A gate valve with secure sealing mechanism includes a main body having a valve opening, a driver disposed on the main body, a sliding seat slidingly disposed in the main body, a swing arm, and a valve member. Therein, two ends of the swing arm are connected to the driver and the sliding seat, respectively, whereby the driver drives the swing arm to move circularly between a first and second position, thereby triggering the sliding seat to slide. When the swing arm is at the first or second position, the swing arm is biased against the route direction of the sliding seat. The valve member is disposed on the sliding seat for moving in parallel or vertical to the valve opening, thereby preventing the sliding seat from swaying when the swing arm is at the first or second locking position.
|
1. A gate valve with secure sealing mechanism, comprising:
a main body, provided with a first end and a second end, with the second end having a valve opening;
a driver, disposed on the main body;
a sliding seat, slidingly disposed in the main body and transversely provided with a driving groove, while the driving groove defines a non-linear driving track;
a swing arm, with one end thereof connected to the driver and the other end thereof disposed in the driving groove, such that the driver drives the swing arm to circularly move along the driving track between a first position and a second position, so as to triggers the sliding seat to slide between the first end and the second end, wherein when the swing arm is at the first position and the second position, the swing arm is biased against a route direction of the sliding seat; and
a valve member, disposed on the sliding seat for moving in parallel or vertical to the valve opening,
such that the sliding seat is at the first end when the swing arm is at the first position, and the sliding seat is at the second end when the swing arm is at the second position, whereby the valve member stably seals the valve opening.
2. The gate valve of
3. The gate valve of
4. The gate valve of
5. The gate valve of
6. The gate valve of
7. The gate valve of
8. The gate valve of
9. The gate valve of
10. The gate valve of
11. The gate valve of
12. The gate valve of
13. The gate valve of
14. The gate valve of
15. The gate valve of
16. The gate valve of
17. The gate valve of
18. The gate valve of
|
1. Field of the Invention
The present invention relates to gate valves, and more particularly, to a gate valve with secure sealing mechanism.
2. Description of the Related Art
U.S. Pat. No. 7,341,237 discloses a valve mechanism for optionally sealing or opening a valve opening in a casing, while the valve opening is provided with a seat surface. Therein, the valve mechanism comprises at least a valve member capable of moving in parallel or vertical to the seat surface of the valve opening in the casing. A driving board is disposed in the casing and connected to at least a valve member, wherein the driving board is able to move horizontally, such that the valve member is driven to move horizontally.
The valve mechanism aforementioned is able to drive the valve member to move horizontally or vertically by use of the driving board, thereby sealing the valve opening. However, the valve mechanism is not provided with any locking devices or secure mechanisms for stably securing the valve member at the sealing position, such that the driving board is easily shifted or displaced. As a result, the valve member is hindered from effectively sealing the valve opening. In a more serious environment, fluid tends to be leak out from the valve opening, causing unnecessary loss.
For improving aforementioned issues, the present invention discloses a gate valve with secure sealing mechanism, which applies non-linear driving track for a rolling member of a swing arm to circularly move, so as to drive a sliding seat to slide, whereby a valve member seals the valve opening of the main body. Also, when the swing arm is at a first or second position, the swing arm is biased against the route direction of the sliding seat. As a result, the sliding seat is prevented from swaying due to external force, thereby assuring the valve opening is securely sealed when the swing arm is at the second position.
For achieving the objective above, the present invention provides a gate valve with secure sealing mechanism, comprising:
a main body, provided with a valve opening;
a driver, disposed on the main body;
a sliding seat, slidingly disposed in the main body;
a swing arm, with one end thereof connected to the driver and the other end thereof connected to the sliding seat, such that the driver drives the swing arm to circularly move between a first position and a second position, so as to trigger the sliding seat to slide, wherein when the swing arm is at the first or second position, the swing arm is biased against a route direction of the sliding seat;
a valve member, disposed on the sliding seat for moving in parallel or vertical to the valve opening,
such that the sliding seat is prevented from swaying when the swing arm is at the first or second position, and the valve opening is stably sealed when the swing arm is at the second position.
Preferably, the sliding seat is provided with a driving groove having a non-linear driving track, while one end of the swing arm is provided with a rolling member placed in the driving groove and capable of circularly moving along the driving track, such that the sliding seat reciprocates between two ends of the main body.
Preferably, the driver of the present invention is disposed on the main body and manually operated.
Preferably, the driving track of the present invention includes a first driving section, a second driving section, and a third driving section. The second driving section is inclinedly connected between the first driving section and the third driving section, such that when the rolling member moves from the first driving section to the second driving section, the valve member perpendicularly moves against the valve opening for sealing the valve opening.
Preferably, the sliding seat of the present invention includes two first guiding portions disposed in parallel with each other, and the valve member has two second guiding portions. Furthermore, the first guiding portion has at least one connecting groove, while the second guiding portion has at least one matching groove oppositely disposed in relation to the connecting groove. Plural circular rods pass through the connecting groove and the connecting groove, such that the connecting groove overlaps and cooperates with the matching groove. Therefore, the valve member is stably controlled to move against the sliding seat, thereby sealing the valve opening.
The aforementioned and further advantages and features of the present invention will be understood by reference to the description of the preferred embodiment in conjunction with the accompanying drawings where the components are illustrated based on a proportion for explanation but not subject to the actual component proportion.
Referring to
The main body 10 is provided with two guiding planks 14 disposed on two sides of the inner edge thereof, respectively, and a positioning groove 15 is disposed on the guiding plank 14 adjacent to the valve opening 13. Also, the positioning groove 15 is provided with a curved portion 151 and a distal portion 152.
The driver 20 is disposed on the main body 10, as shown in
The sliding seat 30 is slidingly disposed in the main body 10, with one end thereof transversely provided with a driving groove 31. The driving groove 31 defines a non-linear driving track 32, while the driving track 32 comprises a first driving section 321, a second driving section 322, and a third driving section 323. Therein, the second driving section 322 is inclinedly connected between the first driving section 321 and the third driving section 323. End parts of the first driving section 321 and the third driving section 323 are both in an arc shape. Four corners of the sliding seat 30 is provided with a first roller 33, respectively, for rollingly contacting the inner lateral sides of the two guiding planks 14.
One hollow portion 34 is disposed on the sliding seat 30 adjacent the driving groove 31, with two first guiding portions 35 fixed in parallel on the hollow portion 34. Therein, the first guiding portion 35 is formed of two first planks 36 which are disposed in parallel with a certain spacing therebetween, while each of the two first planks 36 is provided with two connecting grooves 37, such that the connecting groove 37 on each of the two first planks 36 are symmetrically disposed. Therein, each of the connecting grooves 37 has a first end 371 and a second end 372, with a bias section 373 disposed therebetween, as shown in
Furthermore, two ends of the first guiding portion 35 of the sliding seat 30 are provided with a second roller 38, respectively, for rollingly contacting the inner face of the main body 10 on one side in opposite to the valve opening 13. Therein, one of the second rollers 38 on the first guiding portion 35 is disposed between the two first planks 36, while the other second roller 38 on the other end thereof is disposed on the outer first plank 36 of the two first planks 36.
Further, one end of the sliding seat 30 adjacent to the driving groove 31 is provided with a guiding wheel 39 for contacting the inner face of the main body 10 on one side provided with the valve opening 13, as shown in
The swing arm 40 is provided with an engaging hole 41 on one end thereof and a rolling member 42 on the other end thereof, so as to be placed in the driving groove 31. The engaging hole 41 of the swing arm 40 is applied for engaging and fixing the block 231 of the rotary shaft 23, and a fastening member 43 is transversely fastened to the engaging hole 41 and the block 231. Therein, the swing arm 40 is formed of two planks, and the fastening member 43 is allowed to be fastened to the two planks, thereby fixing the swing arm 40. Thus, the driver 20 is able to drive the swing arm 40 to circularly move by use of the rolling member 42 along the driving track 32 between the first end 11 and the second end 12. Especially, when the swing arm 40 is at the first position or the second position, the swing arm 40 is biased against the route direction of the sliding seat 30; meanwhile, the rolling member 42 is constantly placed at the end part of the third driving section 323 when the swing arm 40 is at either the first position or the second position, as shown in
The valve member 50 is disposed on the sliding seat 30 or moving in parallel or vertical to the valve opening 13. The valve member 50 is provided with two second guiding portions 51 which are coupled with the first guiding portions 35, so as to seal the valve opening 13 by a linkage structure. Preferably, structures of the second guiding portions 51 and the first guiding portions 35 are similar. Each of the second guiding portions 51 is formed of two second planks 52 disposed with a certain spacing therebetween, and each of the second plank 52 is provided with two matching grooves 53, while the matching grooves 53 are in an identical shape with the connecting grooves 37 but reversely disposed in relation to the connecting grooves 37. Also, each of the matching grooves 53 is provided with a first end 531, a second end 532, and a bias section 533 between the first end 531 and the second end 532, as shown in
Plural circular rods 60 are disposed to pass through related connecting grooves 37, matching grooves 53, and the linkage planks 70, respectively, such that the connecting groove 37 overlaps and cooperates with the matching groove 53, while each of the circular rods 60 is allowed to synchronously move by use of the linkage planks 70. Therein, when the rolling member 42 of the swing arm 40 moves to the second driving section 322 in the driving groove 31, the guiding roller 54 enters the curved portion 151 of the positioning groove 15. In addition, the valve member 50 is allowed to move in vertical to the valve opening 13 due to the linkage mechanism between the first guiding portion 35 and the second guiding portion 51. Also, when the rolling member 42 of the swing arm 40 moves to the third driving section 323 of the driving groove 31, the guiding roller 54 enters the distal portion 152 of the positioning groove 15, such that the valve member 50 stably and tightly seal the valve opening 13, as shown in
Referring to
Referring to
Referring to 9B, the swing arm 40 is driven to move along the driving track 32 of the driving groove 31 to the end part of the first driving section 321.
Referring to
Referring to
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
Yang, Li-Chuan, Huang, Shu-Mei
Patent | Priority | Assignee | Title |
11112012, | Jan 02 2020 | KING LAI HYGIENIC MATERIALS CO., LTD | Dustproof gate valve |
11231113, | Jul 15 2020 | KING LAI HYGIENIC MATERIALS CO., LTD | Gate valve with locking function |
11598429, | Jan 18 2021 | Eclipse valve assembly |
Patent | Priority | Assignee | Title |
1133978, | |||
3605825, | |||
4605198, | Jan 28 1985 | SEAL-AIR CONTROL SYSTEMS, INC , 2950 KEELE ST , DOWNSVIEW, ONTARIO M3M 2H2 | Damper construction |
4718637, | Jul 02 1986 | ZM PRIVATE EQUITY FUND I, L P | High vacuum gate valve having improved metal vacuum joint |
7341237, | Sep 12 2005 | Valve mechanism for a vacuum valve |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 06 2015 | YANG, LI-CHUAN | KING LAI HYGIENIC MATERIALS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035041 | /0920 | |
Feb 06 2015 | HUANG, SHU-MEI | KING LAI HYGIENIC MATERIALS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035041 | /0920 | |
Feb 23 2015 | KING LAI HYGIENIC MATERIAL CO., LTD | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 08 2020 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 09 2024 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 11 2019 | 4 years fee payment window open |
Apr 11 2020 | 6 months grace period start (w surcharge) |
Oct 11 2020 | patent expiry (for year 4) |
Oct 11 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 11 2023 | 8 years fee payment window open |
Apr 11 2024 | 6 months grace period start (w surcharge) |
Oct 11 2024 | patent expiry (for year 8) |
Oct 11 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 11 2027 | 12 years fee payment window open |
Apr 11 2028 | 6 months grace period start (w surcharge) |
Oct 11 2028 | patent expiry (for year 12) |
Oct 11 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |