A film formation is performed using a target in which a material which is volatilized more easily than gallium when heated at 400° C. to 700° C., such as zinc, is added to gallium oxide by a sputtering method with high mass-productivity which can be applied to a large-area substrate, such as a DC sputtering method or a pulsed DC sputtering method. This film is heated at 400° C. to 700° C., whereby the added material is segregated in the vicinity of a surface of the film. Another portion of the film has a decreased concentration of the added material and a sufficiently high insulating property; therefore, it can be used for a gate insulator of a semiconductor device, or the like.
|
1. An electronic device comprising:
a substrate;
an oxide film over the substrate; and
a semi-conductive oxide film over and in contact with the oxide film,
wherein the oxide film comprises at least a first metal element and a second metal element,
wherein a portion in contact with the semi-conductive oxide film has higher concentration of the first metal element in the oxide film than a portion facing the substrate, and
wherein the portion in contact with the semi-conductive oxide film has lower concentration of the second metal element in the oxide film than the portion facing the substrate.
8. An electronic device comprising:
a substrate;
a gate electrode over the substrate;
a gate insulator over the gate electrode;
an oxide film over the gate insulator; and
a semi-conductive oxide film over and in contact with the oxide film,
wherein the oxide film comprises at least a first metal element and a second metal element,
wherein a portion in contact with the semi-conductive oxide film has higher concentration of the first metal element in the oxide film than a portion facing the substrate, and
wherein the portion in contact with the semi-conductive oxide film has lower concentration of the second metal element in the oxide film than the portion facing the substrate.
15. An electronic device comprising:
a substrate;
a gate electrode over the substrate;
a gate insulator over the gate electrode;
an oxide film over the gate insulator;
a semi-conductive oxide film over and in contact with the oxide film;
n-type semi-conductive oxide films over and in contact with the semi-conductive oxide film,
wherein the oxide film comprises at least a first metal element and a second metal element,
wherein a portion in contact with the semi-conductive oxide film has higher concentration of the first metal element in the oxide film than a portion facing the substrate, and
wherein the portion in contact with the semi-conductive oxide film has lower concentration of the second metal element in the oxide film than the portion facing the substrate.
2. The electronic device according to
3. The electronic device according to
4. The electronic device according to
5. The electronic device according to
6. The electronic device according to
7. The electronic device according to
9. The electronic device according to
10. The electronic device according to
11. The electronic device according to
12. The electronic device according to
13. The electronic device according to
14. The electronic device according to
16. The electronic device according to
17. The electronic device according to
18. The electronic device according to
19. The electronic device according to
20. The electronic device according to
21. The electronic device according to
|
1. Field of the Invention
The present invention relates to an electronic device including an oxide film, a manufacturing method of the electronic device, and a sputtering target used for manufacturing the oxide film.
Note that an electronic device in this specification refers to any device that utilizes electric properties, and a semiconductor device that can function by utilizing semiconductor characteristics is included in the category of the electronic device. In addition, a device that utilizes electric properties (e.g., a capacitor, a coil, or a variety of electronic tubes), even when the device does not utilize semiconductor characteristics, is included in the category of the electronic device. Therefore, an electro-optical device, a semiconductor circuit, and an electronic appliance are all included in the electronic device.
2. Description of the Related Art
Oxides include oxides having a variety of properties, such as a conductive oxide, a semi-conductive oxide, and an insulating oxide and are used for a variety of applications in accordance with their properties. For example, silicon oxide is a typical insulating oxide and is broadly used for the purpose of element isolation, insulation between wirings, or the like in particular in an integrated circuit. In addition, tantalum oxide, barium titanate, or the like is used as a capacitor dielectric by utilizing an insulating property and a high dielectric constant.
As a conductive oxide, indium oxide (or indium oxide to which tin or the like is added) can be given. It is used as a material for a transparent conductive film utilizing an appropriate conductivity and a high transparent property of visible light. Besides, an yttrium barium copper oxide, a bismuth lead strontium copper oxide, or the like is known as a material having superconductor properties at a temperature of higher than or equal to the boiling point of nitrogen.
Some oxides have semiconductor characteristics. Examples of such oxides having semiconductor characteristics (semi-conductive oxides) are a tungsten oxide, a tin oxide, and an indium-gallium-zinc-based oxide (In—Ga—Zn-based oxide), and a thin film transistor in which such a semi-conductive oxide is used for a channel formation region is known (see Patent Documents 1 and 2). Further, in particular, properties of an In—Ga—Zn-based oxide also have been researched (Non-Patent Document 1).
In the case where a thin film of such an oxide with a thickness of less than or equal to 1 μm is stacked over a film of another material, a sputtering method is generally employed. A conductive oxide film can be formed by the following method without any problem because a target has sufficient conductivity: an AC sputtering method (a sputtering method in which an alternating current with a frequency of lower than 1 kHz, typically lower than or equal to 100 Hz is used, and the AC sputtering method is referred to as a cycle sputtering method), a DC sputtering method (a sputtering method using a direct current, and the DC sputtering method includes a pulsed DC sputtering method in which voltage is applied in a pulsed manner) in addition to a microwave plasma sputtering method (a sputtering method using a microwave with a frequency of higher than or equal to 100 MHz) and an RF sputtering method (a sputtering method using a microwave with a frequency of higher than or equal to 1 kHz and lower than 100 MHz).
In particular, in consideration of mass productivity, a DC sputtering method or an AC sputtering method is more preferable than a microwave plasma sputtering method or an RF sputtering method. This is because by these methods, large-area plasma can be generated uniformly, so that a large-area substrate can be processed and mass productivity can be increased. In particular, an electronic device which needs a large area, such as a display device, is manufactured by a DC sputtering method or an AC sputtering method, which is preferable and practical.
However, when the conductivity of an oxide is decreased, it becomes difficult to employ a DC sputtering method or an AC sputtering method. This is because when the conductivity of a target is not sufficiently high, stable plasma cannot be generated in these methods.
There are some methods to improve the conductivity of a target. The first method is a method in which oxygen deficiency of an oxide is increased and the carrier concentration in the oxide is increased, so that the conductivity is increased. This method is effective for indium oxide and the like, for example. However, it is difficult to introduce oxygen deficiency in gallium oxide; therefore, the method is not effective.
The second method is a method in which hydrogen is mixed into an oxide and the carrier concentration in the oxide is increased, so that the conductivity is increased. However, hydrogen is brought into a film to be formed in this method. A semi-conductive oxide including hydrogen has unstable electronic characteristics, and in particular, the reliability becomes a big problem in manufacturing a semiconductor device such as a transistor.
The present invention has been made in view of the above-described situation. It is an object of the present invention to obtain an oxide film having a sufficiently high insulating property with mass production. It is another object to provide a novel electronic device (especially, a semiconductor device). It is still another object to provide a manufacturing method of a novel electronic device (especially, a manufacturing method of a semiconductor device).
An embodiment of the present invention disclosed in this specification is a manufacturing method of an electronic device including the steps of: forming an oxide film by a sputtering method using a target which contains an oxide including at least a first metal element and a second metal element; performing heat treatment on the oxide film; and etching a surface of the oxide film to obtain an insulating oxide film. The concentration of the first metal element in the insulating oxide film is lower than or equal to 50% of the concentration of the first metal element in the target.
Another embodiment of the present invention disclosed in this specification is a manufacturing method of an electronic device including the steps of: forming an oxide film by a sputtering method using a target which contains an oxide including at least a first metal element and a second metal element; performing heat treatment on the oxide film; and etching a surface of the oxide film to obtain an insulating oxide film. The conductivity of the target is higher than the conductivity of the insulating oxide film.
Another embodiment of the present invention disclosed in this specification is a manufacturing method of an electronic device including the steps of: forming an oxide film by a sputtering method using a target which contains an oxide including at least a first metal element and a second metal element; and performing heat treatment on the oxide film and reducing the concentration of the first metal element in the oxide to obtain an insulating oxide film.
In any of the above manufacturing methods, a semi-conductive oxide film may be provided in contact with the insulating oxide film.
Another embodiment of the present invention disclosed in this specification is a manufacturing method of an electronic device including the steps of: forming an oxide film by a sputtering method using a target which contains an oxide including at least a first metal element and a second metal element; performing heat treatment on the oxide film to form a region in which the concentration of the first metal element is high; and forming a semi-conductive oxide film in contact with the oxide film. The ratio of the second metal element to a metal element contained in the semi-conductive oxide film is greater than or equal to 0.2.
An embodiment of the present invention disclosed in this specification is a sputtering target which includes a conductive oxide including at least a first metal element and a second metal element and which is used in a device in which film formation is performed by a sputtering method. The oxide of the second metal element itself is an insulating oxide.
In any of the manufacturing methods, a sputtering method may be a DC sputtering method (including a pulsed DC sputtering method) or an AC sputtering method.
An embodiment of the present invention disclosed in this specification is an electronic device including an oxide film over a substrate and a semi-conductive oxide film provided on and in contact with the oxide film. The oxide film includes at least a first metal element and a second metal element. A portion in contact with the semi-conductive oxide film has higher concentration of the first metal element in the oxide film than a portion facing the substrate. On the other hand, the portion in contact with the semi-conductive oxide film has lower concentration of the second metal element in the oxide film than the portion facing the substrate.
In the above, the first metal element may be zinc. The second metal element may be gallium. Further, in the above, the semi-conductive oxide film may have an amorphous state. The semi-conductive oxide film may have a crystal. The semi-conductive oxide film may have a single-crystal state. The crystal may be c-axis-aligned on a surface perpendicularly to the substrate.
In the above, the heat treatment is performed at higher than or equal to 200° C., preferably higher than or equal to 400° C. and lower than 700° C. The atmosphere of the heat treatment is preferably an atmosphere containing oxygen or nitrogen. Further, the pressure is preferably higher than or equal to 10 Pa and lower than or equal to 1 normal atmospheric pressure.
For example, when gallium oxide is used for an electronic device, the conductivity cannot be increased due to oxygen deficiency or hydrogen introduction as described above, or gallium oxide is an undesirable material. However, since the dielectric constant of gallium oxide is high (approximately 10), it is assumed to be used as a capacitor dielectric or a gate insulator of a MISFET (field effect transistor having a metal insulator semiconductor structure). Further, a trap level is not generated at an interface with a semi-conductive oxide; therefore, gallium oxide is assumed to be used as an insulating film (including a gate insulator) provided in contact with such a semiconductor layer. In particular, an interface with an In—Ga—Zn-based oxide is preferable.
However, extremely low mass productivity due to the low conductivity described above is an obstacle. Zinc oxide has high conductivity, and for example, a substance in which aluminum is added to zinc oxide is known as AZO. It can be found from the description of FIG. 12 (Hall mobility and carrier density of a-IGZO) of Non-Patent Document 1 that in a substance in which zinc oxide and gallium oxide are mixed with each other in a ratio of 50:50, conductivity of 5×10−3Ω−1 cm−1 is obtained in an amorphous state. On the other hand, a substance in which zinc oxide and gallium oxide are mixed with each other in a ratio of 25:75 has a sufficiently high insulating property.
The present inventor found that when heat treatment is performed on such a gallium oxide film containing zinc, zinc is segregated on a surface of the film. That is, zinc which is uniformly distributed in the film is segregated on the surface by heat treatment, and another portion has sufficiently low concentration of zinc and a sufficiently high insulating property.
For example, a gallium oxide film containing zinc is formed over a substrate, and the concentration of zinc in a portion which is facing the substrate or an appropriate portion other than the vicinity of the surface is reduced to 50% or lower of the initial concentration of zinc (i.e., the concentration of zinc in the target) by heat treatment, so that such a portion can have a sufficiently high insulating property as described above and the gallium oxide film containing zinc can be used as an insulating film.
This phenomenon is caused because the vapor pressure of zinc or zinc oxide is higher than the vapor pressure of gallium or gallium oxide in the above heat treatment conditions. Therefore, this phenomenon is caused not only when gallium and zinc are used. This phenomenon might be caused if such a condition is satisfied even when two or more metal elements other than gallium and zinc are combined. For example, an oxide including gallium, aluminum, and zinc may be used instead of an oxide including gallium and zinc.
Further, when the concentration of zinc in the oxide film is measured, the concentration is extremely high in the vicinity of the surface, and tends to increase in the direction to the surface except for the vicinity of the surface. On the other hand, the concentration of gallium tends to decrease in the direction to the surface. Such a phenomenon is also caused because the vapor pressure of zinc or zinc oxide is higher than the vapor pressure of gallium or gallium oxide.
The insulating property is degraded due to the high concentration of zinc in the vicinity of the surface; therefore, a film having a sufficiently high insulating property can be obtained by removing this portion. By such treatment, the conductivity of an oxide film which is finally obtained can be lower than that of a target.
When a semi-conductive oxide film is formed in contact with the oxide film, a portion having high concentration of zinc in the vicinity of the surface may remain.
It is also found that the higher the temperature of the heat treatment is, the lower the pressure is, and the longer the heat treatment time is, the more easily zinc is vaporized from the oxide film and the concentration of zinc in the oxide film is decreased. When the concentration of gallium in the oxide film, that is Ga/(Ga+Zn), is increased to be greater than or equal to 0.7, preferably greater than or equal to 0.8 by such heat treatment, a sufficiently high insulating oxide can be obtained and used for a variety of electronic devices.
Conventionally, there was not a technical idea that a sputtering method is employed using an oxide whose conductivity is increased by adding different metal elements as a target in manufacturing an insulating oxide film. This is because there is no practical method for removing the added metal elements. The above method is innovative in this respect.
With the above embodiments, at least one of the problems can be resolved. For example, an oxide film having a high insulating property can be obtained by a DC sputtering method or an AC sputtering method.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the description below, and it is easily understood by those skilled in the art that modes and details disclosed herein can be modified in various ways without departing from the spirit and the scope of the present invention. Therefore, the present invention is not construed as being limited to description of the embodiments.
The structures, the conditions, and the like disclosed in any of the following embodiments can be combined with those disclosed in other embodiments as appropriate. Note that in structures described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and detailed description thereof is not repeated in some cases.
Note that in the following embodiments, an example where the technical idea of the present invention is applied to a display device including a transistor is mainly given; however, it can be easily understood that the technical idea of the present invention is not limited to applying to a display device. Further, terms such as “gate”, “source”, and “drain” used in the embodiments are used for simple description and are not limited to the interpretation of the meanings of the terms.
For example, “a conductive region and a region incorporated therewith provided so as to get across a semiconductor region over an insulating film provided over the semiconductor region” when normally expressed is simply referred to as a “gate electrode” in this specification. Further, a source and a drain are not particularly distinguished in this specification, and when one is referred to as a source, the other is referred to as a drain.
In addition, it should be noted that the terms such as a conductive oxide, a semi-conductive oxide, and an insulating oxide used in this specification do not have absolute meanings. Even when an oxide has the same composition and the same properties, a name is changed in accordance with the usage in some cases. For example, when an oxide is used for a target of DC sputtering, it is referred to as a conductive oxide. When an oxide is used for a semiconductor layer of a transistor, it is referred to as a semi-conductive oxide in some cases.
An oxide in this specification is an oxide in which the percentage of nitrogen, oxygen, fluorine, sulfur, selenium, chlorine, bromine, tellurium, and iodine (in a molar ratio) contained in a substance (including a compound) is higher than or equal to 25% of the total and the percentage of oxygen to the above elements (in a molar ratio) is higher than or equal to 70%.
A metal element in this specification refers to all elements other than a rare gas element, hydrogen, boron, carbon, nitrogen, a Group 16 element (e.g., oxygen), a Group 17 element (e.g., fluorine), silicon, phosphorus, germanium, arsenic, and antimony.
Further, in this specification, “one metal element is a main metal element” indicates the case where among a plurality of metal elements in a substance, the composition of the metal element is greater than or equal to 50% of the metal elements. In addition, “n metal elements M1, M2, . . . , and Mn are main metal elements” indicates the case where the sum of compositions of the metal elements M1, M2, . . . , and Mn is higher than or equal to {(1−2−n)×100} [%] of the metal elements.
Note that the concentration of an element which is not a main component in a film denoted in this specification is determined by a secondary ion mass spectrometry method unless otherwise specified. In general, when the concentration of an element in a depth direction of a single-layer or multilayer film is measured by a secondary ion mass spectrometry method, in particular in the case of a small amount of an element, the concentration of the element tends to be unusually high at an interface between a substrate and the film or between the films; however, the concentration of such a portion is not an accurate value and measurement variations are large.
It is desirable that the concentration in the vicinity of an interface with low reliability be prevented from being employed and the concentration of a portion which has a stable concentration be used as an index for the accurate concentration of a film; therefore, as the concentration determined by a secondary ion mass spectrometry method, the minimum value obtained by analyzing the object is used in this specification.
In this embodiment, an example in which a display device having a transistor is formed using the above-described technical idea will be described.
The outline of a manufacturing process will be described below. As illustrated in
There is no particular limitation on a substrate which can be used for the substrate 101; however, the substrate needs to have an insulating surface. For example, a glass substrate made of barium borosilicate glass, aluminoborosilicate glass, or the like can be used; however, one embodiment of the present invention is not limited to this. An insulator such as quartz or sapphire, or a semiconductor having sufficiently high insulating properties, such as silicon carbide, may be used. Further, an insulating film may be formed on a surface of a semiconductor whose insulating properties are not high such as silicon, germanium, or gallium arsenide, on a surface of a semiconductor whose conductivity is increased by doping, or on a surface of copper, aluminum, or the like.
In the case where unfavorable impurities for a transistor are included in a substrate, it is preferable that a film of an insulating material having a function of blocking the impurities (e.g., aluminum nitride, aluminum oxide, or silicon nitride) be provided on a surface. Note that in this embodiment, the first gate insulator 103 can have a similar function.
The gate electrode 102 can be formed in a single layer or a stacked layer using a metal element such as molybdenum, titanium, chromium, tantalum, tungsten, aluminum, or copper, or an alloy material which includes any of these materials as a main metal element. Because the threshold value or the like of the obtained transistor is changed due to a work function of a material to be used for the gate electrode 102, it is necessary to select a material in accordance with the required threshold.
It is necessary to determine the thickness of the first gate insulator 103 in accordance with the composition and thickness of the oxide film 104. Description thereof will be made later. The first gate insulator 103 may be formed by a known sputtering method, a known CVD method, or the like.
The oxide film 104 is formed by a DC sputtering method or an AC sputtering method. As a DC sputtering method, a pulsed DC sputtering method in which voltage is applied in a pulsed manner may be used in order to prevent an abnormal arc discharge. An AC sputtering method needs not to prevent an abnormal arc discharge; therefore, the proportion of plasma generation period by an AC sputtering method is two times or more as long as a pulsed DC sputtering method and mass productivity is high.
A target to be used may be an oxide in which the ratio of gallium to zinc is adjusted so that the oxide film 104 takes the above-mentioned value. Note that in sputtering, the composition of the target is different from the composition of the obtained film depending on an atmosphere and temperature of a deposition surface; for example, even when a conductive target is used, the concentration of zinc of the obtained film is decreased, so that the obtained film has insulating properties or semi-conductivity in some cases.
In this embodiment, an oxide of zinc and gallium is used; the vapor pressure of zinc or zinc oxide at higher than or equal to 200° C. is higher than that of gallium or gallium oxide. Therefore, when the substrate 101 is heated at higher than or equal to 200° C., the concentration of zinc of the oxide film 104 is lower than the concentration of zinc of the target. Accordingly, in consideration of the fact, it is necessary that the concentration of zinc of the target be set at a higher concentration. In general, when the concentration of zinc is increased, the conductivity of an oxide is improved; therefore, a DC sputtering method is preferably used.
The target for sputtering can be obtained in such a manner that after a powder of gallium oxide and a powder of zinc oxide are mixed and pre-baked, molding is performed; then, baking is performed. Alternatively, it is preferable that a powder of gallium oxide whose grain size is less than or equal to 100 nm and a powder of zinc oxide whose grain size is less than or equal to 100 nm be sufficiently mixed and molded.
The oxide film 104 is desirably formed by a method in which hydrogen, water, or the like does not easily enter the oxide film 104. The atmosphere in film formation may be a rare gas (typically argon) atmosphere, an oxygen atmosphere, a mixed atmosphere of a rare gas and oxygen, or the like. Moreover, it is desirably an atmosphere using a high-purity gas from which impurities such as hydrogen, water, a hydroxyl group, and hydride are sufficiently removed because entry of hydrogen, water, a hydroxyl group, hydride, and the like into the oxide film 104 can be prevented.
The entry of the impurities can also be prevented when the substrate temperature in film formation is set to higher than or equal to 100° C. and lower than or equal to 600° C., preferably higher than or equal to 200° C. and lower than or equal to 400° C. In addition, an entrapment vacuum pump such as a cryopump, an ion pump, or a titanium sublimation pump or a turbo molecular pump provided with a cold trap may be used as an evacuation unit.
In the deposition chamber which is evacuated with the above-described evacuation unit, a hydrogen molecule, a compound containing a hydrogen atom such as water (H2O), (preferably, also a compound containing a carbon atom), and the like are removed. Accordingly, the concentration of impurities in the oxide film 104 formed in the deposition chamber can be reduced.
Next, the substrate 101 provided with these is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 104 is changed as illustrated in
Note that the concentration of zinc is changed continuously as described above, the boundary between the semi-conductive oxide layer 104a and the insulating oxide layer 104b is not clear. In addition, as the heating period is longer, the heating temperature is higher, and the pressure in heating is lower, zinc is easily evaporated and the semi-conductive oxide layer 104a tends to be thin.
The obtained semi-conductive oxide layer 104a is removed as illustrated in FIG. 1C. Dry etching or wet etching may be performed to remove the semi-conductive oxide layer 104a. At this time, not only the semi-conductive oxide layer 104a but also a portion of the insulating oxide layer 104b, which is close to the semi-conductive oxide layer 104a may be etched. For example, a portion regarded as the insulating oxide layer 104b, which is close to the semi-conductive oxide layer 104a, may be etched by 10% to 50% of the thickness of the insulating oxide layer 104b.
Instead of removing the semi-conductive oxide layer 104a by etching, the semi-conductive oxide layer 104a may be removed by continuing the heat treatment and vaporizing the semi-conductive oxide layer 104a.
In this manner, the insulating oxide layer 104b appears, and the ratio of gallium, that is, Ga/(Ga+Zn), may be greater than or equal to 0.7, preferably greater than or equal to 0.8 on a surface of the insulating oxide layer 104b. In the insulating oxide layer 104b, a portion close to the surface has the lowest value of gallium and the ratio is increased toward the substrate.
The concentration of zinc in the insulating oxide layer 104b is preferably 50% or lower of the concentration of zinc in the target. Needless to say, the resistivity of the insulating oxide layer 104b is higher than the resistivity of the target.
Note that in this heat treatment, an alkali metal such as lithium, sodium, or potassium is also segregated in the vicinity of the surface of the semi-conductive oxide layer 104a or evaporated; therefore, the concentration in the insulating oxide layer 104b is sufficiently reduced. These alkali metals are unfavorable elements for a transistor; thus, it is preferable that these alkali metals be contained in a material used for forming the transistor as little as possible. Since these alkali metals are easily evaporated compared to zinc; therefore, a heat treatment step is advantageous in removing these alkali metals.
For example, the concentration of sodium in the insulating oxide layer 104b may be lower than or equal to 5×1016 cm−3, preferably lower than or equal to 1×1016 cm−3, more preferably lower than or equal to 1×1015 cm−3. Similarly, the concentration of lithium in the insulating oxide layer 104b may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3 and the concentration of potassium in the insulating oxide layer 104b may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3.
The insulating oxide layer 104b obtained in this manner functions as a gate insulator of the transistor. In other words, the thickness of the gate insulator of the transistor is the sum of the thickness of the first gate insulator 103 and the thickness of the insulating oxide layer 104b. Therefore, the thickness of the first gate insulator 103 needs to be determined in consideration of the insulating oxide layer 104b.
The thickness of the insulating oxide layer 104b depends not only on the thickness of the oxide film 104 but also on the ratio of zinc contained in the oxide film 104. In general, as the ratio of zinc is higher, the insulating oxide layer 104b becomes thinner. Therefore, the thickness of the first gate insulator 103 needs to be determined in accordance with the composition and thickness of the oxide film 104, as described above.
For example, in the case of a transistor used for a general liquid crystal display device or a general electroluminescence display device, the thickness of a gate insulator is 50 nm to 1 μm. For example, in the case where the thickness of the oxide film 104 is 200 nm and the ratio of gallium, that is, Ga/(Ga+Zn), in the oxide film 104 is 0.5, the thickness of the obtained insulating oxide layer 104b is 100 nm to 150 nm. Note that the dielectric constant of the insulating oxide layer 104b is approximately 2.5 times as high as that of silicon oxide because gallium is a main metal element.
In the case where the first gate insulator 103 is formed using silicon oxide and the silicon oxide equivalent thickness of the total gate insulator (the first gate insulator 103 and the insulating oxide layer 104b) is 200 nm, the thickness of the first gate insulator 103 may be 140 nm to 160 nm.
Note that the optimum thickness of the gate insulator is set by voltage applied to the gate electrode or the like, as appropriate. In general, in the case where the applied voltage is low, the gate insulator is set to be thin, whereas in the case where the applied voltage is high, the gate insulator is set to be thick.
In this embodiment, the insulating oxide layer 104b in which gallium is a main metal element is represented by a chemical formula, GaxZn1-xOy (note that X≧0.7); however, it is preferable that oxygen exceed the stoichiometric ratio so as to satisfy x/2+1<y<x/2+1.5. In order to achieve this, after the surface of the insulating oxide layer 104b is exposed as illustrated in
Note that an impurity element, e.g., a Group 3 element such as yttrium, a Group 4 element such as hafnium, or a Group 13 element such as aluminum is contained in the oxide film 104, the energy gap of the insulating oxide layer 104b to be obtained later may be increased and the insulating properties may be enhanced. The energy gap of gallium oxide which does not contain any of the above impurities is 4.9 eV; however, when the gallium oxide contains any of the above impurities at about, for example, greater than 0 atomic % and less than or equal to 20 atomic %, the energy gap can be increased to about 6 eV.
After that, a semi-conductive oxide film 105 is formed as illustrated in
As another stabilizer, one or plural kinds of lanthanoid such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium (Lu) may be contained.
As the semi-conductive oxide, for example, an indium oxide, a tin oxide, a zinc oxide, a two-component metal oxide such as an In—Zn-based oxide, a Sn—Zn-based oxide, an Al—Zn-based oxide, a Zn—Mg-based oxide, a Sn—Mg-based oxide, an In—Mg-based oxide, or an In—Ga-based oxide, a three-component metal oxide such as an In—Ga—Zn-based oxide, an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, a Sn—Ga—Zn-based oxide, an Al—Ga—Zn-based oxide, a Sn—Al—Zn-based oxide, an In—Hf—Zn-based oxide, an In—La—Zn-based oxide, an In—Ce—Zn-based oxide, an In—Pr—Zn-based oxide, an In—Nd—Zn-based oxide, an In—Sm—Zn-based oxide, an In—Eu—Zn-based oxide, an In—Gd—Zn-based oxide, an In—Tb—Zn-based oxide, an In—Dy—Zn-based oxide, an In—Ho—Zn-based oxide, an In—Er—Zn-based oxide, an In—Tm—Zn-based oxide, an In—Yb—Zn-based oxide, or an In—Lu—Zn-based oxide, or a four-component metal oxide such as an In—Sn—Ga—Zn-based oxide, an In—Hf—Ga—Zn-based oxide, an In—Al—Ga—Zn-based oxide, an In—Sn—Al—Zn-based oxide, an In—Sn—Hf—Zn-based oxide, or an In—Hf—Al—Zn-based oxide can be used.
Note that here, for example, an In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as main metal elements, and there is no limitation on the ratio of In:Ga:Zn. Further, the In—Ga—Zn-based oxide may contain a metal element other than In, Ga, and Zn.
Alternatively, an oxide represented by a chemical formula, InMO3(ZnO)m (m>0) may be used as a semi-conductive oxide. Here, M represents one or more metal elements selected from Zn, Ga, Al, Sn, and In. For example, M can be Ga or two kinds of metals such as Ga and Al, Ga and Sn, or Ga and In.
In the case where an In—Zn-based oxide is used as a semi-conductive oxide, a target to be used has a composition ratio of In:Zn=50:1 to 1:2 in an atomic ratio (In2O3:ZnO=25:1 to 1:4 in a molar ratio), preferably, In:Zn=1:1 to 1:20 in an atomic ratio (In2O3:ZnO=10:1 to 1:2 in a molar ratio), further preferably, In:Zn=1.5:1 to 15:1 in an atomic ratio (In2O3:ZnO=3:4 to 15:2 in a molar ratio). For example, a target used for the formation of an In—Zn-based oxide has an atomic ratio of In:Zn:O=1:1:X, where X>1, preferably X>1.5.
Alternatively, an In—Ga—Zn-based oxide with an atomic ratio of In:Ga:Zn=1:1:1 (=1/3:1/3:1/3) or In:Ga:Zn=2:2:1 (=2/5:2/5:1/5), or an oxide with an atomic ratio close to the above atomic ratios can be used. Alternatively, an In—Sn—Zn-based oxide with an atomic ratio of In:Sn:Zn=1:1:1 (=1/3:1/3:1/3), In:Sn:Zn=2:1:3 (=1/3:1/6:1/2), or In:Sn:Zn=2:1:5 (=1/4:1/8:5/8), or an oxide with an atomic ratio close to the above atomic ratios may be used.
However, the composition is not limited to those described above, and a material having the appropriate composition may be used depending on necessary semiconductor characteristics (mobility, threshold value, variation, and the like). In order to obtain necessary semiconductor characteristics, it is preferable that the carrier concentration, the impurity concentration, the defect density, the atomic ratio of a metal element to oxygen, the interatomic distance, the density, and the like be set to be appropriate.
For example, it is relatively easy to obtain high mobility of an In—Sn—Zn-based oxide. However, mobility can be increased by a decrease in defect density in a bulk even in an In—Ga—Zn-based oxide.
Note that for example, the expression “the composition of an oxide including In, Ga, and Zn at the atomic ratio, In:Ga:Zn=a:b:c (a+b+c=1), is in the neighborhood of the composition of an oxide including In, Ga, and Zn at the atomic ratio, In:Ga:Zn=A:B:C (A+B+C=1)” means that a, b, and c satisfy the following relation: (a−A)2+(b−B)2+(c−C)2≦r2, and r may be 0.05, for example. The same applies to other oxides.
The semi-conductive oxide may be either single crystal or non-single-crystal. In the latter case, the semi-conductive oxide may be either amorphous or polycrystal. Further, the semi-conductive oxide may have either an amorphous structure including a portion having crystallinity or a non-amorphous structure.
In this embodiment, an In—Ga—Zn-based oxide is used as a semi-conductive oxide. In other words, the semi-conductive oxide film is formed using an In—Ga—Zn-based oxide as a target by a sputtering method. The filling rate of the oxide target is higher than or equal to 90% and lower than or equal to 100%, preferably, higher than or equal to 95% and lower than or equal to 99.9%. With the use of the oxide target with high filling rate, a semi-conductive oxide film to be obtained can have high density.
The composition ratio of the target can be, for example, In:Ga:Zn=1:1:1 [molar ratio]. Note that it is not necessary to limit the material and composition ratio of the target to the above. For example, an oxide target with the following composition ratio may alternatively be used: In:Ga:Zn=1:1:0.5 [molar ratio], In:Ga:Zn=2:1:3 [molar ratio], and In:Ga:Zn=3:1:2 [molar ratio].
As described later, as for the composition of an obtained semi-conductive oxide film, it is preferable that the ratio of gallium in a metal component (in a molar ratio) be greater than or equal to 0.2. For example, in the case where In:Ga:Zn=1:1:1, the ratio of gallium is 0.33, whereas in the case where In:Ga:Zn=1:1:0.5, the ratio of gallium is 0.4.
The semi-conductive oxide film 105 is desirably formed by a method in which hydrogen, water, or the like does not easily enter the semi-conductive oxide film 105. The atmosphere in film formation may be a rare gas (typically argon) atmosphere, an oxygen atmosphere, a mixed atmosphere of a rare gas and oxygen, or the like. An atmosphere of a high-purity gas from which an impurity such as hydrogen, water, a hydroxyl group, or hydride is removed is preferable, in order to prevent hydrogen, water, a hydroxyl group, hydride, or the like from entering the semi-conductive oxide film 105.
The thickness of the semi-conductive oxide film 105 is desirably greater than or equal to 3 nm and less than or equal to 30 nm. This is because when the thickness of the semi-conductive oxide film is too large (e.g., when the thickness is greater than or equal to 50 nm), the transistor might be normally on.
The entry of the impurities can also be prevented when the substrate temperature in film formation is set to higher than or equal to 100° C. and lower than or equal to 600° C., preferably higher than or equal to 200° C. and lower than or equal to 400° C. In addition, an entrapment vacuum pump such as a cryopump, an ion pump, or a titanium sublimation pump or a turbo molecular pump provided with a cold trap may be used as an evacuation unit.
In the deposition chamber which is evacuated with the above-described evacuation unit, a hydrogen molecule, and a compound containing a hydrogen atom such as water (H2O) and a compound containing a carbon atom are removed. Accordingly, the concentration of impurities in the semi-conductive oxide film 105 formed in the deposition chamber can be reduced.
An alkali metal such as lithium, sodium, or potassium or an alkaline-earth metal is unfavorable element for the case where a semi-conductive oxide is used for a transistor; therefore, it is preferable that an alkali metal or an alkaline-earth metal be contained in a material used for forming the transistor as little as possible.
Of alkali metals, in particular, sodium is dispersed in an insulating oxide which is in contact with a semi-conductive oxide to be a sodium ion. Alternatively, sodium cuts a bond between a metal element and oxygen or enters the bond in the semi-conductive oxide. As a result, transistor characteristics deteriorate (e.g., the transistor becomes normally-on (the shift of a threshold voltage to a negative side) or the mobility is decreased). In addition, this also causes variation in the characteristics.
Such a problem is significant especially in the case where the concentration of hydrogen in the semi-conductive oxide is extremely low. Therefore, the concentration of an alkali metal is strongly required to be extremely low in the case where the concentration of hydrogen in the semi-conductive oxide is lower than or equal to 5×1019 cm−3, particularly lower than or equal to 5×1018 cm−3.
For example, the concentration of sodium in the semi-conductive oxide film 105 may be lower than or equal to 5×1016 cm−3, preferably lower than or equal to 1×1016 cm−3, more preferably lower than or equal to 1×1015 cm−3. Similarly, the concentration of lithium in the semi-conductive oxide film 105 may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3 and the concentration of potassium in the semi-conductive oxide film 105 may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3.
Then, as illustrated in
Then, heat treatment (first heat treatment) is performed on the semi-conductive oxide film 105a. Excessive hydrogen (including water and a hydroxyl group) in the semi-conductive oxide film 105a can be removed by the first heat treatment; the structure of the semi-conductive oxide film 105a can be improved; and defect levels in the energy gap can be reduced. The temperature of the first heat treatment is higher than or equal to 250° C. and lower than or equal to 650° C.
Further, excessive hydrogen (including water and a hydroxyl group) in the first gate insulator 103 and the insulating oxide layer 104b can also be removed by the first heat treatment.
The first heat treatment can be referred to as dehydration treatment, dehydrogenation treatment, or the like because of its effect of removing hydrogen, water, and the like. The first heat treatment can be implemented not only just after the semi-conductive oxide film 105a is formed as described above but also at any timing after the semi-conductive oxide film 105 is formed. In addition, similar dehydration treatment or dehydrogenation treatment may be performed plural times instead of one.
The first heat treatment can be performed in such a manner that, for example, an object is introduced into an electric furnace in which a resistance heating element or the like is used and heated under a nitrogen atmosphere. During the first heat treatment, the semi-conductive oxide film 105a is not exposed to the air to prevent entry of water and hydrogen.
The heat treatment apparatus is not limited to the electric furnace and may be an apparatus for heating an object by thermal radiation or thermal conduction from a medium such as a heated gas. For example, a rapid thermal anneal (RTA) apparatus such as a gas rapid thermal anneal (GRTA) apparatus or a lamp rapid thermal anneal (LRTA) apparatus can be used.
An LRTA apparatus is an apparatus for heating an object by radiation of light (an electromagnetic wave) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. A GRTA apparatus is an apparatus for performing heat treatment using a high-temperature gas. As the gas, an inert gas which does not react with an object by heat treatment, such as nitrogen or a rare gas such as argon is used.
For example, as the first heat treatment, the GRTA process may be performed as follows. The object is put in a heated inert gas atmosphere, heated for several minutes, and taken out of the inert gas atmosphere. The GRTA process enables high-temperature heat treatment for a short time. Moreover, the GRTA process can be employed even when the temperature exceeds the upper temperature limit of the object. Note that the inert gas may be switched to a gas including oxygen during the process. This is because defect levels in the energy gap due to oxygen deficiency can be reduced by performing the first heat treatment in an atmosphere including oxygen.
Note that as the inert gas atmosphere, an atmosphere that contains nitrogen or a rare gas (e.g., helium, neon, or argon) as its main component and does not contain water, hydrogen, or the like is preferably used. For example, the purity of nitrogen or a rare gas such as helium, neon, or argon introduced into a heat treatment apparatus is greater than or equal to 6N (99.9999%), preferably greater than or equal to 7N (99.99999%) (that is, the concentration of the impurities is lower than or equal to 1 ppm, preferably lower than or equal to 0.1 ppm).
In any case, when impurities contained in the semi-conductive oxide film 105a are reduced by the first heat treatment to form an intrinsic or substantially intrinsic semiconductor, a transistor with extremely excellent characteristics can be realized.
Further, by heat treatment including the first heat treatment, the semi-conductive oxide film 105a can have various states. That is, it has an amorphous state under a certain condition. Under another condition, it has a state such that crystals partly float in an amorphous state. Under still another condition, it has a single crystal state or a state in which crystals are orderly aligned and which can be regarded as a single crystal state.
In the case where crystals exist in the semi-conductive oxide film 105a, the semi-conductive oxide film 105a preferably has a state in which the c-axis (in the case where the c-axis exists in a crystal structure of a semi-conductive oxide) is preferentially aligned to the substrate (c-axis-aligned state). A state of the semi-conductive oxide film 105a depends on heat treatment conditions or the composition of the semi-conductive oxide film 105a.
Then, a semi-conductive oxide film having n-type conductivity and a conductive film of a metal or the like are deposited. For the formation of these films, a sputtering method may be used. For the n-type semi-conductive oxide film, indium oxide, indium tin oxide, zinc oxide, zinc aluminum oxide, or the like may be used. Note that the n-type semi-conductive oxide film is provided to reduce contact resistance between a source electrode and a drain electrode and the semi-conductive oxide film 105a; however, the n-type semi-conductive oxide film is not necessarily provided depending on the kinds of metals to be used for the source electrode and the drain electrode.
As the conductive film, for example, a metal film containing an element selected from aluminum, chromium, copper, tantalum, titanium, molybdenum, tungsten, and the like, or a metal nitride film containing any of the above elements as a main metal component (e.g., a titanium nitride film, a molybdenum nitride film, or a tungsten nitride film) can be used.
Alternatively, a film of a high-melting-point metal such as titanium, molybdenum, or tungsten or a metal nitride film (e.g., a titanium nitride film, a molybdenum nitride film, or a tungsten nitride film) may be formed over or/and below the metal film such as an Al film or a Cu film.
Then, these are processed into desired shapes, and n-type semi-conductive oxide films 106a and 106b, a source electrode 107a, and a drain electrode 107b are formed. In the above manner, a basic structure of a transistor is completed. Note that in etching of the conductive film, part of the semi-conductive oxide film 105a is etched and a groove portion (depression portion) is formed in the semi-conductive oxide film 105a, in some cases.
Plasma treatment may be performed using an oxidizing gas such as oxygen or ozone, and the adsorbed water attached to the surface of the exposed semi-conductive oxide film 105a may be removed. Note that in the plasma treatment, it is preferable that the concentration of nitrogen or that of argon in the gas be lower than 50%.
Further, a first insulator 108 is formed by a sputtering method, a CVD method, or the like. In the case where the plasma treatment is performed, it is preferable that the first insulator 108 be successively formed without the substrate 101 being taken out to an air atmosphere after the plasma treatment because an atmospheric component (in particular, water) is not adsorbed on the surface of the semi-conductive oxide film 105a.
The first insulator 108 can be formed typically using an inorganic insulator such as silicon oxide, silicon oxynitride, aluminum oxide, or aluminum oxynitride. In particular, it is preferable to use an oxide because of the reason to be described below, and oxygen that is equivalent to or exceeds the stoichiometric ratio is preferably contained.
The second heat treatment is preferably performed after the first insulator 108 is formed. The second heat treatment is performed at a temperature higher than or equal to 150° C. and lower than or equal to 600° C., preferably higher than or equal to 250° C. and lower than or equal to 450° C.
The second heat treatment may be performed in an atmosphere of nitrogen, oxygen, ultra-dry air (air in which the water content is less than or equal to 20 ppm, preferably less than or equal to 1 ppm, more preferably less than or equal to 10 ppb), or a rare gas (argon, helium, or the like). It is also preferable that the purity of nitrogen, oxygen, or the rare gas which is introduced into a heat treatment apparatus be set to be greater than or equal to 6N, preferably greater than or equal to 7N (that is, the impurity concentration is lower than or equal to 1 ppm, preferably lower than or equal to 0.1 ppm).
In the second heat treatment, the semi-conductive oxide film 105a and the first insulator 108 are heated in a state where the semi-conductive oxide film 105a is in contact with the first insulator 108. Therefore, oxygen in the semi-conductive oxide film 105a, which might be reduced by the first heat treatment, can be supplied from the first insulator 108. Accordingly, charge trapping centers in the semi-conductive oxide film 105a can be decreased.
The first heat treatment and the second heat treatment are applied, whereby the semi-conductive oxide film 105a can be highly purified so as to contain impurities other than main components as little as possible. The highly purified semi-conductive oxide film 105a contains extremely few carriers derived from a donor. The carrier concentration can be lower than 1×1014/cm3, preferably lower than 1×1012/cm3, more preferably lower than 1×1011/cm3.
Next, a second insulator 109 which has a flat surface is formed. Various organic materials may be used for forming the second insulator 109. Then, the first insulator 108 and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. A display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
A light-transmitting material or a reflective material can be used for the display electrode 110. For the light-transmitting material, a conductive oxide whose band gap is greater than or equal to 3 electron-volts, such as an In—Sn-based oxide or a Zn—Al-based oxide, can be used. A metal nanowire or a carbon film (graphene or the like) with a thickness of less than or equal to 3 nm can also be used. For the reflective material, a film formed using any of various metal materials (aluminum, silver, and the like) can be used. The surface of a reflective display electrode is preferably provided with an irregular unevenness to display white color.
Also in this embodiment, the insulating oxide layer 104b in which gallium is a main metal element is used. When such a material is in contact with a semi-conductive oxide in which, in particular, the ratio of gallium in a metal element is greater than or equal to 0.2, charge trapping at an interface between the insulating oxide layer 104b and a semi-conductive oxide film can be sufficiently suppressed. Accordingly, a highly reliable semiconductor device can be provided.
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In this embodiment, an example in which a display device including a transistor having a different structure from the transistor described in Embodiment 1 is manufactured will be described.
The outline of a manufacturing process will be described below. Note that for the structures denoted by the same reference numerals as those in Embodiment 1, a material, a means, a condition, and the like described in Embodiment 1 may be used as those in this embodiment unless otherwise specified. As illustrated in
The thickness of the first gate insulator 103 needs to be determined in accordance with the composition and thickness of the oxide film 104 for the same reason described in Embodiment 1. The first gate insulator 103 is not necessarily provided. The oxide film 104 is an oxide of gallium and zinc in this embodiment, and the ratio of gallium, that is, Ga/(Ga+Zn), may be 0.2 to 0.6, preferably 0.3 to 0.5. The oxide film 104 is formed by a DC sputtering method, a pulsed DC sputtering method, or an AC sputtering method.
Next, the substrate 101 provided with these is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 104 is changed as illustrated in
The obtained semi-conductive oxide layer 104a is removed as illustrated in
After that, a conductive film such as a metal film is deposited and processed to have a desired shape, so that the source electrode 107a and the drain electrode 107b are formed as illustrated in
As illustrated in
Further, the first insulator 108 is formed. After the first insulator 108 is formed, the second heat treatment may be performed. Next, the second insulator 109 which has a flat surface is formed. Then, the first insulator 108 and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. The display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
The difference between the transistor described in this embodiment and that described in Embodiment 1 is only positional relation between the semi-conductive oxide film 105 and the source and drain electrodes 107a and 107b. Therefore, the structure of the transistor seen from above is almost the same as the structure illustrated in
Also in this embodiment, the insulating oxide layer 104b in which gallium is a main metal element is used. When such a material is in contact with a semi-conductive oxide in which, in particular, the ratio of gallium in a metal element is greater than or equal to 0.2, charge trapping at an interface between the insulating oxide layer 104b and a semi-conductive oxide film can be sufficiently suppressed. Accordingly, a highly reliable semiconductor device can be provided.
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In this embodiment, an example in which a display device including a transistor having a different structure from the transistors described in the above embodiments is manufactured will be described.
The outline of a manufacturing process will be described below. Note that for the structures denoted by the same reference numerals as those in Embodiment 1, a material, a means, a condition, and the like described in Embodiment 1 may be used as those in this embodiment unless otherwise specified. As illustrated in
Further, in the case where unfavorable impurities for a transistor are included in a substrate, it is preferable that a film of an insulating material having a function of blocking the impurities (e.g., aluminum nitride, aluminum oxide, or silicon nitride) be provided between the substrate 101 and the oxide film 111. Note that in this embodiment, the oxide film 111 can have a similar function because it becomes an oxide in which gallium is a main metal element in heat treatment performed later.
The oxide film 111 is an oxide of gallium and zinc in this embodiment, and the ratio of gallium, that is, Ga/(Ga+Zn), may be 0.2 to 0.6, preferably 0.3 to 0.5. The oxide film 111 is formed by a DC sputtering method, a pulsed DC sputtering method, or an AC sputtering method. In addition, the thickness of the oxide film 111 may be more than or equal to 100 nm and less than or equal to 1000 nm. The oxide film 111 can be formed in a manner similar to that of the oxide film 104 in Embodiment 1.
Next, the substrate 101 is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 111 is changed as illustrated in
The obtained semi-conductive oxide layer 111a is removed as illustrated in
Alternatively, the semi-conductive oxide layer 111a may be removed by continuing the heat treatment and vaporizing the semi-conductive oxide layer 111a. By any method, the ratio of gallium, that is, Ga/(Ga+Zn), may be greater than or equal to 0.7, preferably greater than or equal to 0.8 on the surface of the insulating oxide layer 111b.
In this embodiment, since the insulating oxide layer 111b is an oxide in which gallium is a main metal element, the insulating oxide layer 111b has a function of blocking hydrogen and an alkali metal.
In this embodiment, the insulating oxide layer 111b in which gallium is a main metal element and which contains zinc is represented by the chemical formula, GaxZn1-xOy (note that X≧0.7); however, it is preferable that oxygen exceed the stoichiometric ratio so as to satisfy x/2+1<y<x/2+1.5. In order to achieve this, after the surface of the insulating oxide layer 111b is exposed as illustrated in
After that, the semi-conductive oxide film 105 is formed over the insulating oxide layer 111b as illustrated in
Then, the semi-conductive oxide film 105 is etched, whereby the semi-conductive oxide film 105a having a desired shape (e.g., island shape) is obtained. In the etching, a dry etching method or a wet etching method may be used.
Note that as the etching here, the insulating oxide layer 111b may be used as an etching stopper. After that, the plasma treatment described in Embodiment 1 may be performed. In addition, the first heat treatment described in Embodiment 1 may be performed before or after this step.
After that, a semi-conductive oxide film having n-type conductivity and a conductive film such as a metal film are deposited and each processed to have a desired shape, so that the n-type semi-conductive oxide films 106a and 106b and the source and drain electrodes 107a and 107b are formed (see
Further, a gate insulator 112 is deposited. For a formation method of the gate insulator 112, the formation method of the first gate insulator 103 in Embodiment 1 may be referred to. The thickness of the gate insulator 112 may be set to a thickness which a transistor to be formed needs.
A gate electrode 113 is formed over the gate insulator 112. The gate electrode 113 can be a single layer or a stacked layer using a metal element such as molybdenum, titanium, chromium, tantalum, tungsten, aluminum, or copper, or an alloy material which includes any of these materials as a main metal element. Because the threshold value or the like of the obtained transistor is changed due to a work function of a material to be used for the gate electrode 113, it is necessary to select a material in accordance with the required threshold value or the like. In the above manner, a basic structure of a transistor is completed.
Further, the first insulator 108 is formed by a sputtering method, a CVD method, or the like. After the first insulator 108 is formed, the second heat treatment may be performed. Next, the second insulator 109 which has a flat surface is formed. Then, the first insulator 108 and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. The display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
The large difference between the transistor described in this embodiment and that described in Embodiment 1 is positional relation between the semi-conductive oxide film 105 and the gate electrode 113. However, the position of the gate electrode 102 in a substrate surface in
Also in this embodiment, the insulating oxide layer 111b in which gallium is a main metal element is used. When such a material is in contact with a semi-conductive oxide film in which, in particular, the ratio of gallium in a metal element is greater than or equal to 0.2, charge trapping at an interface between the insulating oxide layer 111b and the semi-conductive oxide film can be sufficiently suppressed. Accordingly, a highly reliable semiconductor device can be provided.
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In this embodiment, an example in which a display device including a top-gate transistor like the transistor described in Embodiment 3 is manufactured will be described; however, the transistor in this embodiment is a bottom-contact transistor whose source electrode and drain electrode are in contact with a lower surface of a semiconductor layer.
The outline of a manufacturing process will be described below. Note that for the structures denoted by the same reference numerals as those in Embodiment 1 or 3, a material, a means, a condition, and the like described in Embodiment 1 or 3 may be used as those in this embodiment unless otherwise specified. As illustrated in
The oxide film 111 is an oxide of gallium and zinc in this embodiment, and the ratio of gallium, that is, Ga/(Ga+Zn), may be 0.2 to 0.6, preferably 0.3 to 0.5. The oxide film 111 is formed by a DC sputtering method, a pulsed DC sputtering method, or an AC sputtering method. In addition, the thickness of the oxide film 111 may be more than or equal to 100 nm and less than or equal to 1000 nm.
Next, the substrate 101 is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 111 is changed as illustrated in
The obtained semi-conductive oxide layer 111a is removed as illustrated in
In this manner, the ratio of gallium, that is, Ga/(Ga+Zn), may be greater than or equal to 0.7, preferably greater than or equal to 0.8 on the surface of the insulating oxide layer 111b. Further, after that, heat treatment may be performed under an oxygen atmosphere or exposure to oxygen plasma may be performed.
After that, a semi-conductive oxide film having n-type conductivity and a conductive film such as a metal film are deposited and each processed to have a desired shape, so that the n-type semi-conductive oxide films 106a and 106b and the source and drain electrodes 107a and 107b are formed (see
Then, as illustrated in
The gate electrode 113 is formed over the gate insulator 112. For a material for the gate electrode 113, Embodiment 3 may be referred to. Further, the first insulator 108 is formed by a sputtering method, a CVD method, or the like. Next, the second insulator 109 which has a flat surface is formed. Then, the first insulator 108 and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. The display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In this embodiment, an example of a display device having a transistor which is different from the transistor described in any of the above embodiments will be described. A transistor illustrated in
The transistor includes, over the substrate 101 having an insulating surface, the first gate electrode 102, the first gate insulator 103, the insulating oxide layer 104b which includes gallium as a main metal element, the semi-conductive oxide film 105a, the n-type semi-conductive oxide films 106a and 106b, the source electrode 107a, the drain electrode 107b, the second gate insulator 112, and the second gate electrode 113. Further, the display device described in this embodiment includes the insulator 109 having a flat surface, and the display electrode 110 connected to the drain electrode 107b through a contact hole which penetrates the insulator 109 and the second gate insulator 112 and which reaches the drain electrode 107b.
In the above transistor, for materials, manufacturing methods, and the like of the second gate insulator 112 and the second gate electrode 113, refer to those of the gate insulator 112 and the gate electrode 113 of Embodiment 3 or 4. For the other components, refer to the contents described in Embodiment 1.
When a semi-conductive oxide layer is used as a semiconductor layer in a transistor, the threshold voltage of the transistor sometimes shifts in the positive or negative direction depending on a manufacturing process of a semiconductor device in some cases. Therefore, like the above-described transistor, a dual-gate transistor in which the second gate electrode 113 is provided over the second gate insulator 112 so that the threshold voltage can be controlled is preferably used. The potential of the first gate electrode 102 or the potential of the second gate electrode 113 is controlled, whereby the threshold voltage can be made to be an appropriate level.
Further, the first gate electrode 102 and the second gate electrode 113 can block light irradiation from the outside; thus, variation in the electric characteristics of the transistor due to light irradiation performed on the semi-conductive oxide film 105a can be suppressed.
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In this embodiment, an example of a display device having a dual-gate transistor which is different from the dual-gate transistor described in Embodiment 5 is illustrated in
Further, the display device described in this embodiment includes the insulator 109 having a flat surface, and the display electrode 110 connected to the drain electrode 107b through a contact hole which penetrates the insulator 109 and the second gate insulator 112 and which reaches the drain electrode 107b.
In the above transistor, for materials, manufacturing methods, and the like of the second gate insulator 112 and the second gate electrode 113, those of the gate insulator 112 and the gate electrode 113 of Embodiment 3 or 4 may be referred to. For the other components, the contents described in Embodiment 1 or 2 may be referred to. The display device illustrated in
In Embodiment 1, the semi-conductive oxide layer 104a obtained by performing heat treatment on the oxide film 104 is removed; however, in this embodiment, the semi-conductive oxide layer 104a is used as a semiconductor while remaining
The outline of a manufacturing process will be described below. As illustrated in
The oxide film 104 is formed by a DC sputtering method, a pulsed DC sputtering method, or an AC sputtering method. Next, the substrate 101 provided with these is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 104 is changed as illustrated in
Note that in this heat treatment, an alkali metal such as lithium, sodium, or potassium is also segregated in the vicinity of the surface of the semi-conductive oxide layer 104a or evaporated; therefore, the concentration in the insulating oxide layer 104b is sufficiently reduced. These alkali metals are unfavorable elements for a transistor; thus, it is preferable that these alkali metals be contained in a material used for forming the transistor as little as possible.
After that, a semi-conductive oxide film is formed. As a material for the semi-conductive oxide film, for example, an indium-gallium-based oxide is preferably used. That is, a material represented by a chemical formula, In1-xGaxOy (0.2≦x≦1) is used. The thickness of the semi-conductive oxide film is preferably 0.5 to 2 times as large as the thickness of a portion which can be regarded as the semi-conductive oxide layer 104a.
By heating in film formation, heat treatment in a later step, or the like, the semi-conductive oxide layer 104a is mixed with the semi-conductive oxide film, so that the semi-conductive oxide film 105 is obtained. When the above conditions are satisfied, the semi-conductive oxide film 105 is represented by a chemical formula, In1-xGaxZnzOy+2z+v (0.2≦x≦1). Here, x/(1+z)≧0.2 is preferable.
An alkali metal such as lithium, sodium, or potassium or an alkaline-earth metal is unfavorable element for a transistor; therefore, it is preferable that the concentration thereof in the semi-conductive oxide film 105 be low.
For example, the concentration of sodium in the semi-conductive oxide film 105 may be lower than or equal to 5×1016 cm−3, preferably lower than or equal to 1×1016 cm−3, more preferably lower than or equal to 1×1015 cm−3. Similarly, the concentration of lithium in the semi-conductive oxide film 105 may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3 and the concentration of potassium in the semi-conductive oxide film 105 may be lower than or equal to 5×1015 cm−3, preferably lower than or equal to 1×1015 cm−3.
Note that since an interface between the semi-conductive oxide layer 104a and the insulating oxide layer 104b is originally not clear, an interface between the semi-conductive oxide film 105 and the insulating oxide layer 104b is also not clear. In a general transistor, there is a clear interface; therefore, a phenomenon due to the interface, such as charge trapped at the interface or scattering at the interface, causes deterioration of a transport property of the transistor. The above-described structure in which the interface is not clear is effective in preventing such deterioration.
Further, the n-type semi-conductive oxide film 106 and the conductive film 107 are deposited (see
After that, by plural times of etching, the conductive film 107, the n-type semi-conductive oxide film 106, the semi-conductive oxide film 105, and the insulating oxide layer 104b are processed to have desired shapes, so that the semi-conductive oxide film 105a, the n-type semi-conductive oxide films 106a and 106b, and the source and drain electrodes 107a and 107b are formed as illustrated in
Further, the first insulator 108 and the second insulator 109 which has a flat surface are formed. After the first insulator 108 is formed, the second heat treatment described in Embodiment 1 may be performed. Then, the first insulator 108 and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. The display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
In Embodiment 7, the display device including a bottom-gate transistor is described as an example; however, in this embodiment, a display device including a top-gate transistor is described.
The outline of a manufacturing process will be described below. As illustrated in
Next, the substrate 101 is heated at 400° C. to 700° C. for 10 minutes to 24 hours under an appropriate atmosphere, for example, under the condition that the pressure is 10 Pa to 1 normal atmospheric pressure and an atmosphere is any of an oxygen atmosphere, a nitrogen atmosphere, and a mixed atmosphere of oxygen and nitrogen. Then, the quality of the oxide film 111 is changed as illustrated in
After that, a semi-conductive oxide film is formed. As a material for the semi-conductive oxide film, for example, an indium-gallium-based oxide is preferably used. That is, a material represented by the chemical formula, In1-xGaxOy (0.2≦x≦1) is used. The thickness of the semi-conductive oxide film is preferably 0.5 to 2 times as large as the thickness of a portion which can be regarded as the semi-conductive oxide layer 111a.
By heating in film formation, heat treatment in a later step, or the like, the semi-conductive oxide layer 111a is mixed with the semi-conductive oxide film to be the semi-conductive oxide film 105 (see
Note that since the interface between the semi-conductive oxide layer 111a and the insulating oxide layer 111b is originally not clear, the interface between the semi-conductive oxide film 105 and the insulating oxide layer 111b is also not clear. This is effective in preventing deterioration of a transport property of the transistor due to the interface.
Further, the n-type semi-conductive oxide film 106 and the conductive film 107 are deposited. The n-type semi-conductive oxide film 106 is not necessarily provided. Note that the step of forming the oxide film 111 to the step of forming the conductive film 107 can be successively performed without exposure to the air. In consideration of deterioration of a semi-conductive oxide due to an atmospheric component (especially water), these steps are preferably performed without exposure to the air.
After that, by plural times of etching, the conductive film 107, the n-type semi-conductive oxide film 106, the semi-conductive oxide film 105, and the insulating oxide layer 111b are each processed to have a desired shape, so that the semi-conductive oxide film 105a, the n-type semi-conductive oxide films 106a and 106b, and the source and drain electrodes 107a and 107b are formed as illustrated in
Further, the gate insulator 112, the gate electrode 113, the first insulator 108, and the second insulator 109 which has a flat surface are formed. After the first insulator 108 is formed, the second heat treatment described in Embodiment 1 may be performed. Then, the gate insulator 112, the first insulator 108, and the second insulator 109 are selectively etched, so that a contact hole reaching the drain electrode 107b is formed. The display electrode 110 which is in contact with the drain electrode 107b through this contact hole is formed (see
In this embodiment, the manufacturing process of the display device using a transistor is described; it is apparent that the method disclosed in this embodiment can be applied not only to a display device but also an electronic device of another embodiment (e.g., an integrated circuit).
The display device disclosed in any of Embodiments 1 to 8 can be applied to a variety of electronic devices (including an amusement machine). Examples of electronic devices are a television set (also referred to as a television or a television receiver), a monitor of a computer or the like, a camera such as a digital camera or a digital video camera, a digital photo frame, a mobile phone handset (also referred to as a mobile phone or a mobile phone device), a portable game machine, a portable information terminal, an audio reproducing device, a large-sized game machine such as a pachinko machine, and the like.
In addition, a transistor having the structure disclosed in any of Embodiments 1 to 8 can be used for, other than a display device, various integrated circuits (including a memory device), an electronic device which incorporates the integrated circuits, an electric device which incorporates the integrated circuits, and the like, for example.
Further, a step of obtaining the insulating oxide layer 104b or the insulating oxide layer 111b by performing heat treatment on the oxide film 104 or the oxide film 111 which is described in any of Embodiments 1 to 8 can be used for, for example, manufacturing a dielectric or electrode of a capacitor of an integrated circuit as well as manufacturing a display device or a transistor.
This application is based on Japanese Patent Application serial no. 2010-187873 filed with Japan Patent Office on Aug. 25, 2010, the entire contents of which are hereby incorporated by reference.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3925107, | |||
4772927, | Oct 23 1985 | Hitachi, Ltd. | Thin film FET doped with diffusion inhibitor |
5393676, | Sep 22 1993 | GLOBALFOUNDRIES Inc | Method of fabricating semiconductor gate electrode with fluorine migration barrier |
5731856, | Dec 30 1995 | SAMSUNG DISPLAY CO , LTD | Methods for forming liquid crystal displays including thin film transistors and gate pads having a particular structure |
5744864, | Aug 03 1995 | U S PHILIPS CORPORATION | Semiconductor device having a transparent switching element |
6294274, | Nov 16 1998 | TDK Corporation; KAWAZOE, HIROSHI | Oxide thin film |
6563174, | Sep 10 2001 | Sharp Kabushiki Kaisha; Masashi, Kawasaki; Hideo, Ohno | Thin film transistor and matrix display device |
6727522, | Nov 17 1998 | Japan Science and Technology Agency | Transistor and semiconductor device |
7049190, | Mar 15 2002 | SANYO ELECTRIC CO , LTD | Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device |
7061014, | Nov 05 2001 | Japan Science and Technology Agency; Hoya Corporation | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
7064346, | Nov 17 1998 | Japan Science and Technology Agency | Transistor and semiconductor device |
7105868, | Jun 24 2002 | NAUSE, CATHERINE D | High-electron mobility transistor with zinc oxide |
7211825, | Jun 14 2004 | Indium oxide-based thin film transistors and circuits | |
7282782, | Mar 12 2004 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
7297977, | Mar 12 2004 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
7323356, | Feb 21 2002 | Japan Science and Technology Agency; Hoya Corporation | LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film |
7385224, | Sep 02 2004 | Casio Computer Co., Ltd. | Thin film transistor having an etching protection film and manufacturing method thereof |
7402506, | Jun 16 2005 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
7411209, | Sep 15 2006 | Canon Kabushiki Kaisha | Field-effect transistor and method for manufacturing the same |
7453065, | Nov 10 2004 | Canon Kabushiki Kaisha; Tokyo Institute of Technology; Japan Science and Technology Agency | Sensor and image pickup device |
7453087, | Sep 06 2005 | Canon Kabushiki Kaisha | Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer |
7462862, | Mar 12 2004 | Hewlett-Packard Development Company, L.P. | Transistor using an isovalent semiconductor oxide as the active channel layer |
7468304, | Sep 06 2005 | Canon Kabushiki Kaisha | Method of fabricating oxide semiconductor device |
7501293, | Jun 13 2002 | MURATA MANUFACTURING CO , LTD | Semiconductor device in which zinc oxide is used as a semiconductor material and method for manufacturing the semiconductor device |
7674650, | Sep 29 2005 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7732819, | Sep 29 2005 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7998372, | Nov 18 2005 | IDEMITSU KOSAN CO , LTD , | Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel |
8373164, | Nov 07 2008 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device and manufacturing method thereof |
8384077, | Dec 13 2007 | IDEMITSU KOSAN CO , LTD | Field effect transistor using oxide semicondutor and method for manufacturing the same |
8415198, | Aug 23 2006 | Canon Kabushiki Kaisha | Production method of thin film transistor using amorphous oxide semiconductor film |
8421083, | Jul 31 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with two oxide semiconductor layers and manufacturing method thereof |
8440510, | May 14 2010 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
8502221, | Apr 02 2010 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with two metal oxide films and an oxide semiconductor film |
8546182, | Nov 28 2008 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
8552434, | Nov 28 2008 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
8629434, | Dec 25 2008 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
8633492, | Oct 31 2008 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
8686425, | Dec 28 2009 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
8759167, | Oct 31 2008 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
8772128, | Oct 10 2007 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
8784700, | Dec 13 2006 | IDEMITSU KOSAN CO , LTD , | Sputtering target and oxide semiconductor film |
8803146, | Nov 07 2008 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8937306, | Jul 31 2009 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor |
8981369, | Dec 13 2007 | IDEMITSU KOSAN CO , LTD | Field effect transistor using oxide semiconductor and method for manufacturing the same |
9054134, | Dec 28 2009 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
9112043, | Dec 25 2008 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
9281412, | Jun 16 2010 | Semiconductor Energy Laboratory Co., Ltd. | Field effect transistor |
20010046027, | |||
20020056838, | |||
20020132454, | |||
20030189401, | |||
20030218222, | |||
20040038446, | |||
20040127038, | |||
20050017302, | |||
20050199959, | |||
20060035452, | |||
20060043377, | |||
20060091793, | |||
20060108529, | |||
20060108636, | |||
20060110867, | |||
20060113536, | |||
20060113539, | |||
20060113549, | |||
20060113565, | |||
20060169973, | |||
20060170111, | |||
20060197092, | |||
20060208977, | |||
20060228974, | |||
20060231882, | |||
20060238135, | |||
20060244107, | |||
20060284171, | |||
20060284172, | |||
20060292777, | |||
20070024187, | |||
20070046191, | |||
20070052025, | |||
20070054507, | |||
20070090365, | |||
20070108446, | |||
20070152217, | |||
20070172591, | |||
20070187678, | |||
20070187760, | |||
20070194379, | |||
20070252928, | |||
20070272922, | |||
20070287296, | |||
20080006877, | |||
20080038882, | |||
20080038929, | |||
20080050595, | |||
20080073653, | |||
20080083950, | |||
20080106191, | |||
20080128689, | |||
20080129195, | |||
20080166834, | |||
20080182358, | |||
20080224133, | |||
20080254569, | |||
20080258139, | |||
20080258140, | |||
20080258141, | |||
20080258143, | |||
20080296568, | |||
20080315160, | |||
20090068773, | |||
20090073325, | |||
20090114910, | |||
20090134399, | |||
20090152506, | |||
20090152541, | |||
20090278122, | |||
20090280600, | |||
20100065844, | |||
20100089623, | |||
20100092800, | |||
20100109002, | |||
20110006301, | |||
20110084272, | |||
20110101335, | |||
20110114944, | |||
20110240991, | |||
20110312127, | |||
20120052624, | |||
20130187161, | |||
20130193431, | |||
20130270564, | |||
20140001040, | |||
20140030846, | |||
20140099752, | |||
20140151687, | |||
20140197407, | |||
20140209900, | |||
20140246673, | |||
20140339073, | |||
20140339556, | |||
20150311347, | |||
CN101164966, | |||
CN101309863, | |||
EP1737044, | |||
EP2096188, | |||
EP2226847, | |||
EP2471972, | |||
EP2669402, | |||
JP11505377, | |||
JP2000044236, | |||
JP2000150900, | |||
JP2002076356, | |||
JP2002289859, | |||
JP2002324924, | |||
JP2003086000, | |||
JP2003086808, | |||
JP2004103957, | |||
JP2004273614, | |||
JP2004273732, | |||
JP2007096055, | |||
JP2007123861, | |||
JP2008163442, | |||
JP5251705, | |||
JP60198861, | |||
JP63210022, | |||
JP63210023, | |||
JP63210024, | |||
JP63215519, | |||
JP63239117, | |||
JP63265818, | |||
JP8264794, | |||
TW200822372, | |||
TW200931536, | |||
TW201029187, | |||
WO2004114391, | |||
WO2008023553, | |||
WO2009075281, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 27 2014 | Semiconductor Energy Laboratory Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Nov 15 2019 | 4 years fee payment window open |
May 15 2020 | 6 months grace period start (w surcharge) |
Nov 15 2020 | patent expiry (for year 4) |
Nov 15 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 15 2023 | 8 years fee payment window open |
May 15 2024 | 6 months grace period start (w surcharge) |
Nov 15 2024 | patent expiry (for year 8) |
Nov 15 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 15 2027 | 12 years fee payment window open |
May 15 2028 | 6 months grace period start (w surcharge) |
Nov 15 2028 | patent expiry (for year 12) |
Nov 15 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |