An intrabody implant disclosed and methods of use are disclosed. The implant has an inclined surface, forming a wedge shape having an acute angle adapted to be placed between at least 2 separated portions of a single bony structure (such as a vertebral body). In some embodiments, the implant may be used to support portions of a vertebral body that have been separated surgically as part of a pedicle subtraction osteotomy and to orient the portions at a more predictable lordotic angle.
|
1. A method for surgically adjusting a curvature of a spine comprising vertebrae, the method comprising:
removing a wedge-shaped portion of a single vertebral body of the vertebrae to form 2 at least partially-separated portions of the single vertebral body;
providing a wedge-shaped intrabody implant comprising a first surface and a second surface, the second surface disposed at an acute angle to the first surface;
placing the wedge-shaped intrabody implant between the 2 at least partially-separated portions of the single vertebral body;
inserting threaded pedicle screws into the vertebrae such that each of the screws is spaced apart from the implant; and
closing the 2 at least partially-separated portions of the single vertebral body about the intrabody implant, wherein closing comprises connecting the screws with a rod, such that the 2 at least partially-separated portions of the single vertebral body are oriented at a correction angle relative to one another.
15. A method for surgically adjusting a curvature of a spine, the method comprising:
removing a wedge-shaped portion of a single vertebral body to form 2 at least partially-separated portions of the single vertebral body;
providing a wedge-shaped intrabody implant comprising a first surface and a second surface, the second surface disposed at an acute angle to the first surface;
placing the implant between the 2 at least partially-separated portions of the single vertebral body such that an outer concave surface of a posterior portion of the implant conforms to a posterior anatomy of the single vertebral body and an outer convex surface of an anterior portion of the implant conforms to an anterior anatomy of the single vertebral body; and
closing the 2 at least partially-separated portions of the single vertebral body about the implant such that the 2 at least partially-separated portions of the single vertebral body are oriented at a correction angle relative to one another.
18. A method for surgically adjusting a curvature of a spine, the method comprising:
removing a wedge-shaped portion of a single vertebral body to form 2 at least partially-separated portions of the single vertebral body;
providing a wedge-shaped intrabody implant comprising a first surface and a second surface, the second surface disposed at an acute angle to the first surface;
placing the wedge-shaped intrabody implant between the 2 at least partially-separated portions of the single vertebral body;
inserting first threaded pedicle screws into vertebrae adjacent to the single vertebral body such that the first threaded pedicle screws are positioned on a left lateral side of spinous processes of the vertebrae adjacent to the single vertebral body;
inserting second threaded pedicle screws into the vertebrae adjacent to the single vertebral body such that the second threaded pedicle screws are positioned on a right lateral side of the spinous processes of the vertebrae adjacent to the single vertebral body; and
closing the 2 at least partially-separated portions of the single vertebral body about the intrabody implant, wherein closing comprises connecting the first threaded pedicle screws with a first rod and connecting the second threaded pedicle screws with a second rod, such that the 2 at least partially-separated portions of the single vertebral body are oriented at a correction angle relative to one another.
2. The method as recited in
5. The method as recited in
6. The method as recited in
7. The method as recited in
8. The method as recited in
9. The method as recited in
10. The method as recited in
11. The method as recited in
12. The method as recited in
13. The method as recited in
14. The method as recited in
17. The method as recited in
the method further comprises inserting threaded pedicle screws into the vertebrae such that each of the screws is spaced apart from the implant; and
closing the 2 at least partially-separated portions comprises connecting the screws with a rod.
19. The method as recited in
|
The present disclosure generally relates to medical devices, systems and methods for the treatment of musculoskeletal disorders, and more particularly, to a wedged intrabody implant and method for fusing portions of a single vertebral body to achieve a desired spinal curvature and/or angulation.
Spinal disorders such as degenerative disc disease, disc herniation, osteoporosis, spondylolisthesis, stenosis, scoliosis and other curvature abnormalities, kyphosis, tumor, and fracture may result from factors including trauma, disease and degenerative conditions caused by injury and aging. Spinal disorders typically result in symptoms including pain, nerve damage, and partial or complete loss of mobility. For example, after a disc collapse, severe pain and discomfort can occur due to the pressure exerted on nerves and the spinal column.
Non-surgical treatments, such as medication, rehabilitation and exercise can be effective, however, may fail to relieve the symptoms associated with these disorders. Surgical treatment of these spinal disorders includes fusion, fixation, discectomy, laminectomy, osteotomy and implantable prosthetics. These treatments may employ spinal implants and, in some cases, the placement of interbody implants via a variety of invasive, partially invasive and/or minimally invasive surgical pathways. Furthermore, in spinal disorders wherein a patient has an abnormal spinal curvature, surgeons may perform a complete and/or partial osteotomy to remove bony structures from the spine in order to reorient the bones of the spine to provide the patient with a desired spinal curvature. In many cases, however, there is difficulty in providing an accurate kyphotic and/or lordotic angle when performing osteotomy. Various factors contribute to this difficulty, including, but not limited to: the challenge of cutting a wedge-shaped aperture in the spinal anatomy having a precise slope; and the breakdown or subsidence of the remaining bony portions after an osteotomy is performed. This disclosure describes an improvement in these technologies.
Accordingly, an intrabody implant and method are disclosed. In one embodiment, an intrabody implant is provided for placement between separated portions of a previously-unitary bony structure, such as a vertebral body. In one embodiment, the intrabody implant comprises first and second surfaces for engaging the first and second portions of the separated bony structure. The surfaces of the implant may be provided with titanium or other coatings or a plurality of surface features extending outward from the surfaces to engage the bony structure. The second implant surface may be disposed opposite the first implant surface at an acute angle relative to the first surface. The implant further comprises a wall disposed between the first and second implant surfaces. The wall comprises anterior and posterior portions wherein the respective heights of the posterior and anterior portions are unequal to form the acute angle.
Various embodiments of the intrabody implant may define an aperture extending through the implant to allow for bone growth through the implant. Furthermore, in some embodiments, the posterior height of the implant may be less than the anterior height of the implant such that the acute angle (which may range widely from 0-90 degrees) introduces a lordotic angle between the first and second portions of the bony structure when the intrabody implant is placed therebetween. The intrabody implant portions may also be formed of a polymer material such as PEEK, and be formed with a convex posterior portion and a concave anterior portion to better conform to the anatomy of the separated bony structure. The implant may also be sized to occupy a substantial width of the bony structure. For example, a width of the implant may, in some embodiments, be greater than 40 mm.
Various method embodiments are also provided for surgically adjusting a curvature of the spine. Such methods may include steps of: removing a wedge-shaped portion of a single vertebral body to form 2 at least partially-separated portions of the vertebral body; providing a wedge-shaped intrabody implant comprising first and second surfaces disposed at an acute angle relative to one another; placing the wedge-shaped intrabody implant between the 2 at least partially-separated portions; and closing the 2 at least partially-separated portions about the implant. The method embodiments may result in the orientation of the 2 at least partially-separated portions of the vertebral body at a correction angle relative to one another.
The method embodiments described herein may provide lordotic and/or kyphotic correction to a spinal column at the level of the single vertebral body or across multiple levels, as part of an osteotomy procedure that may include, but is not limited to, a pedicle subtraction osteotomy (PSO). The closing step disclosed herein may comprise securing the 2 at least partially-separated portions of the single vertebral body relative to one another using a rod and pedicle screw construct. Furthermore, the method may also comprise packing the intrabody implant with bone-growth promotion material (in a bone growth aperture defined in the intrabody implant, for example).
The present disclosure will become more readily apparent from the specific description accompanied by the following drawings, in which:
The exemplary embodiments of an intrabody implant and related methods of use disclosed herein are discussed in terms of medical devices for the treatment of musculoskeletal disorders and more particularly, in terms of an intrabody implant for placement after osteotomy and related methods for treating a vertebral column. It is envisioned that the disclosed intrabody implant and methods may provide, for example, a means for more accurately introducing a correction angle to a portion of the spinal column by virtue of the intrabody implant, which may enable a surgeon to more precisely predict the closure and/or correction angle despite variations in wedge angle that may be introduced in the “bone-on-bone” closure of known osteotomy procedures. In one embodiment, the wedge design of the intrabody implant may aid in the maintenance of anterior vertebral body height while allowing for closure (height collapse) on a posterior portion of the same vertebral body in order to introduce a corrective angulation.
The various embodiments described herein may also be especially useful in maintaining the shape and position of the vertebral body during and after an osteotomy. For example, in known osteotomy procedures as a wedge-cut vertebral body (see
Referring to
As shown in
The method may further comprise providing a wedge-shaped intrabody implant 100 (as described further herein with respect to
As shown in
According to various method embodiments, the correction angle of the spinal column defined at least in part by the acute angle a of the intrabody implant may provide a lordotic correction to a spinal column at the level of the single vertebral body V. In other embodiments, the implant direction may be reversed such that the correction angle of the spinal column defined at least in part by the acute angle a of the intrabody implant may provide a kyphotic correction to a spinal column at the level of the single vertebral body V. In some embodiments, the various embodiments of the present invention may provide a correction angle across multiple levels (such that the acute angles a of several intrabody implants 100 may provide a lordotic correction to a spinal column across 2 or more levels). In such embodiments, the removing, providing, placing and closing steps disclosed herein may be repeated across two or more levels of the human spine to achieve an overall spinal correction across the two or more levels.
In some method embodiments, the closing step described herein may further comprise securing the 2 at least partially separated portions V1, V2 of the vertebral body V about the implant 100 using an extradiscal stabilization system (which may include, for example, a rod 300 and pedicle screw 201, 202 construct as shown generally in
Referring now to
The components of implant 100 can be fabricated from a variety of biologically acceptable materials suitable for medical applications, including metals, synthetic polymers, ceramics and bone material and/or their composites, depending on the particular application and/or preference of a medical practitioner. For example, the components of implant 100, individually or collectively, can be fabricated from materials such as stainless steel alloys, commercially pure titanium, titanium alloys, Grade 5 titanium, super-elastic titanium alloys, cobalt-chrome alloys, stainless steel alloys, superelastic metallic alloys (e.g., Nitinol, super elasto-plastic metals, such as GUM METAL® manufactured by Toyota Material Incorporated of Japan), ceramics and composites thereof such as calcium phosphate (e.g., SKELITE™ manufactured by Biologix Inc.), thermoplastics such as polyaryletherketone (PAEK) including polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and polyetherketone (PEK), carbon-PEEK composites, PEEK-BaSO4 polymeric rubbers, polyethylene terephthalate (PET), fabric, silicone, polyurethane, silicone-polyurethane copolymers, polymeric rubbers, polyolefin rubbers, hydrogels, semi-rigid and rigid materials, elastomers, rubbers, thermoplastic elastomers, thermoset elastomers, elastomeric composites, rigid polymers including polyphenylene, polyamide, polyimide, polyetherimide, polyethylene, epoxy, bone material including autograft, allograft, xenograft or transgenic cortical and/or corticocancellous bone, and tissue growth or differentiation factors, partially resorbable materials, such as, for example, composites of metals and calcium-based ceramics, composites of PEEK and calcium based ceramics, composites of PEEK with resorbable polymers, totally resorbable materials, such as, for example, calcium based ceramics such as calcium phosphate such as hydroxyapatite (HA), corraline HA, biphasic calcium phosphate, tricalcium phosphate, or fluorapatite, tri-calcium phosphate (TCP), HA-TCP, calcium sulfate, or other resorbable polymers such as polyaetide, polyglycolide, polytyrosine carbonate, polycaroplaetohe and their combinations, biocompatible ceramics, mineralized collagen, bioactive glasses, porous metals, bone particles, bone fibers, morselized bone chips, bone morphogenetic proteins (BMP), such as BMP-2, BMP-4, BMP-7, rhBMP-2, or rhBMP-7, demineralized bone matrix (DBM), transforming growth factors (TGF, e.g., TGF-β), osteoblast cells, growth and differentiation factor (GDF), insulin-like growth factor 1, platelet-derived growth factor, fibroblast growth factor, or any combination thereof.
According to the various embodiments provided herein, the implant 100 may comprise a first surface 110 configured for engaging a first V1 of the at least two separated portions of the bony structure. The implant 100 further comprises a second surface 120, disposed opposite the first surface 110, and configured for engaging a second V2 of the at least two separated portions of the bony structure. As shown in
As shown in
Referring again to
As shown in
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplification of the various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Patent | Priority | Assignee | Title |
11123173, | Sep 11 2019 | ALPS HOLDING LLC | Implant comprising first and second sets of pillars for attaching a tendon or a ligament to a hard tissue |
11213398, | Mar 10 2017 | ALPS HOLDING LLC | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
11278427, | Apr 10 2018 | ALPS HOLDING LLC | Spinal interbody cage comprising top and bottom faces with mesh structures, pillars and slots |
11324606, | Mar 10 2017 | ALPS HOLDING LLC | Spinal interbody cage comprising a bulk interbody cage, a top face, a bottom face, pillars, and slots |
11696831, | Mar 10 2017 | ALPS HOLDING LLC | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
12064352, | Mar 10 2017 | ALPS HOLDING LLC | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
Patent | Priority | Assignee | Title |
6099531, | Aug 20 1998 | Bonutti Skeletal Innovations LLC | Changing relationship between bones |
6190414, | Oct 31 1996 | HOWMEDICA OSTEONICS CORP | Apparatus for fusion of adjacent bone structures |
6241771, | Aug 13 1997 | DEPUY MITEK, INC | Resorbable interbody spinal fusion devices |
6287308, | Jul 14 1997 | Warsaw Orthopedic, Inc | Methods and apparatus for fusionless treatment of spinal deformities |
6302914, | Jun 07 1995 | Warsaw Orthopedic, Inc | Lordotic interbody spinal fusion implants |
7163558, | Nov 30 2001 | SPINE, ZIMMER | Intervertebral implant with elastically deformable wedge |
7238203, | Dec 12 2001 | ORTHOVITA, INC | Bioactive spinal implants and method of manufacture thereof |
8287597, | Apr 16 2009 | SOLTA MEDICAL, INC | Method and apparatus for performing spine surgery |
8361149, | Mar 24 2005 | K2M, INC | Wedge-like spinal implant |
8439977, | Oct 08 2008 | K2M, Inc. | Spinal interbody spacer |
20040102774, | |||
20050010292, | |||
20050038517, | |||
20050228391, | |||
20080255615, | |||
20090062917, | |||
20090105822, | |||
20100152782, | |||
20110015745, | |||
20120071977, | |||
20130123786, | |||
DE2910627, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 26 2013 | Warsaw Orthopedic, Inc. | (assignment on the face of the patent) | / | |||
Sep 26 2013 | BALLARD, RODNEY | Warsaw Orthopedic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031316 | /0549 |
Date | Maintenance Fee Events |
Mar 17 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 25 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 04 2019 | 4 years fee payment window open |
Apr 04 2020 | 6 months grace period start (w surcharge) |
Oct 04 2020 | patent expiry (for year 4) |
Oct 04 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 04 2023 | 8 years fee payment window open |
Apr 04 2024 | 6 months grace period start (w surcharge) |
Oct 04 2024 | patent expiry (for year 8) |
Oct 04 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 04 2027 | 12 years fee payment window open |
Apr 04 2028 | 6 months grace period start (w surcharge) |
Oct 04 2028 | patent expiry (for year 12) |
Oct 04 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |