DEVICES, INC | Optimization systems in a scanning fluorometer |
6281008, | Feb 02 1998 | Toyo Boseki Kabushiki Kaisha | Nucleic acid extraction apparatus |
6296810, | Jan 23 1995 | Amersham Biosciences Corp | Apparatus for DNA sequencing |
6297018, | Sep 24 1998 | MDS ANALYTICAL TECHNOLOGIES US INC | Methods and apparatus for detecting nucleic acid polymorphisms |
6353475, | Jul 12 1999 | Agilent Technologies, Inc | Light source power modulation for use with chemical and biochemical analysis |
6358387, | Mar 27 2000 | CALIPER TECHNOLOGIES CORP | Ultra high throughput microfluidic analytical systems and methods |
6369893, | May 19 1998 | Cepheid | Multi-channel optical detection system |
6429007, | May 02 1997 | Biomerieux, Inc | Nucleic acid amplification reaction station for disposable test devices |
6431476, | Dec 21 1999 | Lawrence Livermore National Security LLC | Apparatus and method for rapid ultrasonic disruption of cells or viruses |
6440725, | Dec 24 1997 | Cepheid | Integrated fluid manipulation cartridge |
6451258, | May 28 1997 | AlphaHelix AB | Reaction vessel, cassette and system for performing biochemical reactions |
6468810, | Feb 23 1998 | BIOCONTROL SYSTEMS, INC | Magnetic particle transfer device and method |
6492162, | Oct 27 1998 | Hitachi, Ltd. | Apparatus for the recovery of nucleic acids |
6517778, | Jun 06 1994 | IDEXX Laboratories | Immunoassays in capillary tubes |
6520197, | Jun 02 2000 | Regents of the University of California, The | Continuous laminar fluid mixing in micro-electromechanical systems |
6545758, | Aug 17 2000 | GENE READER LLC | Microarray detector and synthesizer |
6565815, | Feb 28 1997 | Cepheid | Heat exchanging, optically interrogated chemical reaction assembly |
6569631, | Nov 12 1998 | Life Technologies Corporation | Microplate thermal shift assay for ligand development using 5-(4"dimethylaminophenyl)-2-(4'-phenyl)oxazole derivative fluorescent dyes |
6576459, | Mar 23 2001 | Lawrence Livermore National Security LLC | Sample preparation and detection device for infectious agents |
6597450, | Sep 15 1997 | Becton, Dickinson and Company | Automated Optical Reader for Nucleic Acid Assays |
6645758, | Feb 03 1989 | Clinical Diagnostic Systems | Containment cuvette for PCR and method of use |
6657169, | Jul 30 1999 | Agilent Technologies, Inc | Apparatus for thermally cycling samples of biological material with substantial temperature uniformity |
6672458, | May 19 2000 | Becton, Dickinson and Company | System and method for manipulating magnetically responsive particles fluid samples to collect DNA or RNA from a sample |
6699713, | Jan 04 2000 | Lawrence Livermore National Security LLC | Polymerase chain reaction system |
6730501, | Feb 12 2002 | BioFire Defense, LLC | Multi-test analysis of real-time nucleic acid amplification |
6730883, | Oct 02 2002 | Agilent Technologies, Inc | Flexible heating cover assembly for thermal cycling of samples of biological material |
6739531, | Oct 04 2001 | Cepheid | Apparatus and method for rapid disruption of cells or viruses |
6764859, | Jul 19 1999 | BIOMERIEUX, B V | Device and method for mixing magnetic particles with a fluid |
6783934, | May 01 2000 | Cepheid | Methods for quantitative analysis of nucleic acid amplification reaction |
6787338, | Jun 04 1990 | The University of Utah | Method for rapid thermal cycling of biological samples |
6814934, | May 02 1991 | Applied Biosystems, LLC | Instrument for monitoring nucleic acid amplification |
6818185, | May 28 1999 | Cepheid | Cartridge for conducting a chemical reaction |
6838680, | May 12 1999 | Monogram Biosciences, Inc | Multiplexed fluorescent detection in microfluidic devices |
6852284, | May 18 1998 | University of Washington | Liquid analysis cartridge |
6875602, | Sep 24 2002 | ARMY, UNITED STATES | Portable thermocycler |
6890742, | May 01 1998 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Automated process for isolating and amplifying a target nucleic acid sequence |
6893879, | Aug 13 1997 | Cepheid | Method for separating analyte from a sample |
6908759, | Oct 31 2001 | Bionex, Inc. | Method of manufacturing kit for isolation nucleic acids or biological materials |
6927852, | May 05 2000 | Applied Biosystems, LLC | Optical system and method for optically analyzing light from a sample |
6955589, | May 22 2001 | QED TECHNOLOGIES INTERNATIONAL, INC | Delivery system for magnetorheological fluid |
6982431, | Aug 31 1998 | MOLECULAR DEVICES, INC | Sample analysis systems |
6986848, | Sep 06 1999 | Toyo Boseki Kabushiki Kaisha | Apparatus for purifying nucleic acids and proteins |
7008789, | May 16 1998 | Life Technologies Corporation | Instrument for monitoring polymerase chain reaction of DNA |
7027683, | Aug 15 2000 | Agilent Technologies, Inc | Optical devices with fluidic systems |
7078224, | May 14 1999 | Promega Corporation | Cell concentration and lysate clearance using paramagnetic particles |
7108472, | Jul 10 2000 | Affymetrix, Inc. | Cartridge loader and methods |
7148043, | May 08 2003 | BIO-RAD LABORATORIES, INC | Systems and methods for fluorescence detection with a movable detection module |
7171863, | Sep 12 2001 | Beckman Coulter, Inc | Transfer unit and automatic analyzing apparatus having such transfer unit |
7223949, | Apr 21 2004 | Beckman Coulter, Inc | Analysis apparatus having improved temperature control unit |
7236237, | Nov 08 2001 | S A E AFIKIM SPECIAL AGRICULTURAL EQUIPMENT LTD | Spectroscopic fluid analyzer |
7284900, | Oct 19 2001 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Apparatus and method for mixing specimens in vials |
7294466, | May 07 2004 | Cepheid | Multiplexed detection of biological agents |
7301628, | Oct 30 2000 | X-BODY, INC | Method and apparatus for detecting biomolecular interactions |
7329488, | Jan 29 2003 | Bionix, Inc. | Kit for separating and purifying nucleic acids or various biological materials, and system for automatically performing separation or purification of biological materials using the same |
7341691, | Sep 13 2001 | Beckman Coulter, Inc | Automatic analyzing apparatus |
7344894, | Oct 16 2001 | Sanofi-Aventis Deutschland GmbH | Thermal regulation of fluidic samples within a diagnostic cartridge |
7358078, | May 02 2003 | Dr. Chip Biotechnology Incorporation | Auto microfluidic hybridization chip platform |
7373253, | Feb 12 2002 | BIOFIRE DIAGNOSTICS, INC | Multi-test analysis of real-time nucleic acid amplification |
7387891, | May 17 1999 | Life Technologies Corporation | Optical instrument including excitation source |
7394547, | Nov 06 2003 | SARTORIUS BIOANALYTICAL INSTRUMENTS, INC | Fiber-optic assay apparatus based on phase-shift interferometry |
7423750, | Nov 29 2001 | Life Technologies Corporation | Configurations, systems, and methods for optical scanning with at least one first relative angular motion and at least one second angular motion or at least one linear motion |
7459302, | Oct 02 2001 | Agilent Technologies, Inc | Side-wall heater for thermocycler device |
7498164, | May 16 1998 | Life Technologies Corporation | Instrument for monitoring nucleic acid sequence amplification reaction |
7507575, | Apr 01 2005 | DIASORIN ITALIA S P A | Multiplex fluorescence detection device having removable optical modules |
7521179, | Aug 21 2001 | BESTMANN, LUKAS; DUAL, JURG; LUKAS BESTMANN | Thermo-optical analysis system for biological reactions |
7584019, | Dec 15 2003 | Agilent Technologies, Inc | Systems and methods for the automated pre-treatment and processing of biological samples |
7585663, | Aug 26 2004 | Applied Biosystems, LLC | Thermal device, system, and method, for fluid processing device |
7682565, | Dec 20 2002 | Life Technologies Corporation | Assay apparatus and method using microfluidic arrays |
7699979, | Jan 07 2005 | BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS | Separation system and efficient capture of contaminants using magnetic nanoparticles |
7718072, | Apr 25 2003 | Abbott Laboratories | Structure and method for handling magnetic particles in biological assays |
7718421, | Feb 05 2003 | Roche Molecular Systems, Inc | Sample processing |
7727473, | Oct 19 2005 | LUMINEX CORPORATION | Cassette for sample preparation |
7754148, | Dec 27 2006 | LUMINEX CORPORATION | Instrument for cassette for sample preparation |
7910062, | Dec 27 2006 | LUMINEX CORPORATION | Instrument for cassette for sample preparation |
8048386, | Feb 25 2002 | Cepheid | Fluid processing and control |
8124024, | Oct 19 2005 | LUMINEX CORPORATION | Cassette for sample preparation |
8133703, | Oct 27 2004 | Cepheid | Closed-system multi-stage nucleic acid amplification reactions |
8168443, | Dec 27 2006 | LUMINEX CORPORATION | Instrument for cassette for sample preparation |
8372340, | Oct 19 2005 | LUMINEX CORPORATION | Apparatus and methods for integrated sample preparation, reaction and detection |
20010036672, | |||
20030016352, | |||
20030073110, | |||
20030129739, | |||
20030170686, | |||
20030203491, | |||
20030224436, | |||
20040126783, | |||
20040161788, | |||
20040200909, | |||
20040209266, | |||
20040222395, | |||
20040259237, | |||
20050194316, | |||
20050244837, | |||
20060011539, | |||
20060013725, | |||
20060019379, | |||
20060030038, | |||
20060165558, | |||
20060194264, | |||
20060205085, | |||
20060222569, | |||
20060246490, | |||
20060257991, | |||
20060269922, | |||
20060276972, | |||
20060292032, | |||
20070036026, | |||
20070054293, | |||
20070054349, | |||
20070077646, | |||
20070087431, | |||
20070099289, | |||
20070125942, | |||
20070212698, | |||
20070248958, | |||
20070281288, | |||
20070292858, | |||
20080003649, | |||
20080050781, | |||
20080153096, | |||
20080159915, | |||
20080262213, | |||
20080280285, | |||
20080316482, | |||
20090023201, | |||
20090030038, | |||
20090130766, | |||
20090142745, | |||
20090155838, | |||
20090186344, | |||
20090186357, | |||
20090215124, | |||
20090269841, | |||
20090291507, | |||
20100112567, | |||
20100239471, | |||
20100303687, | |||
20110008907, | |||
20110158849, | |||
20110236960, | |||
20120003631, | |||
CA2626808, | |||
DE10319045, | |||
JP11271227, | |||
JP2001108684, | |||
JP2009512447, | |||
JP2010505108, | |||
WO113096, | |||
WO2004005553, | |||
WO2004080597, | |||
WO2006071770, | |||
WO2008037995, | |||
WO2009105711, | |||
WO2010132834, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 26 2016 | LUMINEX CORPORATION | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 06 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 29 2024 | REM: Maintenance Fee Reminder Mailed. |
Oct 14 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 06 2019 | 4 years fee payment window open |
Mar 06 2020 | 6 months grace period start (w surcharge) |
Sep 06 2020 | patent expiry (for year 4) |
Sep 06 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 06 2023 | 8 years fee payment window open |
Mar 06 2024 | 6 months grace period start (w surcharge) |
Sep 06 2024 | patent expiry (for year 8) |
Sep 06 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 06 2027 | 12 years fee payment window open |
Mar 06 2028 | 6 months grace period start (w surcharge) |
Sep 06 2028 | patent expiry (for year 12) |
Sep 06 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |