Methods and apparatus are described that use an array of two or more cold plasma jet ports oriented to converge at a treatment area. The use of an array permits greater tissue penetration by cold plasma treatments. This approach enables treatment of deeper infections of soft and hard tissues without surgical intervention. For example, this approach can treat sub-integumental infections, such as those common to joint replacements, without surgically opening the issues overlying the deeper infection.
|
1. An apparatus comprising:
an annular structure having two or more cold plasma devices positioned to provide converging cold plasma jets that converge at a treatment area, wherein at least one of the two or more cold plasma devices is coupled to one or more high voltage RF power supplies.
13. A method comprising:
receiving, from a cold plasma power supply, electrical energy at two or more cold plasma devices, wherein the two or more cold plasma devices are located on an annular structure, and wherein the cold plasma power supply is a harmonic high voltage RF power supply;
receiving, from a gas source, gas at the two or more cold plasma devices; and
outputting cold plasma from the two or more cold plasma devices to converge at a treatment area.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
14. The method of
15. The method of
16. The method of
17. The apparatus of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
|
This application claims the benefit of U.S. Provisional Application No. 61/747,428, filed Dec. 31, 2012 and entitled “Cold Plasma Toroidal Array Methods and Apparatus,” which is incorporated herein by reference in its entirety.
This application is related to U.S. Provisional Application No. 60/913,369, filed Apr. 23, 2007; U.S. patent application Ser. No. 12/038,159, filed Feb. 27, 2008 (which issued as U.S. Pat. No. 7,633,231); U.S. patent application Ser. No. 13/620,118, filed Sep. 14, 2012; and U.S. patent application Ser. No. 14/026,679, filed Sep. 13, 2013, each of which are herein incorporated by reference in their entireties.
1. Field of the Art
The present invention relates to devices and methods for cold plasma application, and, more particularly, to arrays of such devices that are formed in an annular shape and methods for using same.
2. Background Art
When infections of deep tissues occur in the body it is often necessary to perform a surgical procedure to expose the infection, manually clean or debride the site, pack it with antibiotics, and initiate systemic antibiotics in an attempt to resolve the infection. In the case of orthopedic infections, where there is hardware of metallic or plastic composition present, the standard course of treatment may require multiple surgical procedures. Since the hardware may be covered in bacterial colonies and there is limited vascularization of the tissues immediately contacting the hardware, the colonization of the hardware often can't be controlled with systemic antibiotic use alone. In the case of an infected total joint replacement, the surgeon will often perform a “two-stage revision” procedure. The first stage involves opening the joint, removing the hardware, debriding infected tissue, packing the region with antibiotic impregnated materials, and closing the incision. Along with systemic antibiotics, the antibiotic materials are left in the patient, often with a non-functional joint complex, for on average 6 weeks. After blood and joint fluid tests suggest resolution of the infection, a second procedure is performed to remove the antibiotic laden materials and implant a new functional joint replacement. In some cases the infection is still present locally even though blood indicators are normal, and the new implant may quickly become re-infected, starting the “2-stage revision” procedure over again. In extreme cases, amputation may be the prescribed course of action for severe extremity infections that fail to resolve after these measures.
It is therefore highly desirable to be able to eradicate a deep joint infection without the need for repeated surgeries and a reliance on antibiotics to reach the site either through the circulatory system or by local, internal, long-term application. The same applies to other bone and deep tissue infections, abscesses, and similar conditions familiar to those in the medical field. As cold plasmas also show promise in the treatment of malignant growths, this array would have use in the treatment of deep tissue tumors, or any disorder that requires greater depth of penetration of plasma, including musculoskeletal pain and inflammation.
An embodiment is described of an apparatus having an annular structure with two or more cold plasma devices located on the annular structure and directed internal to the annular structure so as to converge at a treatment area. The two or more cold plasma devices are coupled to one or more high voltage RF ports and to one or more gas supply ports.
A further embodiment is described of a method of producing cold plasma for use in a medical treatment. The method includes receiving, from a cold plasma power supply, electrical energy at two or more cold plasma devices via one or more high voltage RF ports. The two or more cold plasma devices are located on an annular structure. The method also includes receiving, from a gas source, gas at the two or more cold plasma devices via one or more gas supply ports. Finally, the method includes outputting cold plasma from the two or more cold plasma devices, the cold plasma from these cold plasma devices being directed to converge at a treatment area.
Cold temperature plasmas have attracted a great deal of enthusiasm and interest by virtue of their provision of plasmas at relatively low gas temperatures. The provision of plasmas at such a temperature is of interest to a variety of applications, including wound healing, anti-bacterial processes, tumor treatments, anti-inflammatory treatments, non-infective disorders that may be treatable with cold plasmas, and various other medical therapies and sterilization.
Conventional cold plasma treatments were focused on treatment areas at the surface of the skin, as it was not previously known that cold plasmas could penetrate the surface of the skin. Consequently, no contemplation was previously considered as to approaches by which cold plasma penetration for treatment purposes could be improved or optimized. However, recent data that is described in U.S. patent application Ser. No. 14/026,679, entitled “Therapeutic Applications of Cold Plasma,” filed Sep. 13, 2013, indicate that subcutaneous treatment protocols are feasible with cold plasmas. In particular, paragraphs [0084]-[0089] of this referenced application provide data in support of the proposition that cold plasma penetrates beneath the skin so that internal tissue treatments are feasible.
Consideration of the penetration effects of cold plasma indicates that the penetration can be thought of as a cone of attenuation below the skin surface. The cold plasma intensity decreases due to the spreading effect associated with the conical penetration shape below the skin surface. It is therefore desirable to be able to increase the penetration and/or to increase the intensity at various depths below the surface of the skin. By generating multiple “cones” of treatment in the tissues, with some degree of overlap, the desirable effects in deep tissues can be amplified. Therefore, increasing the intensity at various targeted depths below the skin surface, the volumetric problem of certain internal tissues disorders can be addressed.
Embodiments of the present disclosure include an annular device designed with an array of two or more individual cold plasma (CP) jet ports oriented to converge about a patient's body segment (either at the skin surface or below the skin surface) resulting in a plurality of treatment angles (
The device, designed similarly to a modern magnetic resonance imaging (MRI) machine, allows the patient's injured or infected segment to be placed inside of the machine, which is designed in an annular shape to surround the affected area,
On the cold plasma annular treatment device, the devices would be activated remotely by a common trigger mechanism to generate plasma. This common trigger mechanism could be a physical flow control or a computer console that triggers a plurality of valves and RF energy. The devices would be affixed to the annular array, as illustrated for example in
In the context of this application, an annular cold plasma structure includes the scenario where two cold plasma ports are aligned diametrically opposed to one another, with a treatment area located in between the two cold plasma ports to receive cold plasma from those two cold plasma ports.
The process begins at step 510. In step 510, electrical energy is received at two or more cold plasma devices, wherein the cold plasma devices are located on an annular structure.
In step 520, gas is received at the two or more cold plasma devices.
In step 530, cold plasma is output from the two or more cold plasma devices so as to converge at a treatment area.
At step 540, method 500 ends.
Although the above description has used the '369 application family as the baseline cold plasma device, the scope of the present invention is not limited to the '369 application family baseline. The '369 application family baseline is merely exemplary and not limiting, and therefore embodiments of the present invention include the deployment of the above annular features to cold plasma generation devices in general, irrespective of their means of generation.
As noted above, the four-port configuration is exemplary, and not a limiting of various embodiments of the present invention. Other numbers of ports fall within the scope of various embodiments of the present invention. Further, although a symmetric configuration is described above, non-symmetric or asymmetric configurations of ports can also be used to provide a particular treatment protocol, and such non-symmetric/asymmetric configurations also fall within the scope of various embodiments of the present invention.
It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Patent | Priority | Assignee | Title |
10213246, | Nov 13 2009 | Hermes Innovations LLC | Tissue ablation systems and method |
10674594, | Apr 23 2007 | Plasmology4, Inc. | Harmonic cold plasma device and associated methods |
10675087, | Apr 29 2015 | Cirrus Technologies Ltd | Medical ablation device and method of use |
10692704, | Nov 10 2016 | GOJO Industries, Inc | Methods and systems for generating plasma activated liquid |
10716611, | May 15 2015 | CLEAR INTRADERMAL TECHNOLOGIES, INC | Systems and methods for tattoo removal using cold plasma |
10765850, | May 12 2016 | GOJO Industries, Inc | Methods and systems for trans-tissue substance delivery using plasmaporation |
11019716, | Apr 23 2007 | PLASMOLOGY4, INC | Harmonic cold plasma device and associated methods |
11253311, | Apr 22 2016 | Relign Corporation | Arthroscopic devices and methods |
11259787, | Oct 15 2013 | Hermes Innovations LLC | Laparoscopic device |
11439453, | May 15 2015 | CLEAR INTRADERMAL TECHNOLOGIES, INC | Systems and methods for tattoo removal using cold plasma |
11490947, | May 15 2015 | CLEAR INTRADERMAL TECHNOLOGIES, INC | Tattoo removal using a liquid-gas mixture with plasma gas bubbles |
11554214, | Jun 26 2019 | MEDITRINA, INC | Fluid management system |
11576718, | Jan 20 2016 | Relign Corporation | Arthroscopic devices and methods |
11629860, | Jul 17 2018 | TRANSIENT PLASMA SYSTEMS, INC. | Method and system for treating emissions using a transient pulsed plasma |
11659647, | Apr 23 2007 | Plasmology4, Inc. | Harmonic cold plasma device and associated methods |
11696388, | May 07 2019 | TRANSIENT PLASMA SYSTEMS, INC. | Pulsed non-thermal atmospheric pressure plasma processing system |
11724078, | May 12 2016 | GOJO Industries, Inc. | Methods and systems for trans-tissue substance delivery using plasmaporation |
11735399, | Nov 10 2016 | GOJO Industries, Inc. | Methods and systems for generating plasma activated liquid |
11766291, | Jul 01 2016 | Relign Corporation | Arthroscopic devices and methods |
11793563, | Apr 22 2016 | Relign Corporation | Arthroscopic devices and methods |
11896282, | Nov 13 2009 | Hermes Innovations LLC | Tissue ablation systems and method |
11911086, | Oct 21 2008 | Hermes Innovations LLC | Endometrial ablation devices and systems |
11911090, | Dec 19 2018 | CLEAR INTRADERMAL TECHNOLOGIES, INC | Systems and methods for tattoo removal using an applied electric field |
12064160, | May 15 2015 | Clear Intradermal Technologies, Inc. | Tattoo removal using a liquid-gas mixture with plasma gas bubbles |
12070263, | Oct 21 2008 | Hermes Innovations LLC | Endometrial ablation method |
9646808, | Dec 31 2012 | Plasmology4, Inc. | Cold plasma annular array methods and apparatus |
Patent | Priority | Assignee | Title |
2927322, | |||
3432722, | |||
3487414, | |||
3735591, | |||
4088926, | May 10 1976 | Plasma cleaning device | |
4365622, | Sep 11 1980 | Donald L. Morton & Associates | Multiple plate resonant electrode |
4380320, | Feb 25 1981 | Nordson Corporation | Electrostatic powder spray gun nozzle |
4422013, | Jul 21 1981 | The United States of America as represented by the Secretary of the Navy | MPD Intense beam pulser |
5079482, | Feb 25 1991 | Directed electric discharge generator | |
5216330, | Jan 14 1992 | UNIVERSITY OF ROCHESTOR | Ion beam gun |
5225740, | Mar 26 1992 | General Atomics | Method and apparatus for producing high density plasma using whistler mode excitation |
5304888, | Jan 24 1992 | Applied Materials, Inc | Mechanically stable field emission gun |
5698164, | Dec 27 1994 | OHNIT CO , LTD | Low-temperature plasma generator |
5876663, | Nov 12 1996 | The University of Tennessee Research Corporation | Sterilization of liquids using plasma glow discharge |
5883470, | Feb 16 1996 | Ebara Corporation | Fast atomic beam source with an inductively coupled plasma generator |
5909086, | Sep 24 1996 | Bovie Medical Corporation | Plasma generator for generating unipolar plasma |
5961772, | Jan 23 1997 | Los Alamos National Security, LLC | Atmospheric-pressure plasma jet |
5977715, | Dec 14 1995 | The Boeing Company; Boeing Company, the | Handheld atmospheric pressure glow discharge plasma source |
6096564, | May 25 1999 | Wisconsin Alumni Research Foundation | Plasma-aided treatment of surfaces against bacterial attachment and biofilm deposition |
6099523, | Jun 27 1995 | Bovie Medical Corporation | Cold plasma coagulator |
6113851, | Mar 01 1996 | STERILUCENT, INC | Apparatus and process for dry sterilization of medical and dental devices and materials |
6204605, | Mar 24 1999 | The University of Tennessee Research Corporation | Electrodeless discharge at atmospheric pressure |
6225593, | Feb 15 1997 | Helica Instruments Limited | Medical apparatus for generating an ionised gas plasma flame |
6228330, | Jun 08 1999 | Triad National Security, LLC | Atmospheric-pressure plasma decontamination/sterilization chamber |
6262523, | Apr 21 1999 | Triad National Security, LLC | Large area atmospheric-pressure plasma jet |
6278241, | Nov 13 1995 | Tepla AG | Four-nozzle plasma generator for forming an activated jet |
6441554, | Nov 28 2000 | SE PLASMA INC | Apparatus for generating low temperature plasma at atmospheric pressure |
6455014, | May 14 1999 | FLIR DETECTION, INC | Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor |
6611106, | Mar 19 2001 | FLORIDA RESEARCH FOUNDATION, UNIVERSITY OF | Controlled fusion in a field reversed configuration and direct energy conversion |
6667007, | Jan 12 2000 | TRUSTEES OF PRINCETON UNIVERSITY, THE | System and method of applying energetic ions for sterilization |
6956329, | Aug 04 2000 | General Atomics | Apparatus and method for forming a high pressure plasma discharge column |
6958063, | Apr 22 1999 | ACIST MEDICAL SYSTEMS, INC | Plasma generator for radio frequency surgery |
7006874, | Jan 05 1996 | THERMAGE, INC | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
7011790, | May 07 2001 | Regents of the University of Minnesota | Non-thermal disinfection of biological fluids using non-thermal plasma |
7037468, | May 14 1999 | FLIR DETECTION, INC | Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor |
7081711, | Oct 28 2003 | EXCELITAS TECHNOLOGIES CORP | Inductively generated streaming plasma ion source |
7094314, | Jun 16 2003 | Ionfield Holdings, LLC | Atmospheric pressure non-thermal plasma device to clean and sterilize the surfaces of probes, cannulas, pin tools, pipettes and spray heads |
7192553, | Dec 15 1999 | STEVENS INSTITUTE OF TECHNOLOGY; Plasmasol Corporation | In situ sterilization and decontamination system using a non-thermal plasma discharge |
7215697, | Aug 27 1999 | Matched impedance controlled avalanche driver | |
7271363, | Sep 01 2004 | RECARBON, INC | Portable microwave plasma systems including a supply line for gas and microwaves |
7300436, | Feb 22 2000 | ENERGIST LIMITED | Tissue resurfacing |
7608839, | Aug 05 2005 | McGill University | Plasma source and applications thereof |
7633231, | Apr 23 2007 | PLASMOLOGY4,INC | Harmonic cold plasma device and associated methods |
7683342, | Sep 16 2005 | MAX-PLANCK GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E V ; Adtec Europe Limited | Plasma source |
7691101, | Jan 06 2006 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
7719200, | Mar 07 2005 | OLD DOMINION UNIVERSITY RESEARCH FOUNDATION | Plasma generator |
7777151, | Feb 14 2008 | Adventix Technologies Inc. | Portable plasma sterilizer |
7785322, | Feb 22 2000 | ENERGIST LIMITED | Tissue treatment system |
7799290, | May 14 1999 | FLIR DETECTION, INC | Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor |
8267884, | Oct 07 2005 | Surfx Technologies LLC | Wound treatment apparatus and method |
8294369, | May 04 2009 | OLD DOMINION UNIVERSITY RESEARCH FOUNDATION | Low temperature plasma generator having an elongate discharge tube |
8460283, | Apr 03 2009 | OLD DOMINION UNIVERSITY RESEARCH FOUNDATION | Low temperature plasma generator |
20020129902, | |||
20030222586, | |||
20050088101, | |||
20050179395, | |||
20060189976, | |||
20080159925, | |||
20090188626, | |||
20100133979, | |||
20110022043, | |||
20120100524, | |||
20120187841, | |||
20120259270, | |||
20130022514, | |||
20130053762, | |||
20130134878, | |||
20130199540, | |||
20140000810, | |||
WO2005084569, | |||
WO2006116252, | |||
WO2007124910, | |||
WO2010107722, | |||
WO2011055368, | |||
WO2011055369, | |||
WO2011076193, | |||
WO2012106735, | |||
WO2012153332, | |||
WO2013101673, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 31 2013 | Plasmology4, Inc. | (assignment on the face of the patent) | / | |||
Jan 07 2014 | JACOFSKY, MARC C | COLD PLASMA MEDICAL TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032017 | /0674 | |
Dec 18 2014 | COLD PLASMA MEDICAL TECHNOLOGIES, INC | PLASMOLOGY4, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 038945 | /0295 |
Date | Maintenance Fee Events |
Mar 09 2017 | ASPN: Payor Number Assigned. |
Apr 06 2020 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 17 2024 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 18 2019 | 4 years fee payment window open |
Apr 18 2020 | 6 months grace period start (w surcharge) |
Oct 18 2020 | patent expiry (for year 4) |
Oct 18 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 18 2023 | 8 years fee payment window open |
Apr 18 2024 | 6 months grace period start (w surcharge) |
Oct 18 2024 | patent expiry (for year 8) |
Oct 18 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 18 2027 | 12 years fee payment window open |
Apr 18 2028 | 6 months grace period start (w surcharge) |
Oct 18 2028 | patent expiry (for year 12) |
Oct 18 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |