An accelerometer for sensing acceleration along a sensing axis, includes a flexure member (having a pendulum member pivotably connected to a support member via a hinge arrangement), a housing, and at least one mounting structure configured for clamping the support member to the housing in load bearing contact while concurrently allowing for differential movement between the support member and the housing. Embodiments also include a corresponding housing member for use with a flexure member of an accelerometer, and a flexure member for use with a housing of an accelerometer.
|
1. An accelerometer for sensing acceleration along a sensing axis, comprising:
a flexure member, comprising a pendulum member pivotably connected to a support member via a hinge arrangement;
a housing; and
at least one mounting structure configured for clamping the support member to the housing in load bearing contact while concurrently allowing for differential movement between the support member and the housing in at least one direction different from said sensing axis;
wherein at least one said mounting structure comprises an elongated mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end along a plurality of axes orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
23. A flexure member for use with a housing of an accelerometer for sensing acceleration along a sensing axis, the flexure member comprising:
a pendulum member hingedly connected to a support member via a hinge arrangement; and
at least one mounting structure configured for clamping in load bearing contact the support member to the housing while concurrently allowing for differential movement between the support member and the housing in a direction orthogonal to said sensing axis;
wherein at least one said mounting structure comprises an elongated mounting post, anchored at a first longitudinal end thereof to the support member and configured for being anchored at the second longitudinal end thereof to the housing, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end along a plurality of axes orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
25. An accelerometer for sensing acceleration along a sensing axis, comprising:
a flexure member, comprising a pendulum member pivotably connected to a support member via a hinge arrangement;
a housing; and
at least one mounting structure configured for clamping the support member to the housing in load bearing contact while concurrently allowing, at least at the location of said load bearing contact, for at least a portion of a differential displacement between the support member and the housing;
wherein at least one said mounting structure comprises an elongated mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end along a plurality of axes orthogonal to orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
21. A housing member for use with a flexure member of an accelerometer for sensing acceleration along a sensing axis, the flexure member comprising a pendulum member hingedly connected to a support member via a hinge arrangement, the housing member comprising at least one mounting structure configured for clamping in load bearing contact the flexure member to the housing member while concurrently allowing for differential movement between the support member and the housing member in a direction orthogonal to said sensing axis;
wherein at least one said mounting structure comprises an elongated mounting post, anchored at a first longitudinal end thereof to the housing member and configured to be anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end along a plurality of axes orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing member.
2. The accelerometer according to
3. The accelerometer according to
4. The accelerometer according to
5. The accelerometer according to
6. The accelerometer according to
7. The accelerometer according to
8. The accelerometer according to
9. The accelerometer according to
10. The accelerometer according to
11. The accelerometer according to
12. The accelerometer according to
13. The accelerometer according to
14. The accelerometer according to
15. The accelerometer according to
16. The accelerometer according to
17. The accelerometer according to
18. The accelerometer according to
19. The accelerometer according to
20. The accelerometer according to
22. The housing member according to
24. The flexure member according to
|
The presently disclosed subject matter relates to sensing instruments, in particular to accelerometers.
Devices for sensing accelerations are well known and have many uses.
One class of such devices, referred to herein as accelerometers, includes a proof mass mounted to a support by flexures via a support ring, and further includes capacitors. The proof mass is displaced from a datum position by an acceleration applied to the device along its sensing axis, and the resulting differential capacitance is sensed by a feedback circuit which in turn generates a current that can be applied to force balancing coils to return the proof mass to the datum position. The acceleration can thus be related to the magnitude of this current.
The support ring is clamped in position in the device, which can lead to thermal strains as well as mounting strains being coupled to the flexures, which in turn can lead to bias sensitivity to temperature and to mounting, respectively, which can cause bias error and thus degrade the sensitivity and performance of the device.
By way of general background, the following publications disclose various accelerator configurations: U.S. Pat. Nos. 3,702,073, 4,250,757, 4,498,342, 4,932,258, 5,111,694, 5,182,949, 5,287,744, and 5,763,779.
According to a first aspect of the presently disclosed subject matter there is provided an accelerometer for sensing acceleration along a sensing axis, comprising:
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, said mounting post is cantilevered from said housing at said first longitudinal end and removably affixed to said support member at said second longitudinal end. Optionally, said mounting post is integrally formed with or fixedly mounted to said housing. Additionally or alternatively, said mounting post is accommodated within a well formed in said housing, and wherein said second longitudinal end projects outwardly from a mouth of said well.
In at least some examples, said mounting post is removably affixed to said housing at said first longitudinal end and cantilevered from said support member at said second longitudinal end. Optionally, said mounting post is integrally formed with or fixedly mounted to said support member. Additionally or alternatively, said mounting post is accommodated within a well formed in said housing, and wherein said first longitudinal end is removably affixed to a base of said well.
In at least some examples optionally including at least one of the above examples, said mounting post is formed as a solid beam element having a cross-section that is uniform or varies along the longitudinal axis of the beam element. By way of non-limiting example, said cross-section is circular, or oval, or square or rectangular or other polygonal. Additionally or alternatively, and by way of non-limiting example, a ratio of a length of said mounting post or of said beam element to a width of said mounting post or of said beam element in the range about 0.3 to about 10, more preferably in the range about 1 to about 5, and more preferably about 3.
Additionally or alternatively, and by way of non-limiting example, said mounting post or said beam element is spaced from said well by a spacing that is within about 10% and 20% of a width of said mounting post or said beam element.
In at least some examples optionally including at least one of the above examples, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a plurality of directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples, said mounting post is configured for preferentially allowing displacement between said first longitudinal end and said second longitudinal end in a first direction orthogonal to said sensing axis while providing relative resistance to such displacement along a second direction orthogonal to said sensing axis as compared with said first direction.
In at least some examples optionally including at least one of the above examples, said housing comprising two housing members configured for accommodating therebetween said flexure member. By way of non-limiting example, the accelerometer comprises at least three said mounting structures associated with each said housing member. For example, each said mounting structure associated with one said housing member is in longitudinally opposed relationship with a corresponding said mounting structure associated with the other said housing member. Additionally or alternatively, said pendulum member pivotably connected to said support member via a hinge arrangement, and wherein said mounting structures are located with respect to said flexure member at positions of 90°, 180° and 270° about a center axis thereof, the 0° position being associated with said hinge arrangement.
In at least some examples optionally including at least one of the above examples, said mounting structures are configured for isolating said pendulum member from strain effects arising from said differential movement.
In at least some examples optionally including at least one of the above examples, said flexure member and said housing comprise different thermal properties one from the other at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples, said flexure member and said housing are made from materials having different coefficients of thermal expansion one from the other at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples, said flexure member is made from a non-metallic material and said housing is made from a metallic material.
In at least some examples optionally including at least one of the above examples, said flexure member is made from any suitable material, including, for example, at least one of the following: any suitable metallic material or metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics; any suitable non-metallic material.
In at least some examples optionally including at least one of the above examples, said housing is made from any suitable material, including, for example, at least one of the following: any suitable metallic material or metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics; any suitable non-metallic material.
In at least some examples optionally including at least one of the above examples, said mounting structure is at least one of deformable bendable and shearable for allowing said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a direction orthogonal to said sensing axis by any one of bending, deforming or shearing of the mounting post with respect to a longitudinal axis of the mounting post.
In at least some examples optionally including at least one of the above examples, said mounting structure is slidable for allowing said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to a first one of said housing and said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to a second one of said housing and said support member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of said housing and said support member in a direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to a first one of said housing and said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to a second one of said housing and said support member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of said housing and said support member in a direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to a first one of said housing and said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to a second one of said housing and said support member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of said housing and said support member in a direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples, the accelerometer further comprises an force sensing system configured for sensing movement of the pendulum member from a datum position in response to an acceleration or force applied to accelerometer along said sensing axis and for generating an output that is a measure of said acceleration or force.
In at least some examples optionally including at least one of the above examples, the accelerometer further comprises an force sensing system configured for sensing movement of the pendulum member from a datum position in response to an acceleration or force applied to accelerometer parallel to said sensing axis, for generating a restoring or balancing force to the pendulum member to return the pendulum member to the datum position, and for generating an output that is indicative of the restoring force, which in turn provides a measure of said acceleration or said force.
In at least some examples optionally including at least one of the above examples, said force sensing system comprises stators, capacitors and balancing coils, and an electronics package for operation thereof.
In at least some examples optionally including at least one of the above examples, at least one said mounting structure is configured for clamping in load bearing contact the support member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction orthogonal to said sensing axis.
According to a second aspect of the presently disclosed subject matter there is also provided a housing member for use with a flexure member of an accelerometer, the housing member comprising at least one mounting structure or a plurality of mounting structures configured for clamping in load bearing contact the flexure member to the housing member while concurrently allowing for differential movement between the support member and the housing member, for example in a direction orthogonal to the sensing axis.
