eccentricity control for a geosynchronous satellite includes: setting initial conditions, duration, and schedule for the eccentricity control; defining a plurality of parameters including control loci for centroid, semi-major axis, semi-minor axis, uncontrolled eccentricity radius, right ascension of ascending node, and inclination, wherein the plurality of parameters are defined such that when the eccentricity control is applied, a mean geodetic longitude of the geosynchronous satellite is maintained within a predefined distance from a station longitude.
|
1. A method of eccentricity control for a geosynchronous satellite having a geosynchronous orbit and an orbit line of nodes, the method comprising:
setting a schedule for eccentricity control of the geosynchronous orbit using a two-dimensional eccentricity vector ellipse describing target eccentricity vector components over an annual period, each of the eccentricity vector components indicating a magnitude and direction for eccentricity vectors from the geosynchronous satellite to a perigee of the geosynchronous orbit;
defining a plurality of parameters for the two-dimensional eccentricity vector ellipse including
a centroid for a control locus, the control locus defining the target eccentricity vector components for the eccentricity vector ellipse in two-dimensional space,
a semi-major axis and a semi-minor axis of the control locus determining an elliptical shape of the two-dimensional eccentricity vector ellipse, the semi-major axis of the control locus aligning with the orbit line of nodes and defining a maximum natural uncontrolled eccentricity of the geosynchronous orbit; and
transmitting operational commands to the geosynchronous satellite for eccentricity control based on the schedule and the two-dimensional eccentricity vector ellipse, the operational commands defining maneuvers and inter-maneuver uncontrolled eccentricity coast segments to maintain a geodetic longitude of the geosynchronous satellite within a predefined distance from a station longitude.
9. An apparatus for eccentricity control of a geosynchronous satellite having a geosynchronous orbit and an orbit line of nodes, the apparatus comprising:
means for setting a schedule for eccentricity control of the geosynchronous orbit using a two-dimensional eccentricity vector ellipse describing target eccentricity vector components over an annual period, each of the eccentricity vector components indicating a magnitude and direction for eccentricity vectors from the geosynchronous satellite to a perigee of the geosynchronous orbit;
means for defining a plurality of parameters for the two-dimensional eccentricity vector ellipse including
a centroid for a control locus, the control locus defining the target eccentricity vector components for the eccentricity vector ellipse in two dimensional space,
a semi-major axis and a semi-minor axis of the control locus determining an elliptical shape of the two-dimensional eccentricity vector ellipse, the semi-major axis of the control locus aligning with the orbit line of nodes and defining a maximum natural uncontrolled eccentricity of the geosynchronous orbit; and
means for transmitting operational commands to the geosynchronous satellite for eccentricity control based on the schedule and the two-dimensional eccentricity vector ellipse, the operational commands defining maneuvers and inter-maneuver uncontrolled eccentricity coast segments to maintain a geodetic longitude of the geosynchronous satellite within a predefined distance from a station longitude.
15. A non-transitory computer-readable storage medium storing a computer program for eccentricity control of a geosynchronous satellite having a geosynchronous orbit and an orbit line of nodes, the program comprising executable instructions that cause a computer to:
set a schedule for eccentricity control of the geosynchronous orbit using a two-dimensional eccentricity vector ellipse describing target eccentricity vector components over an annual period, each of the eccentricity vector components indicating a magnitude and direction for eccentricity vectors from the geosynchronous satellite to a perigee of the geosynchronous orbit;
define a plurality of parameters for the two-dimensional eccentricity vector ellipse including
a centroid for a control locus, the control locus defining the target eccentricity vector components for the eccentricity vector ellipse in two-dimensional space,
a semi-major axis and a semi-minor axis of the control locus determining an elliptical shape of the two-dimensional eccentricity vector ellipse, the semi-major axis of the control locus aligning with the orbit line of nodes and defining a maximum natural uncontrolled eccentricity of the geosynchronous orbit; and
transmit operational commands to the geosynchronous satellite for eccentricity control based on the schedule and the two-dimensional eccentricity vector ellipse, the operational commands defining maneuvers and inter-maneuver uncontrolled eccentricity coast segments to maintain a geodetic longitude of the geosynchronous satellite within a predefined distance from a station longitude.
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
10. The apparatus of
means for setting elements [h,k] of the centroid of the control locus at zero micros.
11. The apparatus of
means for setting the semi-major axis of the control locus at 350 micros and the semi-minor axis of the control locus at 0 micros for a maximum compensation control using node-Synchronous station Keeping (NSSK).
12. The apparatus of
means for setting the semi-major axis of the control locus at 350 micros and the semi-minor axis of the control locus at 200 micros for a minimum fuel control using orbit Analysis System/eccentricity-Inclination-Synchronous-station-Keeping (EISK) beginning-of-life (BOL) inclined orbit scenario.
13. The apparatus of
means for setting the semi-major axis of the control locus at 200 micros and the semi-minor axis of the control locus at 200 micros for a minimum fuel control using EISK middle-of-life (MOL) equatorial orbit scenario.
14. The apparatus of
16. The non-transitory computer-readable storage medium of
set elements [h,k] of the centroid of the control locus at zero micros.
17. The non-transitory computer-readable storage medium of
set the semi-major axis of the control locus at 350 micros and a control locus semi-minor axis at 0 micros for a maximum compensation control using node-Synchronous station Keeping (NSSK).
18. The non-transitory computer-readable storage medium of
set semi-major axis of the control locus at 350 micros and a control locus semi-minor axis at 200 micros for a minimum fuel control using orbit Analysis System/eccentricity-Inclination-Synchronous-station-Keeping (EISK) beginning-of-life (BOL) inclined orbit scenario.
19. The non-transitory computer-readable storage medium of
set the semi-major axis of the control locus at 200 micros and a control locus semi-minor axis at 200 micros for a minimum fuel control using EISK middle-of-life (MOL) equatorial orbit scenario.
20. The non-transitory computer-readable storage medium of
|
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/825,436, filed May 20, 2013, entitled “Eccentricity Control for Geosynchronous Satellites.” The disclosure of the above-referenced application is incorporated herein by reference.
Field of the Invention
The present invention relates to geosynchronous satellites, and more specifically, to an eccentricity control of a geosynchronous satellite.
Background
Managing orbital degradation of geosynchronous satellites over time is an on-going problem. Because of various external forces, such as forces exerted by the sun and the moon, it is necessary to correct for this degradation in order to extend the lifetime of satellites to a maximum span. Because the lifetime of a satellite depends on how long its supply of fuel lasts, any saved fuel may be used to extend the life of the satellite.
The present invention provides for eccentricity control of a geosynchronous satellite.
In one implementation, a method of eccentricity control for a geosynchronous satellite is disclosed. The method includes: setting initial conditions, duration, and schedule for the eccentricity control; defining a plurality of parameters including control loci for centroid, semi-major axis, semi-minor axis, uncontrolled eccentricity radius, right ascension of ascending node, and inclination, wherein the plurality of parameters are defined such that when the eccentricity control is applied, a mean geodetic longitude of the geosynchronous satellite is maintained within a predefined distance from a station longitude.
In another implementation, an apparatus for eccentricity control of a geosynchronous satellite is disclosed. The apparatus includes: means for setting initial conditions, duration, and schedule for the eccentricity control; means for defining a plurality of parameters including control loci for centroid, semi-major axis, semi-minor axis, uncontrolled eccentricity radius, right ascension of ascending node, and inclination, wherein the plurality of parameters are defined such that when the eccentricity control is applied, a mean geodetic longitude of the geosynchronous satellite is maintained within a predefined distance from a station longitude.
In a further implementation, a non-transitory computer-readable storage medium storing a computer program for eccentricity control of a geosynchronous satellite is disclosed. The computer program includes executable instructions that cause a computer to: set initial conditions, duration, and schedule for the eccentricity control; define a plurality of parameters including control loci for centroid, semi-major axis, semi-minor axis, uncontrolled eccentricity radius, right ascension of ascending node, and inclination, wherein the plurality of parameters are defined such that when the eccentricity control is applied, a mean geodetic longitude of the geosynchronous satellite is maintained within a predefined distance from a station longitude.
Other features and advantages of the present invention will become more readily apparent to those of ordinary skill in the art after reviewing the following detailed description and accompanying drawings.
As described above, managing orbital degradation of geosynchronous satellites over time is an on-going problem, and it is necessary to correct for this degradation in order to extend the lifetime of satellites to a maximum span. Accordingly, what is needed is a way to provide design and implementation of eccentricity control strategies.
Certain implementations as described herein provide for eccentricity-inclination-sun synchronous eccentricity (HK) control for geosynchronous satellites in both equatorial and inclined orbits. After reading this description it will become apparent how to implement the invention in various implementations and applications. Although various implementations of the present invention will be described herein, it is understood that these implementations are presented by way of example only, and not limitation. As such, this detailed description of various implementations should not be construed to limit the scope or breadth of the present invention.
As illustrated in
A beginning-of-life (BOL) inclined orbit scenario and a middle-of-life (MOL) equatorial orbit scenario are each subject to two instances of EISK eccentricity control. The first instance emulates Node-Synchronous Station Keeping (eNSSK) node-synchronous eccentricity control using the Eccentricity-Inclination-Synchronous-Station-Keeping (EISK) implementation, while the second instance offers a minimum fuel alternative to the maximum compensation strategy. Thus, the first instance provides a maximum compensation control (eNSSK), while the second instance provides a minimum fuel control (EISK). The BOL scenarios demonstrate that eNSSK node-synchronous HK control may be rendered as a special case of EISK, and that EISK configured for minimum fuel consumption offers significant fuel savings over the maximum compensation strategy. The MOL scenarios demonstrate that EISK offers a seamless and fuel-optimal continuously variable transition between BOL and end-of-life (EOL) inclined orbit operations and MOL equatorial operations.
Term Node-Synchronous Station Keeping (NSSK) refers to an open loop control algorithm for eccentricity control in geosynchronous inclined orbit, which only applies control deltas orthogonal to the inclined orbit line of nodes. In contrast, term EISK is a closed loop control which represents a major departure from NSSK.
As for each of the EISK control space, longitude and drift (LD), eccentricity (HK), and inclination (PQ), the station keeping (SK) control locus paradigm defines a desired continuously-controlled mean element locus which is then rendered in practice by episodic discrete control impulses. The LD is the in-orbit phase of satellite and its rate of change, the HK is the shape and orientation of orbit ellipse, and the PQ is the orientation of the orbit plane in inertial space. The control schedules and control loci are operator-defined. In particular, the EISK HK control locus is an ellipse in the HK vector plane and the ellipse centroid and semi-axis lengths and orientations are operator defined. One or both control locus semi-diameters may be zero.
Accordingly, the station keeping function manages six orbital elements in three pairs: longitude and drift (LD), eccentricity trajectories (HK), and inclination (PQ). The LD is the in-orbit phase of satellite and its rate of change, the HK is the shape and orientation of orbit ellipse, and the PQ is the orientation of the orbit plane in inertial space. Thus, the orbital elements are defined as follows:
A BOL inclined orbit scenario, subject to eNSSK (maximum compensation control) and EISK (minimum fuel control) eccentricity controls, is illustrated in and described with respect to
The BOL configuration settings common to the two control instances are as follows:
1) Initial Conditions
2) Duration and Schedule
3) Control Locus Definition
The two instances are distinguished only by the value of F, the semi-minor axis of the control locus. That is, when F=0, maximum compensation control (eNSSK) is selected, while when F=200, EISK minimum fuel control is selected. The sun is approximately at the vernal equinox (raSun=10 deg) at t0=2014.25 (the BOL simulation start date).
In conclusion regarding the BOL eccentricity control, the eNSSK max compensation control (as configured for this BOL inclined orbit scenario) provides a 47 mdeg MGL control margin year round, which is nearly the entire longitude slot radius. A typical MGL control margin for a 50 mdeg slot is 25 mdeg or less. The annual eccentricity control authority demand of the eNSSK control is 1400 micros. Further, the EISK minimum fuel control (as configured for this BOL inclined orbit scenario) provides at least 27 mdeg MGL control margin for the 50 mdeg radius slot. The annual eccentricity control authority demand of the control is 600 micros, 43% of the eNSSK demand. Decreasing the EISK semi-minor axis from 200 micros to 100 micros increases the year round minimum MGL control margin from 27 mdeg to 35 mdeg at the cost of increasing the eccentricity control authority demand from 600 micros to 1000 micros, 71% of the eNSSK demand.
A MOL equatorial orbit scenario subject to eNSSK (maximum compensation control) and EISK (minimum fuel control) eccentricity controls is illustrated and described with respect to
The MOL configuration settings common to the two control instances are as follows:
1) Initial Conditions
2) Duration and Schedule
3) Control Locus Definition
The MOL inclination represents a near-miss of the inclination vector origin by 100 mdeg in the direction of the vernal equinox. The two controls are distinguished only by the values of E and F, the semi-axes of the control locus. In one case for eNSSK maximum compensation control, E=350 and F=0. In one case for EISK minimum fuel sun synchronous control circular radius, E=200 and F=200. The sun is approximately in the autumnal equinox (raSun=190 deg) at t0=2021.75, the MOL simulation start date.
In conclusion regarding the MOL eccentricity control, the eNSSK max compensation control provides 10 mdeg of MGL control margin year-round. The margin is small, but could in fact be supported by the Long/Drift Station Keeping MGL control algorithm with a 7 day maneuver period at longitude stations for which tri-axiality is less than, say, 0.75 mdeg/day2 in magnitude. The EISK min fuel sun synchronous control as configured for this MOL equatorial orbit scenario provides a year-round minimum of 27 mdeg MGL control radius margin for the 50 mdeg radius slot. The annual eccentricity authority demanded by the control is 950 micros, 58% greater than the demand of its antecedent BOL EISK control. Decreasing the EISK circular sun synchronous control locus semi-axes from 200 micros to 100 micros increases the year-round minimum MGL control margin from 25 mdeg to 32.5 mdeg at the cost of increasing the eccentricity control authority demand from 950 micros to 1250 micros, a 32% increase over the control authority demand for the 200 micro sun synchronous control radius.
As stated above, NSSK eccentricity control for inclined orbit operations may be instantiated as a special limit-value case of EISK eccentricity-inclination-sun synchronous control. NSSK may be emulated as EISK configured with control locus semi-major axis aligned with the orbit line of nodes and having magnitude equal to the satellite's natural (uncontrolled) eccentricity radius, and with the control locus semi-minor axis maximally controlled to magnitude zero. Relaxing the maximum compensation control for inclined operations to admit a semi-minor axis magnitude commensurate with the sun synchronous control radius one would use for equatorial operations with the same vehicle offers significant control authority demand savings without compromising MGL control for BOL to MOL and for MOL to EOL inclined orbit operations.
MOL equatorial sun synchronous operations may be achieved seamlessly from BOL inclined operations by annual reduction of the EISK semi-major axis from its BOL uncontrolled maximum value to the MOL sun synchronous radius while holding the semi-minor axis at the MOL sun synchronous radius throughout. The MOL to EOL evolution of the semi-major axis magnitude would retrace the BOL to MOL semi-major axis values in ascending order. Optimization of the annual progression of EISK semi-major axis magnitudes may halve the eccentricity control fuel loading for a fixed vehicle lifespan, or alternatively, double the eccentricity fuel life span for a fixed fuel loading relative to the NSSK baseline.
The above description of the disclosed implementations is provided to enable any person skilled in the art to make or use the invention. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other implementations without departing from the spirit or scope of the invention. Accordingly, additional implementations and variations are also within the scope of the invention. For example, although the implementations discussed above focus on canceling the interfering signal, the envelope feedback interference reduction systems and techniques described above can be used to enable cancel each signal individually so that both signals can be processed allowing for a blind dual-carrier process to maximize data throughput on an RF system, or to allow characterize and capture, but not cancel the interfering signal for real-time or post process analysis. Further, it is to be understood that the description and drawings presented herein are representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other implementations that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6305646, | Dec 21 1999 | Hughes Electronics Corporation | Eccentricity control strategy for inclined geosynchronous orbits |
6457679, | Jun 16 2000 | Airbus Defence and Space GmbH | Method for maintaining the position of geostationary satellites |
6672542, | Jun 03 2002 | The Aerospace Corporation | Method and system for controlling the eccentricity of a near-circular orbit |
8448903, | Jan 21 2011 | Kratos Integral Holdings, LLC | Longitude-drift phase plane control with continuous or quasi-continuous maneuvers |
9004408, | Jan 13 2011 | Kratos Integral Holdings, LLC | Inclination vector control with continuous or quasi-continuous maneuvers |
20020036250, | |||
20030222179, | |||
20080029650, | |||
20080105788, | |||
20120181386, | |||
20120181387, | |||
20120187250, | |||
WO2008118140, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 20 2014 | Kratos Integral Holdings, LLC | (assignment on the face of the patent) | / | |||
Jun 09 2014 | MAJER, VACLAV | Kratos Integral Holdings, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033132 | /0349 | |
Nov 20 2017 | KRATOS UNMANNED AERIAL SYSTEMS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS TEXAS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS TECHNOLOGY & TRAINING SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS SYSTEMS AND SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS SPACE & MISSILE DEFENSE SYSTEMS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS SOUTHEAST, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS PUBLIC SAFETY & SECURITY SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS INTEGRAL SYSTEMS INTERNATIONAL, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | Kratos Integral Holdings, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS DEFENSE & ROCKET SUPPORT SERVICES, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS COMMUNICATIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KPSS GOVERNMENT SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | JMA ASSOCIATES, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | HGS HOLDINGS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | HENRY BROS ELECTRONICS, L L C | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS UNMANNED SYSTEMS SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | LVDM, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | MADISON RESEARCH CORPORATION | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS SOUTHWEST L P | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | WFI NMC CORP | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SUMMIT RESEARCH CORPORATION | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SHADOW II, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SHADOW I, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SecureInfo Corporation | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SCT REAL ESTATE, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SCT ACQUISITION, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SAT Corporation | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | ROCKET SUPPORT SERVICES, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | REALITY BASED IT SERVICES LTD | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | REAL TIME LOGIC, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | POLEXIS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | MSI ACQUISITION CORP | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | MICRO SYSTEMS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | HENRY BROS ELECTRONICS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | AIRORLITE COMMUNICATIONS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | AVTEC SYSTEMS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | AIRORLITE COMMUNICATIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | AI METRIX, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | KRATOS DEFENSE & SECURITY SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | SecureInfo Corporation | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | SAT Corporation | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | MICRO SYSTEMS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | GICHNER SYSTEMS GROUP, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | KRATOS UNMANNED AERIAL SYSTEMS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | KRATOS TECHNOLOGY & TRAINING SOLUTIONS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | Kratos Integral Holdings, LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | HENRY BROS ELECTRONICS, INC NJ | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | HENRY BROS ELECTRONICS, INC DE | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | DIGITAL FUSION, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | CHARLESTON MARINE CONTAINERS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 044593 | /0678 | |
Nov 20 2017 | BSC PARTNERS, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | CARLSBAD ISI, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | HAVERSTICK GOVERNMENT SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | HAVERSTICK CONSULTING, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | GICHNER SYSTEMS INTRERNATIONAL, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | GICHNER SYSTEMS GROUP, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | General Microwave Israel Corporation | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | General Microwave Corporation | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DTI ASSOCIATES, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DIVERSIFIED SECURITY SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DIGITAL FUSION, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | CHARLESTON MARINE CONTAINERS INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DALLASTOWN REALTY I, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DALLASTOWN REALTY II, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DEFENSE SYSTEMS, INCORPORATED | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DEI SERVICES CORPORATION | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DFI REALTY, LLC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Nov 20 2017 | DIGITAL FUSION SOLUTIONS, INC | SUNTRUST BANK | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044742 | /0845 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | KRATOS TECHNOLOGY & TRAINING SOLUTIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | KRATOS UNMANNED AERIAL SYSTEMS, INC F K A COMPOSITE ENGINEERING INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SAT Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | FLORIDA TURBINE TECHNOLOGIES, INC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | GICHNER SYSTEMS GROUP, INC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | KRATOS ANTENNA SOLUTIONS CORPORATON | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | Kratos Integral Holdings, LLC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | KRATOS TECHNOLOGY & TRAINING SOLUTIONS, INC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | KRATOS UNMANNED AERIAL SYSTEMS, INC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Kratos Integral Holdings, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | DIGITAL FUSION, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CHARLESTON MARINE CONTAINERS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0001 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | Kratos Integral Holdings, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | SAT Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | KRATOS TECHNOLOGY & TRAINING SOLUTIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | CHARLESTON MARINE CONTAINERS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | DIGITAL FUSION, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | KRATOS UNMANNED AERIAL SYSTEMS, INC F K A COMPOSITE ENGINEERING, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | GICHNER SYTEMS GROUP, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | MICRO SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | TRUIST BANK, SUCCESSOR BY MERGER TO SUNTRUST BANK, AS COLLATERAL AGENT AND ADMINISTRATIVE AGENT | SecureInfo Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059616 | /0151 | |
Feb 18 2022 | MICRO SYSTEMS, INC | TRUIST BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059664 | /0917 |
Date | Maintenance Fee Events |
May 08 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 24 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 08 2019 | 4 years fee payment window open |
May 08 2020 | 6 months grace period start (w surcharge) |
Nov 08 2020 | patent expiry (for year 4) |
Nov 08 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 08 2023 | 8 years fee payment window open |
May 08 2024 | 6 months grace period start (w surcharge) |
Nov 08 2024 | patent expiry (for year 8) |
Nov 08 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 08 2027 | 12 years fee payment window open |
May 08 2028 | 6 months grace period start (w surcharge) |
Nov 08 2028 | patent expiry (for year 12) |
Nov 08 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |