Methods and systems for call processing are described. A call from a caller intended for a first party is received at a call processing system, which stores call signaling information associated with the call. A greeting is played to the caller, and a voice communication is received and recorded. At least a first portion of the voice communication is transmitted in substantially real time to a terminal associated with the first person. At least a portion of the voice communication is converted to text and the text is stored and transmitted to a terminal associated with the first party. When a search query is received from the first party, the system searches the data store to determine if there is matching call having related matching call information. If there is a matching call, related information may be provided to the first party.

Patent
   9491297
Priority
Mar 26 2007
Filed
Aug 30 2013
Issued
Nov 08 2016
Expiry
Jan 08 2028

TERM.DISCL.
Assg.orig
Entity
Large
1
116
EXPIRED
16. A system comprising:
at least one computer processor; and
non-transitory memory, which is operably connected to the at least one computer processor, and embodied with a computer program comprising instructions that when executed by the at least one computer processor cause the at least one computer processor to perform operations comprising:
receiving a call from a caller intended for a user of the call processing system;
accessing a time period value from computer readable memory;
determining how much of the caller voice communication to convert based at least in part on the time period value;
converting a portion of a caller's voice communication associated with the call into a voice communication text, wherein the portion of the caller's voice communication associated with the call is an initial portion of the call;
identifying a subset of words in the voice communication text; and
analyzing, by the call processing system, at least the content of the identified subset of words of the caller voice communication, and
promoting to the user of the call processing system, to whom the call was intended, one or more services based at least in part on the analysis of the content of the identified subset of words of the caller voice communication text.
1. A method of processing a call comprising:
receiving at a call processing system a call from a caller intended for a user of the call processing system, wherein the call processing system comprises processing hardware and is configured to perform textual transcription of voice communications;
accessing a time period value from computer readable memory;
determining how much of the caller voice communication to convert based at least in part on the time period value;
converting, by the call processing system, a portion of a caller's voice communication associated with the call into voice communication text, wherein the portion of the caller's voice communication associated with the call is an initial portion of the call;
identifying, by the call processing system, a subset of words in the voice communication text;
making accessible, over a network, to the user of the call processing system to whom the call was intended, the identified subset of words of the voice communication text; and
analyzing, by the call processing system, at least the content of the identified subset of words of the caller voice communication, and promoting one or more services to the user of the call processing system, to whom the call was intended, based at least in part on the analysis of the content of the identified subset of words of the caller voice communication.
15. A method of processing a call comprising:
receiving at a call processing system, wherein the call processing system comprises processing hardware and is configured to perform textual transcription of voice communications, a call from a caller intended for a user of the call processing system;
accessing a lead-in-text count from computer readable memory; and
converting, by the call processing system, a portion of a caller's voice communication associated with the call into voice communication text, wherein the portion of the caller's voice communication associated with the call is an initial portion of the call and converting a portion of a caller's voice communication associated with the call into voice communication text comprises converting, by the call processing system, the portion of the caller's voice communication into a first quantity of text wherein the first quantity is not to exceed a second quantity, wherein the second quantity is based at least in part on the lead-in-text count;
identifying, by the call processing system, a subset of words in the voice communication text; and
analyzing, by the call processing system, at least the content of the identified subset of words of the caller voice communication, and promoting to the user of the call processing system, to whom the call was intended, one or more services based at least in part on the analyses of the content of the identified subset of words of the caller voice communication text.
6. A method of processing a call comprising:
receiving at a call processing system, wherein the call processing system comprises processing hardware and is configured to perform textual transcription of voice communications, a call from a caller intended for a user of the call processing system;
accessing a time period value from computer readable memory;
converting, by the call processing system, a portion of a caller's voice communication associated with the call into voice communication text, wherein the portion of the caller's voice communication associated with the call is an initial portion of the call and converting a portion of a caller's voice communication associated with the call into voice communication text comprises converting, by the call processing system, the portion, having a first time length, of the caller's voice communication into text wherein the first time length does not exceed a second time length, wherein the second time length is based at least in part on the time period value;
identifying, by the call processing system, a subset of words in the voice communication text; and
analyzing, by the call processing system, at least the content of the identified subset of words of the caller voice communication, and promoting to the user of the call processing system, to whom the call was intended, one or more services based at least in part on the analyses of the content of the identified subset of words of the caller voice communication text.
5. A method of processing a call comprising:
receiving at a call processing system a call from a caller intended for a user of the call processing system, wherein the call processing system comprises processing hardware and is configured to perform textual transcription of voice communications;
accessing a lead-in-text count from computer readable memory;
converting, by the call processing system, a portion of a caller's voice communication associated with the call into voice communication text, wherein the portion of the caller's voice communication associated with the call is an initial portion of the call and converting a portion of a caller's voice communication associated with the call into voice communication text comprises converting the portion of the caller's voice communication into a first quantity of text wherein the first quantity is not to exceed a second quantity, wherein the second quantity is based at least in part on the lead-in-text count;
identifying, by the call processing system, a subset of words in the voice communication text;
making accessible, over a network, to the user of the call processing system to whom the call was intended, the identified subset of words of the voice communication text; and
analyzing, by the call processing system, at least the content of the identified subset of words of the caller voice communication, and promoting one or more services to the user of the call processing system, to whom the call was intended, based at least in part on the analysis of the content of the identified subset of words of the caller voice communication.
2. The method as defined in claim 1, the method further comprising enabling the user of the call processing system, to whom the call was intended, to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system.
3. The method as defined in claim 1, the method further comprising:
enabling the user of the call processing system, to whom the call was intended, to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system via a search query;
obtaining search results, corresponding to the search query from the user of the call processing system, wherein the search results include at least a portion of the subset of words in the voice communication text; and
enabling the search results, including at least the portion of the subset of words in the voice communication text, to be provided for display to the user of the call processing system.
4. The method as defined in claim 1, the method further comprising:
receiving, by the call processing system, call signaling information associated with the call;
enabling the user of the call processing system, to whom the call was intended, to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system via a search query;
obtaining search results corresponding to the search query from the user of the call processing system, wherein the search results include at least a portion of the subset of words in the voice communication text,
enabling the search results, including at least the portion of the subset of words in the voice communication text, to be provided for display to the user of the call processing system; and
enabling at least a portion of the call signaling information associated with the call to be provided for display to the user of the call processing system in association with the search results.
7. The method as defined in claim 6, the method further comprising enabling the user of the call processing system to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system.
8. The method as defined in claim 6, the method further comprising:
enabling the user of the call processing system, to whom the call was intended, to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system via a search query;
obtaining search results, corresponding to the search query from the user of the call processing system, wherein the search results include at least a portion of the subset of words in the voice communication text; and
enabling the search results, including at least the portion of the subset of words in the voice communication text, to be provided for display to the user of the call processing system.
9. The method as defined in claim 6, the method further comprising:
receiving, by the call processing system, call signaling information associated with the call;
enabling the user of the call processing system, to whom the call was intended, to search the subset of words of the voice communication text for one or more search terms specified by the user of the call processing system via a search query;
obtaining search results corresponding to the search query from the user of the call processing system, wherein the search results include at least a portion of the subset of words in the voice communication text,
enabling the search results, including at least the portion of the subset of words in the voice communication text, to be provided for display to the user of the call processing system; and
enabling at least a portion of the call signaling information associated with the call to be provided for display to the user of the call processing system in association with the search results.
10. The method as defined in claim 6, wherein the portion of the caller's voice communication comprises the caller's entire voice communication of the call.
11. The method as defined in claim 6, the method further comprising enabling the user of the call processing system to:
assign a name in a contact record associated with the caller, or
edit a name in a contact record associated with the caller, or
assign and edit a name in a contact record associated with the caller.
12. The method as defined in claim 6, wherein the identification, by the call processing system, of the subset of words of voice communication text is based at least in part on one or more keywords.
13. The method as defined in claim 12, wherein the one or more keywords include activity words.
14. The method as defined in claim 6, the method further comprising enhancing search performance at least in part by indexing the identified subset of words of voice communication text.

This application is a continuation application of U.S. patent application Ser. No. 13/614,532, filed Sep. 13, 2012, which is a continuation of U.S. patent application Ser. No. 11/971,097, filed Jan. 8, 2008, now U.S. Pat. No. 8,325,886, which claims priority from U.S. Patent Application No. 60/908,123, filed Mar. 26, 2007, which are hereby incorporated by reference in their entirety.

Not applicable.

Not applicable.

Not applicable.

1. Field of the Invention

The present invention is related to telecommunications, and in particular, to methods and systems for retaining, organizing, presenting, and responding to calls and messages.

2. Description of the Related Art

There is a wealth of information exchanged when people use their phones. Conventionally only a very limited part of this information is captured, in the form of messages, and usually only briefly while it is of immediate use and then it is discarded. Some of this information, such as pictures and contacts, may be retained longer, but it is difficult for the user to manage.

The present invention is related to telecommunications, and in particular, to methods and systems which can be utilized for retaining, organizing, presenting, and/or responding to calls, messages, and other objects.

An example embodiment provides a method of call processing, comprising: receiving at a call processing system a call from a caller intended for a first party; storing at least a portion of the call signaling information associated with the call in a computer readable medium; playing a greeting to the caller; receiving a voice communication from the caller; recording the voice communication from the caller; transmitting in substantially real time from the call processing system at least a first portion of the voice communication to a terminal associated with the first person; converting at least a portion of the voice communication to text; transmitting at least a portion of the voice communication text to a terminal associated with the first party; storing in a data store voice communication text for later access by the first party; receiving a search query from the first party; searching the data store to determine if there is matching call having related matching call information stored in the data store; and at least partly in response to determining that there is a matching call, providing information related to the matching call to the first party.

An example embodiment provides a method of managing telecommunications data, comprising: receiving a call from a caller intended for a first party; recording a voice message from the caller; automatically transmitting voice message text corresponding to at least a portion of the voice message to a terminal associated with the first party; and storing in a data store external to a mobile telephone associated with the first party voice message text for later access by the first party.

An example embodiment provides a method of processing a call comprising: receiving at a telecommunications processing system a first call; receiving a facsimile communication intended for a first person during the first call; converting at least a portion of the facsimile communication into a text message; storing at least a portion of call signaling information associated with the first call; storing the text message and/or an image file corresponding to the facsimile communication in a location accessible by the first person; and enabling the first user to search signaling information and/or the text of the facsimile message.

An example embodiment provides a method of processing a call comprising: receiving at a call processing system a first call from a caller intended for a first person including call signaling information; recording a voice communication from the caller; converting at least a portion of the caller's voice communication into text; transmitting a call notification regarding the first call to a terminal associated with the first person; enabling the first person to search at least a portion of the signaling information and/or the text; providing the first person with access to the text and at least a portion of the call signaling information; and enabling the first person to edit the text and/or call signaling information.

An example embodiment provides a method of processing a call comprising: transmitting a communication from a first person to a second person via a call processing system; storing routing information associated with the communication; enabling the first person and/or the second person to search the routing information; if the communication is a voice message, converting at least a portion of the voice communication to text and storing the text, if the communication is a facsimile message, converting at least a portion of the facsimile message to text and storing the facsimile text, enabling the first person and/or the second person to search the facsimile text; if the communication is a text communication, enabling the first person and/or the second person to search the text communication.

Embodiments of the present invention will now be described with reference to the drawings summarized below. These drawings and the associated description are provided to illustrate example embodiments of the invention, and not to limit the scope of the invention.

FIG. 1 illustrates an example network operating environment for advanced telecommunications services.

FIG. 2 illustrates a first example telecommunications client call log and user contact interface.

FIG. 3 illustrates a second example Web-based telecommunications client call log and user contact interface.

FIG. 4 illustrates a third example Widget-based telecommunications client call log user interface.

FIG. 5 illustrates an example operating environment/process for a call and text response.

The present invention is related to telecommunications, and in particular, to methods and systems which can be utilized for retaining, organizing, presenting, and/or responding to calls, messages, and other objects.

As discussed above, there is a wealth of information exchanged when people use their phones. This trail of information often has long term value to the individual if it can be retained, organized, and made easily searchable. The information trail in effect expands a user's personal, searchable memory. Certain embodiments optionally store this information indefinitely or for an extended period of time.

In particular, certain embodiments provide methods and systems which enable a service provider to offer services that allow subscribers to store a collection of objects (e.g., calls and messages). These objects of interest to the subscriber are optionally accumulated as calls occur and messages are exchanged. Certain data/objects of interest are organized to be useful and are readily accessible to the subscriber from various devices. The data/objects are optionally retained indefinitely (or for an extended or designated period of time) in a reliable and accessible file store.

Retaining and organizing calls and messages improves a subscriber's overall communication experience, increasing the attractiveness and value to the subscriber of the service provider's telecommunications service offering. Further, optionally the data store for a subscriber is not available to other telecommunication service providers. Thus, because the secure personalized information is not available to another service provider, a subscriber would be less likely to switch to another service provider as this may result in a loss of access to the personalized information. Therefore, services described herein can act as a subscriber retention tool for a service provider as the subscriber would not want to lose access to the personalized information.

Certain embodiments of the call processing system described in the application provide call and message services using condition monitors/triggers, such as SS7 Advanced Intelligent Network (AIN) triggers. In an example embodiment, to support this service, the service provider configures a trigger at the appropriate points in an inbound and/or outbound call for a customer/subscriber. In an example embodiment, when a certain trigger fires, a call processing system (e.g., acting as a Service Control Point (SCP) in the SS7 network, and connecting calls from one phone line to another, using, for example, software running on a computer system), receives a query that enables the call processing system to control, at least in part, the call and optionally control the visual presentation of the call (or message) to the caller, and/or the called party.

In an example embodiment, enhanced call management and call routing services are provided via Common Channel Signaling (CCS) or Common Channel Interoffice Signaling (CCIS) information, such as, by way of example, via SS7 Intelligent Network (IN) triggers in the switches of local exchange telephone companies. For example, SS7 AIN triggers are set in the switches of carriers, such as Carrier Partners (e.g., carriers who are partners with a third party call processing operator in providing enhanced call processing services) to provide calling services. In another example, SS7 Wireless Intelligent Network (WIN) triggers are set in the mobile switches of wireless carriers, such as wireless carrier partners, to provide calling services. In another example, Non-Intelligent Network Signaling (e.g., ISDN, CLASS Call Forwarding services) is used to originate, terminate, forward, and bridge calls.

Throughout the following description, the term “Web site” or “Web” is used to refer to a user-accessible network site that implements the basic World Wide Web standards for the coding and transmission of hypertextual documents. These standards currently include HTML (the Hypertext Markup Language) and HTTP (the Hypertext Transfer Protocol). It should be understood that the term “site” is not intended to imply a single geographic location, as a Web or other network site can, for example, include multiple geographically distributed computer systems that are appropriately linked together. Furthermore, while the following description relates to an embodiment utilizing the Internet and related protocols, other networks, such as networked interactive televisions, and other protocols may be used as well.

Further, while the following description refers to example network and telephony standards and protocols, other standards and protocols can be used as well. The term phone address can include a SIP address, a Skype address (or other peer-to-peer Internet telephony network address), a wireless phone number, an International number, an E.164 phone number, or other address. While Skype is referred to herein, other peer-to-peer telephony networks (e.g., having a decentralized and distributed user directory distributed among the nodes in the peer-to-peer telephony network) may be used as well. While certain phone addresses are referenced for purposes of illustration, other electronic addresses or locators can be used as well.

In addition, while reference may be made to electronic address books or contact lists, other data stores and formats can be used to store contact information. While certain intelligent network triggers are referred to herein, other triggers or events can be used as well. In addition, unless otherwise indicated, the functions described herein may be performed by executable code and instructions stored in computer readable memory and running on one or more processor-based systems. However, state machines, and/or hardwired electronic circuits can also be utilized. Further, with respect to the example processes described herein, not all the process states need to be reached, nor do the states have to be performed in the illustrated order. Further, certain process states that are illustrated as being serially performed can be performed in parallel.

Similarly, while certain examples may refer to a personal computer system or data device, other computer or electronic systems can be used as well, such as, without limitation, an interactive television, a networked-enabled personal digital assistant (PDA), a networked game console, a networked entertainment device, a smart phone (e.g., with an operating system and on which a user can install applications) and so on. While certain references are made to certain example system components or services, other components and services can be used as well. In addition, while certain user inputs are described as being provided via phone key presses or by clicking on a button, optionally, user inputs can be provides using other techniques, such as by voice or otherwise. While certain phone numbers are referenced for purposes of illustration, other phone numbers or electronic addresses or locators can be used as well.

While some examples refer to certain example messaging protocols (e.g., SMS or MMS) for illustrative purposes, other messaging protocols can be used as well (e.g., instant messaging, email, etc.).

In addition, certain call management capabilities described herein make use of a telecommunications client (e.g., a personal computer client, a client hosted on an interactive television, a network personal digital assistant, a smart phone, or a wireless phone with an Internet connection, etc.) to give the customer access to and management of calls (e.g., see example user interfaces illustrated in FIG. 2-4) and messages left for the customer. Optionally, a customer can have multiple clients hosted on multiple computers or other hosts. The same or similar functionality is optionally provided via a Web browser interface.

In an example embodiment, the telecommunications client application (see FIG. 2) connects to and communicates with a call processing system via the Internet, an intranet, or other network. The client application, executing on a subscriber's computer terminal or other host, can make the subscriber's online presence known to the call processing system (e.g., by transmitting a message over the Internet to the call processing system). Optionally, the client can be used to receive, edit, and display call log data from the call processing system (e.g., a list of calls placed to/received by the subscriber, or placed by the subscriber, including phone numbers, caller or called party names, date/time of the call, an indication as to whether a call was an outbound/inbound call, the city/state of the caller/called party, type of call voice or fax, other call signaling information, etc.), and/or call alert data (e.g., for an active call, listing the caller phone number, name, city/state, and/or call status (e.g., ringing, playing greeting, recording caller message, terminating call, displaying fax)). Optionally, the call alert also plays an audible signal, such as a ring tone.

The client application can display a log of recorded messages from callers, and optionally can provide playback controls (e.g., play, fast forward, rewind) for playing back or displaying the recorded message (e.g., a voice message, a video message, a fax message, etc.) via the client computer terminal. The client optionally can also be used to screen calls (e.g., wherein the call processing system streams a message being left by a caller to the client so that the called party can listen to the message in substantially real time) and to instruct the call processing system to accept calls on the host computer terminal, forward calls, refuse calls, initiate call conferencing, and to otherwise provide call handling instructions. Options are also provided in the client to respond to calls using a text reply option and/or multimedia reply option. In addition, options are provided whereby a user can search their contact database and/or the web.

For example, when a call alert is received by the client, as part of call presentation, a ringing sound is optionally played via the client host. Optionally, the incoming call is displayed in a call alert user interface for a first amount of time (e.g., a set time, such as 5 seconds, or for a user configurable period of time), and then the call appears in the associated call log.

A telecommunications client is just an example user interface. FIG. 3 illustrates another example call log user interface presented via a browser to a customer. The browser can be executing on a computer terminal, such as a personal computer, a Wireless Application Protocol (WAP) or browser-enabled phone, a PDA or the like. The call log can be accessed by supplying the appropriate URL to the browser and optionally providing log-on information, such as a user name and a password.

Some or all of the information and functionality provided by the user interfaces discussed can be provided by a widget or a gadget, FIG. 4. A widget can be in the form of a portable code that can be installed and executed within a Web page (e.g., an HTML-based web page) by an end user without requiring additional compilation. By way of illustration, a widget can be in the form of a window (with or without a border) with a particular appearance and behavior, a text box, a media player, etc. A widget can optionally accept and process user inputs. A gadget is equivalent to a widget that works in a Google framework. The term widgets can also encompass a badge, module, capsule, snippet, mini, or flake. Other types of applications can be used as well to provide the functionality of a widget or gadget.

The functionality, operation, and implementation for an example service retaining, organizing, presenting, and responding to calls, messages, other objects will now be described in further detail.

AIN—Advanced Intelligent Network

CNAM—Calling Name

CP—Carrier Partner

IP—Intelligent Peripheral

LIDB—Line Information Database

LNP—Local Number Portability

MMS—Multimedia message service

MSC—Mobile Switching Center

SCP—Service Control Point

SMPP—Short Message Peer-to-Peer Protocol

SMS—Short Message Service

SMSC—Short Message Switching Center

SSP—Service Switching Point

SS7—Signaling System 7

TCAP—Transaction Capabilities Application Part

WIN—Wireless Intelligent Network

FIG. 1 illustrates an example advanced telecommunications network environment. A service provider or carrier (e.g., a Carrier Partner) customer may have one or more landline or wireless phones 102 that connect to a local exchange switch, an SSP 112, or an MSC 114 in the carrier's network 110. The customer may also have one or more hosts (e.g., personal computers, networked televisions, personal digital assistants, smart phone, etc.) running a telecommunications client 108. In addition, a customer may have one or more phones connected to a broadband connection (e.g., via a cable modem or DSL modem) wherein the phone (e.g., an analog phone coupled to an analog phone adapter (ATA), a VoIP phone, a Skype phone, etc.) digitizes and packetizes voice data before transmitting over the broadband connection (e.g., using SIP, Skype/peer-to-peer, or other protocol) to a call routing service provider or other destination.

The telecommunications client 108 has one or more user interfaces that display some or all of the following: a call log, text messages (including transcribed voice message), a contact record/list, an optional automated character, and active, in-progress calls. The customer can elect to screen or take an active call or respond to a caller with a text message. Optionally, calls can also be made (originated) via the telecommunications client (e.g., where the host is equipped with a speaker and microphone). Optionally, information about a caller can be retrieved through a search function.

In this example, a call processing system 121 has a number of components, some of which are optionally centralized at a given location, others of which may be co-located in the carrier's network (e.g., to reduce network transport costs). An SCP is an optional AIN component that interacts with the SSPs (e.g., using the TCAP protocol). AIN triggers are armed for the customer's landline phone number/address/account so that when calls are made to or from that phone, a trigger fires and causes the SSP 112 to query the SCP for instructions on how to handle the call. The SCP is optionally also configured to perform TCAP queries to other SS7 components as needed by some services (e.g., request Automatic Callback from another carrier's switch when a line becomes idle).

In a non-AIN deployment, the call processing system 121 optionally interconnects with the PSTN using, by way of example, SS7 signaling. In this case, in an example embodiment, the SS7 signaling information associated with a call terminates on a Call Controller subsystem or the like, and the trunks (or bearer channels) terminate on one or more call managers (described further below). Optionally instead, the Call Controller subsystem and/or associated functions thereof, are included in a call manager subsystem 122.

In a VoIP deployment scenario, the call processing system 121 interconnects with the PSTN through an IP connection using, for example, Session Initiated Protocol (SIP) signaling. The IP network is optionally directly connected to Internet devices or calls are gatewayed from IP-to-PSTN at Network Points-of-Presence (NetPOP) which provide access points to the Internet.

In an example embodiment, SS7 WIN triggers are set in the mobile switches of wireless carriers (e.g., wireless carrier Partners) to provide similar calling services as described herein with respect to a landline phone for a customer's mobile phone number/address/account.

In an example embodiment, the call processing system 121 also contains one or more systems referred to as call managers 122. The call managers 122 are connected to the PSTN (e.g., via ISDN using the ISUP (ISDN User Part) protocol, by way of example, although other protocols can be used). The call managers 122 provide some or all of the following: provide a call screening service when screening is to be provided, record a message from a caller that is to be recorded, provide a voice prompt or message that is to be played to a caller and/or called party, record a facsimile document, detect speech or DTMF tones, convert speech that needs to be converted to text, and/or provide a gateway between the SS7-based networks (PSTN) and SIP-based networks (VoIP). The example call manager 122 optionally can also act as an IP (Intelligent Peripheral), another AIN component that the SCP can instruct the SSP to connect into the call for interaction with the called and calling party. The IP/call managers 122 and SCPs in the call processing system 121 optionally share a Call Registry that stores information about active calls.

The session managers 128 in the call processing system 121 optionally track telecommunication client presence and interact with a given telecommunications client (e.g., a client application hosted on a personal computer, PDA, smart phone, or a networked television) as call log, contact, and/or customer data needs to be synchronized with the centralized databases to provide the customer, via the client, with updated log, contact, and/or customer data. The session managers 128 also optionally provide the SCP in an AIN environment and call manager 122 in a non-AIN environment with service configuration information for the customer involved in a call. During an active call, the SCP and/or IP/call manager 122 optionally directly or indirectly interact with the telecommunications client 108, a phone portal 106, or a widget 104 to provide call progress information, provide message text, and to stream audio and/or visual content.

The call processing system 121 in this example contains centralized databases and/or a general-purpose storage area, optionally including, but not limited to, some or all of the following: a call log database, a contacts database, and a customer database 134. Optionally, the databases are not centralized and may be distributed geographically and/or over different systems. In this example, short term storage 138, 140, and long term storage 142, 144 may include one or more of the foregoing databases. Data stored in the short term storage may be copied or transferred to long term storage 142, 144 after a specified period of time or periodically. The long term storage 142, 144 may include, by way of example, optical storage, magnetic disk drives, and/or tape storage.

The call log database stores call events and related data for incoming and/or outgoing calls and text and/or multimedia messages. The contacts database stores information and parameters (e.g., names, identifiers, phone numbers/addresses, birthdays, notes, automated characters, and/or other information) associated with a sender, called, or calling party.

The customer database 134 stores information and parameters (e.g., account data, configuration information, and/or other information) associated with users (e.g., subscribers/customers). For example, a customer account can include an indication as to whether archive and phone management services provided via the call processing system 121 are to be enabled or displayed (e.g., wherein certain service packages and/or service prices do not include the archival and phone management service, and certain service packages and/or service prices include the archival and phone management service).

The call processing system 121 optionally includes other subsystems, such as some or all of the following: a router subsystem, which serves as an interface to the Internet 120 to manage communications between online IP client devices and call processing servers, an SMS server subsystem 124 which serves as a mail relay to transmit and receive SMS and MMS messages via an SMSC 118, a search engine 136 which can be used to search and sort archived calls, text and voice messages, contacts, and other kinds of phone related objects, a Customer Relationship Management (CRM) system 130 for monitoring and analyzing usage data and promoting new products and services and for providing related information to a operator terminal 146, a web server subsystem 126 to manage a “web site” associated with the call processing system 121 (e.g., via which a user can access an account set-up/configuration user interface, a call log, a contacts database, etc., using a browser or other network user interface), etc. These subsystems are optionally interconnected via a Local Area Network (LAN), a Wide Area Private Network (WAN), and/or a Wide Area Public Network (e.g., Internet).

A variety of different types of data can be stored by the call processing system 121, the carrier system, or other system, and the types of data that can be stored is not limited to examples described herein. The following list includes non-limiting example illustrative objects of the types of information that people can relate to and make long term use of, although fewer, additional and/or different types of information can be stored as well:

Some of this content is valuable to store remotely from the user phone in that it backs up information that is currently in use on the user's phone (e.g., contact information). Other content is the kind that accumulates over time and contains items of information that is valuable to reference later.

Information of interest is accumulated as calls occur and messages are exchanged. The information is optionally also captured as part of routine synchronization with the phone handset via a wireless data connection (e.g., via a carrier network, WiFi, Blue Tooth, etc.) or via temporary wired connection to a computer, such as a personal computer or smart phone. Optionally, certain information is retrieved from SS7 network databases or other databases as part of a call.

Example areas of interaction where information is gathered on behalf of the user include some or all of the following, and/or other areas of interaction:

Voice Mail—Recorded voice mail. For example, voice mail may be recorded by a server when the called party is unavailable. By way of illustration, messages may be recorded when a call is forwarded to a server on a busy or no answer condition, or when a call directed to called party is otherwise answered by the server. Other caller information that is optionally captured and stored includes, when available, the caller phone address, and this in turn can be used to query a database (e.g., one or more of a SS7 CNAM database, a LIDB, a name cache, a contact address book, and/or other data store or source) to retrieve the caller name.

Fax Mail—This may be received in conjunction with a voice mail interaction or by a caller directly dialing (e.g., via a dedicated fax machine, a fax server, or a device emulating a dedicated fax machine) a virtual fax number. As similarly described above, information about the caller (whether voice or fax) is often available and can be obtained and stored.

Short Message—Short messages (e.g., SMS text messages/MMS multimedia messages) are exchanged, by way of example, with other phones, with computer (e.g., personal computer) users, and/or other devices capable of accessing and/or transmitting short messages. The messages may be, by way of example and not limitation, captured at SMSC level, and for interactions with a computer, the messages may be captured at the computer. Information about the sender may be a phone address or an email address. Additionally, an IM (instant messaging) chat interaction can be tracked and the chat communications and times recorded.

Phone Call—Information about inbound or outbound calls that do not result in a busy or no answer condition may be captured by intercepting the call using AIN or WIN triggers. This is non-intrusive, yet can provide full or partial information related to the call including phone information about the other party (e.g., the caller phone address, city/state, etc.), disposition of the call, and/or call duration. The triggers can also be used to establish a call leg by which the conversation can be conferenced with a call processing system and recorded if so desired.

Handset Synchronization—Synchronization software is optionally deployed (e.g., on the handset and/or a separate computer system/server) whereby data on the handset may be synchronized with the server. The synchronization may be originated by the handset or optionally by the server. Optionally, synchronization may be configured (e.g., via the handset or other system) to occur automatically when a relevant change is detected on the handset or when the handset is notified of a change in the data archive that originated from other sources. Optionally this may be restricted to occur only when in higher bandwidth settings, e.g., WiFi. Synchronization may be optionally invoked manually by the user. The data synchronized may optionally include some or all of the following: contacts, pictures, tunes, ring tones, music, movies, configuration information, etc.

Web or computer interfaces—The data that is archived may be optionally augmented from other sources (e.g., Outlook (or other personal information manger)), synchronization of contacts, or the data may optionally be directly altered by the user through Web and computer interfaces. The Web/computer interface may act as an extension of the phone handset in that, optionally, it can make direct use of the stored information and generate information that is stored there as a result of the user generating calls or messages from that device.

As discussed above, some of the information that is gathered directly is augmented with other related data. This optionally includes name information from the SS7 CNAM database and the current carrier owning a number from the SS7 LNP database 116. It optionally also includes address information (e.g., from an SS7 LIDB database). This data may be used to automatically populate all or a portion of a contact list for the user or may be used to search for and capture other information.

Some or all of the obtained data described above is organized to be useful and is made readily accessible to join various pieces of information of interest, (e.g., based on time, personal contact, thread of interaction, or search text). Some or all of the following techniques are optionally used to help organize the data and make it more accessible, examples of which are described below:

Voice-To-Text—Voice messages and conversations are converted to text (voice-to-text) via a voice-to-text engine 132 optionally using large vocabulary continuous speech recognition technology, by individuals transcribing speech, by individuals speaking clearly into speaker dependent or independent speech recognition subsystems, or some combination of the foregoing (e.g., a combination of automated recognition technology and manual transcription by a human). This may be performed as part of archiving and/or as part of initial message presentation. Optionally, the voice-to-text process is be configured to only do keyword spotting (e.g., to spot words specified in a keyword file defined by a subscriber and/or a system operator, which may include proper/family names (e.g., John, Jane, Mom, Dad, etc.), activity words (movie, dinner, gym, etc.), to convert only the lead-in text (e.g., the first specified number of words (the first 10, 20, or 30 words), or the words in a first time period (e.g., the first 5 seconds, 10 seconds, 15 seconds), or to convert the entire message. Conversion to text facilitates search and storage. Optionally, the text is indexed (e.g., using an inverted index, a forward index, or other index, optionally using compression to reduce the size of indices), wherein the index is searched in response to a query to speed search performance.

Optical Character Recognition (OCR)—OCR (software that translates text images into computer readable text) may be applied to fax messages to facilitate searching the fax messages and to make these messages more usable and optionally editable.

Object/Face Recognition—Pictures and/or videos may be analyzed to recognize objects and faces (e.g., using eigenface, fisherface, the Hidden Markov model, Dynamic Link Matching, and/or other technique), to assign names to the pictures, and to thus allow pictures to be categorized (e.g., by the system and or the subscriber) via the assignment of keywords and/or textual descriptions, and made searchable (e.g., by keyword/descriptive text).

Interaction Threads—One or more associations that relate a sequence of interactions is tracked for future reference. In certain example instances, such association may be via directly supplied subject information or via specific IM chat sequences. Optionally, the information is inferred based on times, parties involved, and/or the actual or converted text involved.

In an example embodiment, data is organized around the objects discussed above with respect to storage content. Data that has associated text can be searched using a text search (e.g., by entering one or more data strings into a search field, wherein the system will search for matches and display the search results to the user). Certain data is organized into lists that are naturally indexed by phone number and/or name and optionally these keys can be used to identify and access the desired data.

As similarly discussed above, optionally, all or a specified subset of information that is captured is stored indefinitely, until the user decides to delete it (optionally even subscriber deleted information is archived but hidden from the subscriber presentation), or for a time period specified by the user and/or the system. Optionally, by default the information is only permitted to be accessed by the user associated with the account for which data is being stored, but the user may optionally establish groups that are allowed to have access to specific information or to certain categories of information (e.g., the user's contacts or a specified subset thereof, the user's outgoing pictures, received pictures, and/or a subset thereof, the user's voice mail messages, or a subset thereof (e.g., those from certain specified callers)). The user may define the group using a corresponding user interface. For example, a user may activate a create group control, name the created group, and then in effect drag the shared information into that group (e.g., “dropping” the information onto a displayed group name or into a displayed group file). Optionally, some information is explicitly and optionally automatically designated or identified as private and may not be shared (e.g., some or all of copyrighted information, such as music, movies, etc.). Information about a caller that is marked restricted in the network (e.g., the caller phone address when the caller has Caller ID blocking) is optionally not shared with the called party/user but the user may tag information received from that person with their name once they know it.

In an example embodiment, the security and information usage policy is clearly communicated to the user at the outset to establish trust.

Given that storage is optionally indefinite, in such circumstances the storage is preferably large and reliable. In one embodiment, this is achieved with large redundant data farms with geographic separation, using RAID, and/or other techniques.

The stored/archived information is optionally made to be accessible from various devices including optionally a computer, a handset in voice mode or data mode, a networked television, and/or other device. The access method may be specific to a particular kind of information (e.g., a list of most recent calls, a list of contacts, or the text from a converted voice message to be sent in an SMS) or it may be very general (e.g., search for all interactions with a particular individual in a given timeframe that involved a particular subject). Thus, new, recently arrived information and/or relatively old information can be located and identified from the stored/data.

Optionally, device specific user interfaces may be used to access the stored/archived data discussed above. For example for a computer, interactive television, or smart phone, the user interfaces can be implemented as a widget, to a more traditional Web portal, to an executable client. For an example telephone handset, the interaction is tailored to the available display space, resolution and/or user input mechanism (e.g., keypad, full keyboard, touch screen, voice activation, etc.), where the functionality is optionally similar to the provided via the computer, although in some cases optionally reduced in scope. FIGS. 2-4 provide example embodiments of various user interfaces.

Additional optional ways in which the archived information may be utilized include some or all of the following:

Data synchronization is optionally provided which enables data (such as some or all of the data discussed above) from an archive to be accessed and/or utilized by a remote handset. For example, if user needs to search for contacts beyond the manageable number of contacts the handset can manage (e.g., wherein not all the contacts are stored on the handset), the system automatically reaches back into the archive stored remote from the handset to locate contacts stored in the archive based on user search terms or index selection (e.g., contacts beginning with the letter “A”). A user can similarly access archived call logs, message text, etc.

Text reply or call back to a call log entry automatically causes one or more databases (e.g., SS7 databases) to be queried if call log entry is older than a certain date. By way of example, if a call log entry or response to a search query is older than a year, the system may be configured to automatically query a database (e.g., an LNP database) to determine if the number has been ported to another carrier or has been provisioned to another user.

Accumulating usage information that can drive the Customer Relationship Management (CRM) engine. For example, some or all of the following information can be obtained, stored, and used to determine what telecommunication services one or more participants might be interested in:

who a subscriber has been calling;

who has called the subscriber;

how many people the subscriber has called;

how many long distances calls the subscriber has placed;

how many video calls the subscriber has placed/received;

how many calls have been to/from other subscribers of the carrier;

the duration of local and/or long distance calls;

the timing of calls (e.g., how many during prime hours, how many during non-peak hours/on weekends);

how many text message (e.g., SMS messages), multimedia messages (e.g., MMS messages) and/or photographs/videos the subscriber has sent and/or received;

etc.

FIG. 5 depicts an example embodiment in which an extensive storage architecture is utilized to provide a service to a wireless subscriber of a carrier (e.g., a Carrier Partner). In this example embodiment, a caller calls a subscriber's mobile phone, the caller records a message on a voice answering service hosted by a server, transcribes the message, and the subscriber receives a transcription of the message. Later, the subscriber utilizes the extensive storage architecture to search for a personal call and replies to the call using text. The carrier mines/analyzes the archive and, based on the subscriber's usage, sends a message (e.g., a CRM message) to the subscriber promoting a service that would be of interest to the subscriber (e.g., where the service is related to message content and/or the subscriber's utilization of call related services). The example process is described below.

State 1. A Caller dials the subscriber's mobile phone number/address (or other phone-type address). This call is routed through the PSTN to a carrier (e.g., a CP). In this example embodiment, the caller places a call to the subscriber's mobile phone. The call routes through the SS7 network to the Mobile Switching System (MSC) currently serving the subscriber.

State 2. The MSC detects a condition, (e.g., a WIN trigger set on the subscriber's phone address) and transmits a message over a network to the call manager so that the call manger can log the call and/or perform alternate routing. Optionally, the message transmission occurs whether or not the call eventually gets conditionally forwarded on a busy or no answer condition.

State 3. The subscriber does not answer after a specified number of rings or amount of time. This no answer condition is detected by the MSC and causes the MSC to forward the call to the call manager (an enhanced service provider platform and/or call processing system) in accordance with a previously configured forwarding configuration. In the forwarded call, the MSC includes some or all of the call signaling information associated with the call, including, for example, the caller phone number/address, a privacy indicator, a designation of whether the call was a forwarded call, and/or the called party identifier (e.g., phone number/address or account number).

State 4A. The receiving call manager verifies the called phone address is that of a customer (e.g., a subscriber of a service offered by the operator of the call processing system and/or other entity having an account associated with the call processing system), optionally by determining if the called phone address or other identifier associated with the called party matches a customer number in the customer database (which stores customer account records).

State 4B. The call processing system queries the session manager to obtain some or all of the following: service configuration for the customer being called, the customer's call location, the customer's online status (e.g., online or offline with respect to a data network, such as the Internet), and contact information for the caller.

State 4C. Optionally, the session manager notifies the customer's telecommunications client (e.g., a Widget, a phone portal page, or telecommunication client as shown in FIG. 5), if online, that there is an incoming call. The client displays the call in its active call window (e.g., a call alert user interface) with the status set to “ringing”. A “Take Call” button on the telecommunications client is available to the customer to take action on the call (e.g., establish duplex communications with the caller, transfer the call, etc.).

State 4D. The call manager begins playing a greeting (e.g., a canned greeting or a greeting prerecorded by the customer, such as one that states the customer's name and/or asks the caller to leave a message) to the caller and the call processing system notifies the telecommunications client to cause the active call display to show “greeting caller”.

State 4E. The call manager plays a record tone and begins recording a message from the caller.

State 4F. The call manager notifies the telecommunications client to change the active call display to “recording”. The call manager then begins streaming the audio over the Internet to be played by the telecommunications client in substantially real-time.

State 4G. The call manager records a message and stores it in memory (e.g., in association with the subscriber's account or other subscriber identifier). The call manager logs the call and optionally updates the call frequency information for the contact (e.g., the call manager tracks the total number of calls received from a given phone address and/or caller, wherein the “total number of calls” can be the total number of calls received from a specific date, within a specified time period, or otherwise). The telecommunications client or call log web page clears the active call display and optionally adds the call to the top of the call log. This is a new caller for this subscriber so the call manager also queries a database (e.g., the CNAM database in the SS7 Network) to get the name associated with the calling phone address and then automatically creates a new contact if one does not already exist for the calling phone address.

State 5. The voice message is transcribed to text (automatically or optionally in whole or in part by a human) and stored in a call processing system database in association with a subscriber identifier. Optionally, one or more transcription passes are applied to the voice message. For example, a first pass transcription is applied to get the gist of the message or enough information (e.g., the first 10 seconds (or other specified time period) of the message and/or the last 10 seconds of the message) to communicate in a short message including the text (e.g., an SMS or MMS message). A second pass or full transcription follows in the background and the voice and text message is archived in a storage system. Optionally, a per caller contact database is queried to determine if the message should be transcribed to text or not.

State 6A. In this example, the subscriber is notified of the call and message on their wireless phone via SMS. The message contains text giving the gist of the voice message, e.g., urgency, call to action, recorded phone address. A Short Message Service or MMS service within the call processing system composes a Short Message (SM) or a multimedia message (MM), addresses it to the customer's mobile phone (or other device capable of receiving Short Messages or an MM designated by the subscriber via the telecommunications client or via the account management Web page) and sends the message to an SMSC. The session manager optionally stores a copy of the message in a data base or file system associated with the customer's account.

State 6B. The SMSC transmits the received message to the MSC.

State 6C. The MSC transmits a notification to the subscriber's mobile phone informing the mobile phone (or other designated communications device) there is a message waiting.

State 6D. A Message Waiting Indicator (MWI) update is transmitted (e.g., using an SMPP interface over a data network) to update the MWI icon on the wireless phone to indicate that there is a message waiting.

State 7. In this example, the subscriber is also alerted of the call via a Voice Mail Widget and/or computer client (which are optionally CP branded) on all or a selection portion of the subscriber's computers that are online and have their corresponding widget and/or client running.

State 8. At a later date (e.g., a year later), the subscriber needs to get back in touch with the caller. In this example, the subscriber accesses their Carrier Partner branded phone portal (or other branded or non-branded interface) which among other features and services includes an archive (or access to an archive) of the subscriber's calls, messages, and contacts. By way of example, the subscriber could access the Phone Portal by clicking on a Widget control which presents their Carrier Partner branded Web Phone Portal. From the Portal, the subscriber optionally initiates a search or sort on their organized calls, messages, and/or contacts.

State 9. The Web Server provides the search text provided or selected by the subscriber to the Search Engine so that it can quickly find relevant voice and text messages and/or contacts. In this example the search spans both short term and longer term storage. Optionally, the subscriber can limit the search to certain date ranges, communication initiators (e.g., to a certain caller or called party; a certain text message originator or recipient, etc.) and data sources.

State 10. In response to the search request, the search engine generates a list of search results (optionally ordered by relevancy, with the most relevant listed first or by date, where the subscriber can optionally specify the ordering to be used) and transmits the results to the subscriber. The subscriber is presented in a user interface with the results or a portion thereof (e.g., the relevant messages). For voice messages, the text is also displayed and the cursor can be moved to a desired point in the displayed text to start playing the voice message. Thus, the text can act as an index to the corresponding voice message.

State 11. The subscriber decides to send a text message to the caller after reviewing the results response from the search request. The subscriber in this example decides to send a text message using their SMS Widget. Optionally there is an automated interaction from the Web Phone Portal which prepopulates the subscriber's SMS Widget or the user selects a control from the Web Phone Portal which launches an SMS Widget or equivalent user interface. The message send request is transmitted over a network from the SMS widget client through the Web Server to the SMS Server.

State 12. The SMS Server queries a database (e.g., the LNP database in the SS7 Network) to determine the current carrier, as the original caller may have ported to another carrier.

State 13. The SMS Server transmits the message for delivery to the original caller/contact's wireless phone via the SMSC. The SMS Server logs the transaction including the text of the message. The text log is available to the subscriber for later review, search, and sorting.

State 14. In this example embodiment, based on an analysis of logged activity for the subscriber, the CRM Engine notices a usage pattern (e.g., who the user has been calling, who has called the user, how many people the user has called, how many long distances calls the user has placed, how many video calls the user has placed/received, how many calls have been to/from other subscribers of the carrier, the duration of local and/or long distance calls, the timing of calls (e.g., how many during prime hours, how many during non-peak hours/on weekends), how many text messages or multimedia messages (e.g., SMS or MMS messages) and/or photographs/videos the user has sent and/or received, etc.) that matches the market profile for a new service the carrier (e.g., a Carrier Partner) is offering, so the call processing system sends an email or SMS message, or displays a message in the widget, Phone Portal, or telecommunications client to that subscriber encouraging them to try it out, optionally on a free trial basis. For example, the service may be a call-related service and/or a different rate plan then that the subscriber is currently under.

While the above examples refer to calls forwarded to the call processing system (e.g., on a ring-no-answer, busy, or call forward all condition), the calls optionally could have been placed to a virtual phone number associated with the customer and “owned” by the call processing system, so that calls to the virtual phone number are received at the call processing system without needing to be forwarded (e.g., which terminates directly on the call processing system). Further, while certain of the above examples refer to transmission of an SMS message over a mobile network to a customer mobile phone, other message types (e.g., email or instant messages) can be transmitted over other types of networks (e.g., an Internet protocol network) or other device types (e.g., an Internet protocol phone).

It should be understood that certain variations and modifications of the systems and processes described herein would suggest themselves to one of ordinary skill in the art. The scope of the present invention is not to be limited by the illustrations or the foregoing descriptions thereof.

Hofstatter, David F., Trandal, David S., Kirchhoff, Leland W.

Patent Priority Assignee Title
11588900, Jul 02 2020 JPMORGAN CHASE BANK , N A Systems and methods multi-tenant and omni-channel routing
Patent Priority Assignee Title
5526407, Sep 30 1991 Riverrun Technology Method and apparatus for managing information
5533106, Jun 27 1994 Qwest Communications International Inc Method and system for processing calls wherein the display of calling party ID information has been inhibited
5619708, Oct 25 1994 AEON APPLICATIONS, LLC System and method for generating database input forms
5651054, Apr 13 1995 Cisco Technology, Inc Method and apparatus for monitoring a message in a voice mail system
5668928, Jan 31 1995 AEON APPLICATIONS, LLC Speech recognition system and method with automatic syntax generation
5729741, Apr 10 1995 Open Invention Network LLC System for storage and retrieval of diverse types of information obtained from different media sources which includes video, audio, and text transcriptions
6175622, Feb 18 1997 Apple Inc Virtual private network for a telephone network
6333973, Apr 23 1997 RPX CLEARINGHOUSE LLC Integrated message center
6353660, Mar 02 2000 Intellectual Ventures I LLC Voice call processing methods
6356662, Oct 15 1998 Winbond Electronics Corp. Method of efficiently handling digitized data through compression/decompression and utilization
6411692, Mar 06 1996 Convergys Customer Management Delaware LLC System for providing caller information to called party via call standard data field
6442250, Aug 22 2000 Verizon Patent and Licensing Inc Systems and methods for transmitting messages to predefined groups
6507643, Mar 16 2000 Breveon Incorporated Speech recognition system and method for converting voice mail messages to electronic mail messages
6606373, Dec 31 1997 USA MOBILITY WIRELESS, INC Controller for use with communications systems for generating a condensed text message index
6658100, Feb 18 1997 RAKUTEN, INC Method and apparatus for communicating information about a called party to a calling party
6661785, Oct 12 1999 HANGER SOLUTIONS, LLC Method and apparatus for providing internet call waiting with voice over internet protocol
6687340, Dec 23 1997 AT&T Corp. Forwarding voice messages to a called party using electronic mail
6751297, Dec 11 2000 COGNYTE SOFTWARE LTD Method and system for multimedia network based data acquisition, recording and distribution
6775651, May 26 2000 Nuance Communications, Inc Method of transcribing text from computer voice mail
6804334, May 19 2000 Alcatel Lucent Method and device for dynamic message delivery based upon identification of originating caller
6813603, Jan 26 2000 Vlingo Corporation System and method for user controlled insertion of standardized text in user selected fields while dictating text entries for completing a form
7058573, Apr 20 1999 NUANCE COMMUNICATIONS INC DELAWARE CORP Speech recognition system to selectively utilize different speech recognition techniques over multiple speech recognition passes
7065186, Nov 08 1999 RPX CLEARINGHOUSE LLC Telephone based access to instant messaging
7085716, Oct 26 2000 Nuance Communications, Inc Speech recognition using word-in-phrase command
7103154, Jan 16 1998 GOOGLE LLC Automatic transmission of voice-to-text converted voice message
7136462, Jul 15 2003 Alcatel Lucent Network speech-to-text conversion and store
7170978, Dec 13 2001 TELEFONAKTIEBOLAGET LM ERLCSSON PUBL Voice mail service where the caller can choose among different message types
7191135, Apr 08 1998 Symbol Technologies, LLC Speech recognition system and method for employing the same
7206389, Jan 07 2004 Microsoft Technology Licensing, LLC Method and apparatus for generating a speech-recognition-based call-routing system
7209964, Oct 06 1997 Verizon Patent and Licensing Inc Intelligent network
7302539, Apr 20 2005 Hewlett Packard Enterprise Development LP Migrating data in a storage system
7310601, Jun 08 2004 Panasonic Intellectual Property Corporation of America Speech recognition apparatus and speech recognition method
7316354, Mar 11 2004 VOCOLLECT, Inc. Method and system for voice enabling an automated storage system
7319742, Jun 26 2003 AT&T Delaware Intellectual Property, Inc. Voice information storage and retrieval system and method
7324939, Mar 04 2000 Georgia Tech Research Corporation Phonetic searching
7324940, Feb 28 2003 AI SOFTWARE, LLC Speech recognition concept confidence measurement
7324943, Oct 02 2003 Panasonic Intellectual Property Corporation of America Voice tagging, voice annotation, and speech recognition for portable devices with optional post processing
7327696, Sep 11 2000 R2 SOLUTIONS LLC Intelligent voice converter
7327723, Mar 03 1997 Parus Holdings, Inc. Computer, internet and telecommunications based network
7369653, Nov 05 2001 Wilmington Trust, National Association, as Administrative Agent Method of delivering enterprise data through a call center
7388949, Dec 28 2000 Bellsouth Intellectual Property Corporation System and method for audio caller identification service
7400711, Feb 25 2000 GOOGLE LLC System and technique for dynamically interjecting live advertisements in the context of real-time isochronous (telephone-model) discourse
7412050, Oct 01 2003 GOOGLE LLC Conference calls via an intelligent call waiting interface
7539086, Oct 23 2002 ADVANCED MESSAGING TECHNOLOGIES, INC System and method for the secure, real-time, high accuracy conversion of general-quality speech into text
7647350, Sep 06 2006 Red Hat, Inc Database access server with compression translator
7702792, Jan 08 2004 Cisco Technology, Inc. Method and system for managing communication sessions between a text-based and a voice-based client
7716186, Jan 22 2007 International Business Machines Corporation Method and system for transparent backup to a hierarchical storage system
7826605, Jan 20 2005 1-800-411-SAVE, INC Method and system for integrating information from wireless and landline telephone systems
7903795, Jun 15 2004 ARLINGTON TECHNOLOGIES, LLC System and method for indicating status of an incoming transmission to a user
7979403, Apr 26 2004 International Business Machines Corporation Method and system for compression of files for storage and operation on compressed files
8208796, Apr 17 2006 TECH 5 SAS Systems and methods for prioritizing the storage location of media data
8214338, May 01 2007 Callwave Communications, LLC Methods and systems for media storage
8244540, May 02 2006 Xerox Corporation System and method for providing a textual representation of an audio message to a mobile device
8447285, Mar 26 2007 Callwave Communications, LLC Methods and systems for managing telecommunications and for translating voice messages to text messages
8582729, Feb 24 2006 QUALCOMM INCORPORATED, A DELAWARE CORPORATION System and method of controlling a graphical user interface at a wireless device
20020176548,
20020178002,
20030016792,
20030026393,
20030063731,
20030123629,
20030142807,
20030220784,
20040076272,
20040105536,
20040190703,
20040240641,
20040252679,
20050013419,
20050129206,
20050136955,
20050141678,
20050171936,
20050265322,
20060045255,
20060058052,
20060143307,
20060168015,
20060223502,
20060234680,
20060256934,
20070054678,
20070116194,
20070116204,
20070117543,
20070117544,
20070117545,
20070117546,
20070117547,
20070118357,
20070126875,
20070127638,
20070127657,
20070127688,
20070183405,
20070201636,
20070217579,
20070245024,
20070274465,
20070280434,
20080109422,
20080140398,
20080177786,
20080178225,
20080229048,
20080260114,
20090067586,
20100184409,
20110113343,
20110196926,
20110268260,
EP1120954,
JP10513632,
JP11506292,
JP2001168989,
WO176210,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 30 2013Callwave Communications, LLC(assignment on the face of the patent)
May 20 2016Callwave Communications, LLCTECHNOLOGY INVESTMENT HOLDINGS II, LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0387700923 pdf
Date Maintenance Fee Events
Jun 29 2020REM: Maintenance Fee Reminder Mailed.
Dec 14 2020EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 08 20194 years fee payment window open
May 08 20206 months grace period start (w surcharge)
Nov 08 2020patent expiry (for year 4)
Nov 08 20222 years to revive unintentionally abandoned end. (for year 4)
Nov 08 20238 years fee payment window open
May 08 20246 months grace period start (w surcharge)
Nov 08 2024patent expiry (for year 8)
Nov 08 20262 years to revive unintentionally abandoned end. (for year 8)
Nov 08 202712 years fee payment window open
May 08 20286 months grace period start (w surcharge)
Nov 08 2028patent expiry (for year 12)
Nov 08 20302 years to revive unintentionally abandoned end. (for year 12)