In at least some examples said mounting structure is at least one of deformable bendable and shearable for allowing said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing member and configured for being anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing member.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing member and configured for being anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing member.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to the housing member and configured for being anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing member.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting post is cantilevered from said housing member at said first longitudinal end and removably affixed to said support member at said second longitudinal end. Optionally, said mounting post is integrally formed with or fixedly mounted to said housing member. Additionally or alternatively, said mounting post is accommodated within a well formed in said housing member, and wherein said second longitudinal end projects outwardly from a mouth of said well.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting post is formed as a solid beam element having a cross-section that is uniform or varies along the longitudinal axis of the beam element. By way of non-limiting example, said cross-section is circular, or oval, or square or rectangular or other polygonal. Additionally or alternatively, and by way of non-limiting example, a ratio of a length of said mounting post or of said beam element to a width of said mounting post or of said beam element in the range about 0.3 to about 10, more preferably in the range about 1 to about 5, and more preferably about 3. Additionally or alternatively, and by way of non-limiting example, said mounting post or said beam element is spaced from said well by a spacing that is within about 10% and 20% of a width of said mounting post or said beam element.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a plurality of directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting post is configured for preferentially allowing displacement between said first longitudinal end and said second longitudinal end in a first direction orthogonal to said sensing axis while providing relative resistance to such displacement along a second direction orthogonal to said sensing axis as compared with said first direction.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said housing member is configured for mounting to another housing member for accommodating therebetween the flexure member.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, there are at least three said mounting structures associated with said housing member. Additionally or alternatively, said mounting structures are located with respect to the housing member at positions of 90°, 180° and 270° about a center axis thereof, the 0° position being associated with a hinge arrangement of the flexure member.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said housing member comprises different thermal properties from the flexure member at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said housing member is made from materials having a coefficient of thermal expansion different from that of the flexure member, at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said housing member is made from any suitable material, including, for example, at least one of the following: any suitable metallic material or metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics; any suitable non-metallic material.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a direction orthogonal to said sensing axis by any one of bending, deforming or shearing of the mounting post with respect to a longitudinal axis of the mounting post.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said housing, and having a second longitudinal end thereof configured for sliding displacement with respect to the flexure member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and the flexure member in a direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said housing, and having a second longitudinal end thereof configured for sliding displacement with respect to the flexure member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and the flexure member in a direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said housing, and having a second longitudinal end thereof configured for sliding displacement with respect to the flexure member, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and the flexure member in a direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, the housing member further comprises at least a part of an force sensing system configured for sensing movement of the pendulum member from a datum position in response to an acceleration or force applied to accelerometer along said sensing axis and for generating an output that is a measure of said acceleration or force.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, the housing member further comprises at least a part of an force sensing system configured for sensing movement of the pendulum member from a datum position in response to an acceleration or force applied to accelerometer parallel to said sensing axis, for generating a restoring or balancing force to the pendulum member to return the pendulum member to the datum position, and for generating an output that is indicative of the restoring force, which in turn provides a measure of said acceleration or said force.
to In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said force sensing system comprises stators, capacitors and balancing coils, and an electronics package for operation thereof.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact a support member of the flexure member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction different from said sensing axis.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact a support member of the flexure member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction non-parallel to said sensing axis.
In at least some examples optionally including at least one of the above examples for the second aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact a support member of the flexure member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction orthogonal to said sensing axis.
According to a third aspect of the presently disclosed subject matter there is also provided a flexure member for use with a housing of an accelerometer, comprising a pendulum member hingedly connected to a support member via a hinge arrangement, and further comprising at least one mounting structure or a plurality of mounting structures configured for clamping in load bearing contact the support member to the housing while concurrently allowing for differential movement between the support member and the housing, for example in a direction orthogonal to said sensing axis.
In at least some examples said mounting structure is at least one of deformable bendable and shearable for allowing said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, configured to be anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, configured to be anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, at least one said mounting structure comprises an elongate mounting post, configured to be anchored at a first longitudinal end thereof to the housing and anchored at the second longitudinal end thereof to the support member, wherein the mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in at least one direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting post is configured for being removably affixed to said housing at said first longitudinal end and cantilevered from said support member at said second longitudinal end. Optionally, said mounting post is integrally formed with or fixedly mounted to said support member. Additionally or alternatively, said mounting post is for being accommodated within a well formed in said housing, and wherein said first longitudinal end is removably affixed to a base of said well.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting post is formed as a solid beam element having a cross-section that is uniform or varies along the longitudinal axis of the beam element. By way of non-limiting example, said cross-section is circular, or oval, or square or rectangular or other polygonal. Additionally or alternatively, and by way of non-limiting example, a ratio of a length of said mounting post or of said beam element to a width of said mounting post or of said beam element in the range about 0.3 to about 10, more preferably in the range about 1 to about 5, and more preferably about 3. Additionally or alternatively, and by way of non-limiting example, said mounting post or said beam element is spaced from said well by a spacing that is within about 10% and 20% of a width of said mounting post or said beam element.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a plurality of directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting post is configured for preferentially allowing displacement between said first longitudinal end and said second longitudinal end in a first direction orthogonal to said sensing axis while providing relative resistance to such displacement along a second direction orthogonal to said sensing axis as compared with said first direction.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, the housing comprising two housing members and the flexure member is configured for being accommodating therebetween. By way of non-limiting example, the flexure member comprises at least three pairs of said mounting structures. For example, in each said pair, one said mounting structure associated is in longitudinally opposed relationship with the other said mounting structure. Additionally or alternatively, said pendulum member pivotably connected to said support member via a hinge arrangement, and said mounting structures are located with respect to said flexure member at positions of 90°, 180° and 270° about a center axis thereof, the 0° position being associated with said hinge arrangement.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting structures are configured for isolating said pendulum member from strain effects arising from said differential movement.
In at least some examples optionally including at least one of the above example for the third aspect of the presently disclosed subject matter at least, said flexure member comprises different thermal properties from those of the housing at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said flexure member is made from materials having a coefficient of thermal expansion different from that of the housing at least along directions orthogonal to said sensing axis.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said flexure member is made from any suitable material, including, for example, at least one of the following: any suitable metallic material or metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics; any suitable non-metallic material.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting post is configured for allowing displacement between said first longitudinal end and said second longitudinal end in a direction orthogonal to said sensing axis by any one of bending, deforming or shearing of the mounting post with respect to a longitudinal axis of the mounting post.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to the housing, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of the housing and said support member in a direction different from said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to the housing, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of the housing and said support member in a direction non-parallel to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples, at least one said mounting structure comprises an elongate mounting post, anchored at a first longitudinal end thereof to said support member, and having a second longitudinal end thereof configured for sliding displacement with respect to the housing, wherein the mounting post is configured for allowing sliding displacement between said second longitudinal end and said second one of the housing and said support member in a direction orthogonal to said sensing axis to permit at least a portion of said differential movement between the support member and the housing.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact the support member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction different from said sensing axis.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact the support member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction non-parallel to said sensing axis.
In at least some examples optionally including at least one of the above examples for the third aspect of the presently disclosed subject matter at least, said mounting structures are configured for clamping in load bearing contact the support member to the housing in a direction generally parallel to said sensing axis while concurrently allowing for said differential movement between the support member and the housing in at least one direction orthogonal to said sensing axis.
In order to understand the disclosure and to see how it may be carried out in practice, examples will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Referring to
Referring also to
In alternative variations of this example the support member or support ring 52 can have a different form, for example rectangular or other polygonal shape, which can be closed or open, and/or the pendulum 55 can have a different form, for example rectangular or other polygonal shape, which can be closed or open.
The pendulum 55 is connected to the support ring 52 via a hinge arrangement in the form of hinge structures 62, which are displaced from the geometric centre and center of gravity of the pendulum 55. The hinge structures 62 are, in this example, formed as flexures or film hinges, and define a single hinge axis B generally parallel to the plane P. Thus, in this example the hinge axes of the hinge structures are co-axial, but in alternative variations of this example the hinge axes can be non-coaxial, for example parallel but spaced from one another, or can intersect one another (optionally also both parallel to plane P). The hinge structures 62 enable the pendulum 55 to pivot with respect to the support ring 52 about hinge axis B, which is generally orthogonal to sensing axis A (although in alternative variations of this example the in hinge axis can be non-orthogonal to sensing axis A). The pendulum 55 is generally circular about an axis 59 (parallel to sensing axis A), and is spaced from the support ring 52 by gap 51 along most of pendulum perimeter 58 excluding the locations of the hinge structures 62. In alternative variations of this example the pendulum can be non-circular, for example polygonal, oval and so on.
The flexure member 50 can be made from any suitable material, including, for example, at least one of the following: any suitable metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics.
Housing 30 includes housing members 31 and 33 which interconnect via interconnecting flanges 34, 36, or are otherwise joined to one another. In this example the housing 30, and the housing members 31 and 33 are generally cylindrical about an axis generally coaxial with sensing axis A, though in alternative variation of this example the housing 30, and the housing members 31 and 33 can have any other suitable shape.
When joined together, the housing members 31 and 33 define a gap G for accommodating therein the flexure member 50 in clamping contact therewith via mounting structures 80, as will be disclosed in greater detail herein.
For example, the housing members 31, 33 are made any suitable material, including, for example, at least one of the following: any suitable metal, for example stainless steel, aluminium, titanium or alloys thereof; composites; silicon; fused quartz or other suitable ceramics.
The accelerometer 100 further comprises a suitable force sensing system 200 for operation of the accelerometer 100, and in particular is configured for sensing movement of the pendulum 55 from the datum position in response to an acceleration or force F applied to accelerometer 100 along sensing axis A, and for generating an output that is a measure of the acceleration or force F. In particular, the electromagnetic system 200 is configured for sensing movement of the pendulum 55 from the datum position D in response to an acceleration or force F applied to accelerometer 100 parallel to sensing axis A, for generating a restoring or balancing force to the pendulum 55 to return this to the datum position D, and for generating an output that is indicative of the restoring force, which in turn provides a measure of the acceleration or force F.
The force sensing system 200 is mounted within the housing 30 and, in this example, is in the form of an electromagnetic sensing system, comprising an electronics package 220, stators 280 and balancing coils 270. The electronics package 220 operatively connected to stators 280 and coils 270, and further comprises electrical connections (not shown) on the outside of the housing 30, for routing electrical power to the force sensing system 200 from an external power source, and/or for outputting the aforesaid output of the electro magnetic system 200.
Each stator 280 is accommodated in a recess 281 formed in a respective one of housing members 31 and 33, and is generally cylindrical, having a respective inner bore 282, generally concentric with axis 59, and a permanent magnet 284 concentrically accommodated in the bore 282 to define an annular gap 288 between the outer facing cylindrical surface 285 of the magnet 284 and the inner facing cylindrical surface 283 of the bore 282.
The coils 270 are mounted to the pendulum 55, one on each of face 66 and face 67 thereof, generally concentric with axis 59 and inwardly spaced from the pendulum perimeter 58. In the assembled accelerometer 100, each coil 270 is accommodated in the respective bore 282, in particular the respective gap 288, with the respective magnet 284 positioned within the respective coil 270.
A capacitor plate 210 is provided on each face 66, 67 of pendulum 55, and each capacitor plate 210 forms a capacitor with facing surface 289 of the respective magnet 284. The two capacitors are part of a pick-off or feedback circuit (typically comprised in the electronics package 220) for sensing movement of the pendulum 55 from the datum position D.
In operation, an acceleration or force F applied to the accelerometer 100 along sensing axis A results in a pendulous pivotal movement of the pendulum 55 with respect to axis B, in particular about axis B, and thus pendulum 55 moves with respect to the support ring 52, the housing members 31, 33, and the stators 280. This causes a change in the spacing between each capacitor plate 210 and the facing surface 289 of the respective magnet 284, which results in a differential capacitance change that is sensed by the feedback circuit comprised in the electronics package 220. The feedback circuit almost concurrently applies a suitable current/voltage to the balance coils 270 that, via interaction with the magnets 284, generates a balancing force to the pendulum 55 such as to return the pendulum 55 to the datum position D. The current/voltage that is required for maintaining the pendulum 55 at the datum position D provides a measure of the acceleration or force F that is acting to the accelerometer 100, and a suitable output corresponding to this current/voltage, for example a digital or analog signal, is generated by the electronics package 220.
In alternative variations of this example the force sensing system 200 can thus comprise any such system currently known in the art or developed in the future for the stated purpose, for example as disclosed in any one of U.S. Pat. Nos. 3,702,073, 4,250,757, 4,498,342, 4,932,258, 5,111,694, 5,182,949, 5,287,744, and 5,763,779, the contents of which are incorporated herein in their entirety, or can include other types of force sensing systems, for example based on sensing and/or generating electrostatic forces or bimetallic forces generated as a result of the applied force or acceleration along the sensing axis A.
As already indicated, when the accelerometer is assembled, the flexure member 50 is accommodated in gap G and is in clamping contact with the housing members 31 and 33 via mounting structures 80. The accelerometer 100 thus comprises a plurality of mounting structures 80, which are configured for clamping the support ring 52 to the housing 30 in a direction parallel to sensing axis A while concurrently allowing for differential movement between the support ring 52 and the housing 30 in a direction orthogonal to sensing axis A.
The mounting structures 80 are configured for clamping the support ring 52 to the housing members 31 and 33 in a direction parallel to sensing axis A, while concurrently allowing limited relative movement between the support ring 52 and the housing members 31 and 33 in one or more directions different from sensing axis A, i.e., non-parallel to sensing axis A. In particular, the mounting structures 80 are configured for clamping the support ring 52 to the housing members 31 and 33 in a direction parallel to sensing axis A, while concurrently allowing limited relative movement between the support ring 52 and the housing members 31 and 33 in one or more directions orthogonal to sensing axis A, i.e., parallel to plane P.
In at least some examples including the example of
In this example, three pairs of mounting structures 80 are provided, three mounting structures 80 in housing member 31 in opposed relationship with three mounting structures 80 in housing member 33. The mounting structures 80 are located at positions 90°, 180° and 270° on plane P with respect to the flexure member 50 and axis 59, the 0° position being in-between the hinge structures 62, as illustrated in
Referring also to
Mounting post 82 is in the form of a solid beam element, generally prismatic, having a uniform cross-section along its longitudinal length from base end 89 to free end 81, which are aligned along longitudinal axis C, generally parallel to the sensing axis A. In the assembled accelerometer 100, free end 81 of each mounting structure 80 is anchored to the support ring 52. The free end 81 comprises a generally flat face 87 and is received in a complementarily-shaped shallow recess 61 formed in the faces 56, 57 of support ring 52. The shallow recesses 61 facilitate alignment of the support ring 52 with respect to the housing members 31 and 33 during assembly of the accelerometer 100. In alternative variations of this example the support rings lacks one or more of the recesses 61, and the respective face(s) 87 abut the respective face 56 or face 57 directly, and are anchored thereto by frictional or shear forces thereat.
Referring to
In operation, when the support ring 52 on the one hand, and the housing 30 in particular housing members 31 and 33 on the other hand, have different thermal properties, for example are made from materials having different coefficients of thermal expansion (at least along directions parallel to plane P, i.e., at least along directions orthogonal to the sensing axis A), and the accelerometer is subjected to a change in temperature, for example heating or cooling, such that the accelerometer experiences a change in temperature, the support ring 52 expands or contracts along a direction parallel to plane P by an amount that is different from the respective expansion or contraction of the housing members 31 and 33. The differential thermal expansions or contractions result in the free end 81 of each mounting post 82 (which is clampingly mounted (i.e., anchored) to the support ring 52) moving laterally with respect to the respective base end 89 (which is affixed (i.e., anchored) to the respective housing member 31 or 33) as seen in
Without being bound to theory, it is believed that the thermal strains generated by the differential thermal expansions or contractions are essentially absorbed by the flexing or deformation of the mounting structures 80, thereby decoupling thermal strains from the support ring 52 and thus from the flexures 62. In this manner the support ring 52 (in particular the part thereof comprising the hinge structures 62) does not become distorted and/or does not introduce thermal bias into the accelerometer 100, or at least minimizes distortion and/or bias as compared to clamping the support ring 52 to the housing members 31 and 33 directly or via pads to prevent differential movement between the support ring 52 to the housing members 31 and 33, in the absence of said mounting structures 80.
Similarly, any mounting strains that may be introduced as a result of slight manufacturing or mounting errors between the support ring 52 on the one hand, and the housing members 31 and 33 on the other hand can also absorbed by the relative displacement between the free end 81 and the base end 89 of the mounting structures 80.
The lateral gap T provides a maximum limit to the movement of the free end 81 with respect to the base end 89 or base 83, and thus with respect to the well 84, and the dimension of T is thus chosen to allow for the maximum desired or expected range of differential movement between the support ring 52 and the housing members 31 and 33.
As already mentioned, the three pairs of mounting structures 80 are located one pair each at positions 90°, 180° and 270° on support ring 52 with respect to axis 59, and thus any differential thermal expansions or contractions between the support ring 52 on the one hand, and the housing members 31 and 33 on the other hand, are effectively isolated from or at least spaced away from, the flexures 62.
In alternative variations of this example, the mounting structures 80 in each pair are not necessarily co-axially aligned, but instead each mounting structure on one housing member 31 can be located in different positions with respect to the mounting structures on the other housing member 33; additionally or alternatively, the mounting structures 80 can be provided at other locations instead of one or more of positions 90°, 180° and 270° with respect to axis 59, for example at 60°, 180° and 300°. Additionally or alternatively, in such or other alternative variations of this example the accelerometer can comprise less than three pairs of mounting structures, for example 1 pair or 2 pairs of mounting structures 80 (exclusively or in combination with other types of mounting structures, for example conventional pads). Alternatively, in other alternative variations of this example the accelerometer can comprise more than three pairs of mounting structures, for example 4 or 5 or six or more pairs of mounting structures 80 (exclusively or in combination with other types of mounting structures, for example conventional pads). Additionally or alternatively, in such or other alternative variations of this example the accelerometer can comprise instead of paired sets of mounting structures, single mounting structures 80 on one side only of the support ring 52 or on one only of said housing member 31 or 33.
In this example, the mounting posts 82 are each integrally formed with the respective housing members 31 and 33, and for example can be suitably machined or cast with respect to the housing members 31 and 33. In alternative variations of this example, at least one mounting post 82′ can be manufactured as a plug member, separately from the respective housing member 31 or 33, which comprises the respective well 84′ formed therein, for example by machining or casting, and the mounting post is then affixed in the well, for example as illustrated in
It is to be noted that at least in some alternative variations of the first example the respective mounting structure does not require the respective well per se, and rather the respective mounting post projects from the inner facing surface of the respective housing member by the appropriate length L to ensure providing the desired or required relative displacement between the free end and the base end of the mounting post responsive to the differential movement between the support ring 52 and the housing 30, in particular the housing elements 31, 33.
By way of non limiting example, the ratio of length L to the width W of the mounting post 82 can be in the range about 0.3 to about 10, more preferably in the range about 1 to about 5, and more preferably about 3.
By way of non limiting example, the spacing T is within about 10% to about 20% of a width W.
By way of non limiting example, width W is between about 1 mm and about 4 mm, spacing T is about 0.1 mm to about 0.5 mm or up to 1 mm, length L is in the range about 0.3 mm to about 10 mm, more preferably in the range about 1 mm to about 5 mm, and more preferably about 3 mm, and depth d is in the range about 0.2 mm to about 9.5 mm, more preferably in the range about 1 mm to about 5 mm. In one such example, W is 2.5 mm, spacing T is 0.5 mm, and length L is 3.25 mm, and depth d is 3 mm.
In the first example, the mounting posts 82 are substantially identical to one another and have uniform circular cross-sections. Accordingly, each mounting post 82 can be bent or otherwise deformed in any direction parallel to plane P, and is not constrained to bend or otherwise deform in any particular such direction.
In an alternative variation of this example, and referring to
It is readily apparent that the cross-section of the mounting post can be chosen to provide bending or distortion of the mounting post in one or more preferred directions with respect to plane P.
Referring to
Thus, the profile and/or the solidity of the cross-section of the respective mounting post, and/or the longitudinal variation of the cross-section thereof, can be designed to control or limit the manner and range of differential movement between the support ring 52 and the housing members 31 and 33.
In a variation of the first example, and referring to
Referring to
The mounting post 182 is configured for allowing the free end 181 to be displaced with respect to the base end 189 responsive to a lateral force Q being applied to the free end, in a direction generally parallel to plane P, in a manner similar to that of the first example, mutatis mutandis. In particular, such a displacement is reversible, so that in the absence of force Q, the free end 181 returns to its initial position with respect to the base end 189. In this example, such a displacement is provided by any one of reversible bending, or otherwise deforming (including shearing) the mounting post 182.
The lateral gap T′ provides a limit to the movement of the base end 189 with respect to the free end 181 and thus the well 184, and is thus chosen to allow for the maximum range of differential movement between the support ring 52 and the housing members 31 and 33.
The mounting post 182 can be made from the same material as that of the ring member 50, or of the housing members 31, 33 or a different material.
In the example of
In a variation of the example of
It is to be noted that an accelerometer according to at least one example of the present presently disclosed subject matter can comprise any desired number of mounting structures (singly, or in faced pairs, or in staggered pairs, for example), with any desired combination or permutation of different configurations of mounting structures being provided for clamping the respective support ring to the respective housing members, for example any combination of the examples of the mounting structures illustrated in
Finally, it should be noted that the word “comprising” as used throughout the appended claims is to be interpreted to mean “including but not limited to”.
While there has been shown and disclosed example examples in accordance with the presently disclosed subject matter, it will be appreciated that many changes can be made therein without departing from the spirit of the presently disclosed subject matter.
Patent | Priority | Assignee | Title |
10274627, | Oct 30 2015 | TGS-NOPEC GEOPHYSICAL COMPANY | Ocean bottom seismic systems |
10545254, | Oct 30 2015 | TGS-NOPEC GEOPHYSICAL COMPANY | Multi-Axis, single mass accelerometer |
11169175, | Feb 11 2020 | Honeywell International Inc. | Multilayer excitation ring |
11204365, | Sep 13 2018 | TGS-NOPEC GEOPHYSICAL COMPANY | Multi-axis, single mass accelerometer |
11521772, | Feb 11 2020 | Honeywell International Inc. | Multilayer magnetic circuit assembly |
11561314, | Oct 30 2015 | TGS-NOPEC GEOPHYSICAL COMPANY | Multi-axis, single mass accelerometer |
ER2559, |
Patent | Priority | Assignee | Title |
3444743, | |||
3702073, | |||
4190782, | Jul 24 1978 | TCI ACQUISITION CORP ; TELEX COMMUNICATIONS, INC | Piezoelectric ceramic resonant transducer with stable frequency |
4250757, | May 15 1978 | AlliedSignal Inc | Movable element with position sensing means for transducers |
4498342, | Apr 18 1983 | Honeywell Inc. | Integrated silicon accelerometer with stress-free rebalancing |
4592234, | Jun 11 1984 | Sundstrand Data Control, Inc. | Suspension system for a transducer |
4697455, | Apr 16 1986 | AlliedSignal Inc | Accelerometer coil mounting system |
4750363, | Jun 27 1986 | AlliedSignal Inc | Temperature compensation of an accelerometer |
4779463, | Jan 13 1987 | BEI SENSORS & SYSTEMS COMPANY, INC , A CORP OF DELAWARE | Servo accelerometer |
4854169, | Jun 15 1987 | Japan Aviation Electronics Industry Ltd. | Accelerometer |
4869105, | Aug 21 1987 | Kern & Co. Ltd. | Instrument casing assembly |
4932258, | Jun 29 1988 | AlliedSignal Inc | Stress compensated transducer |
5005414, | May 03 1988 | Robert Bosch GmbH | Acceleration pickup |
5024089, | Jun 29 1988 | AlliedSignal Inc | Stress compensated transducer |
5090243, | Jun 11 1990 | AlliedSignal Inc | Preload system for accelerometer |
5111694, | Aug 17 1990 | AlliedSignal Inc | Accelerometer with rebalance coil stress isolation |
5182949, | May 17 1991 | AlliedSignal Inc | Accelerometer with support caging |
5212984, | Nov 30 1984 | AlliedSignal Inc | Mounting system for an accelerometer |
5287744, | Jun 11 1990 | AlliedSignal Inc | Accelerometer with flexure isolation |
5763779, | Feb 09 1995 | AlliedSignal, Inc. | Accelerometer with improved support rim isolation |
7073380, | Feb 17 2004 | Honeywell International, Inc. | Pyramid socket suspension |
8901681, | Mar 12 2013 | Panasonic Corporation | Method and apparatus for attachment of MEMS devices |
20030188578, | |||
20080041158, | |||
20100192691, | |||
20110209545, | |||
GB2444373, | |||
WO79287, | |||
WO8706350, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 04 2012 | LEVY, OREN | ISRAEL AEROSPACE INDUSTRIES LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032576 | /0207 | |
Sep 24 2012 | ISRAEL AEROSPACE INDUSTRIES LTD. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 08 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 01 2024 | REM: Maintenance Fee Reminder Mailed. |
Sep 16 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 16 2024 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Nov 08 2019 | 4 years fee payment window open |
May 08 2020 | 6 months grace period start (w surcharge) |
Nov 08 2020 | patent expiry (for year 4) |
Nov 08 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 08 2023 | 8 years fee payment window open |
May 08 2024 | 6 months grace period start (w surcharge) |
Nov 08 2024 | patent expiry (for year 8) |
Nov 08 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 08 2027 | 12 years fee payment window open |
May 08 2028 | 6 months grace period start (w surcharge) |
Nov 08 2028 | patent expiry (for year 12) |
Nov 08 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |