A lead introducer includes a multi-piece insertion needle insertable into a splitable member. The multi-piece insertion needle includes an outer insertion needle that defines an open channel that extends along substantially entirely a length of the outer insertion needle and an inner insertion needle configured and arranged for insertion into the open channel of the outer insertion needle. The splitable member includes at least two pull-apart tabs and at least one weakened region extending along at least a portion of a length of the splitable member from between the at least two pull-apart tabs. The at least one weakened region is configured and arranged for separating when the at least two pull-apart tabs are pulled apart.
|
1. A lead introducer comprising:
a multi-piece insertion needle comprising
an outer insertion needle comprising a proximal hub and defining an open channel that extends along an entire length of the outer insertion needle and the proximal hub, and
an inner insertion needle comprising a proximal hub and defining a lumen that extends from the proximal hub along the inner insertion needle, the inner insertion needle configured and arranged for insertion into the open channel of the outer insertion needle; and
a splitable member comprising a proximal hub and defining a lumen configured and arranged for receiving at least a portion of the multi-piece insertion needle, the splitable member comprising
at least two pull-apart tabs disposed on the proximal hub of the splitable member, and
at least one weakened region extending along at least a portion of a length of the splitable member from between the at least two pull-apart tabs, the at least one weakened region configured and arranged for separating when the at least two pull-apart tabs are pulled apart from one another in directions approximately orthogonal to the splitable member.
2. The implantation system of
3. The implantation system of
4. The implantation system of
5. The implantation system of
6. The implantation system of
7. The implantation system of
8. An insertion kit comprising:
the implantation system of
a neurostimulation lead with a distal end configured and arranged for implantation into a patient, the neurostimulation lead comprising
a lead body having a distal end and a proximal end,
a plurality of electrodes disposed at the distal end of the lead body,
a plurality of terminals disposed at the proximal end of the lead body, and
a plurality of conductive wires coupling the plurality of electrodes electrically to the plurality of terminals; and
wherein the open channel of the outer insertion needle is configured and arranged such that, when the inner insertion needle is not inserted in the open channel, the distal end of the lead body is insertable into the open channel such that the lead body is laterally separatable from the outer insertion needle through the open channel.
9. The insertion kit of
11. The insertion kit of
12. An electrical stimulation system comprising:
the insertion kit of
a control module configured and arranged to electrically couple to the proximal end of the lead body, the control module comprising
a housing, and
an electronic subassembly disposed in the housing; and
a connector for receiving the neurostimulation lead of the insertion kit, the connector comprising
a connector housing defining a port for receiving the proximal end of the lead body of the neurostimulation lead, and
a plurality of connector contacts disposed in the connector housing, the connector contacts configured and arranged to couple to the plurality of terminals disposed at the proximal end of the lead body.
13. The electrical stimulation system of
14. The electrical stimulation system of
15. The electrical stimulation system of
16. A method for implanting a neurostimulation lead into a patient, the method comprising:
providing the lead introducer of
guiding the splitable member with the inner insertion needle and the outer insertion needle to a position within the patient;
removing the inner insertion needle from the patient, leaving the outer insertion needle and splitable member in the patient;
inserting into the open channel of the outer insertion needle a distal end of a neurostimulation lead, the neurostimulation lead comprising a plurality of electrodes disposed along a distal end of the neurostimulation lead and a plurality of terminals disposed along at least one proximal end of the neurostimulation lead;
separating the outer insertion needle from the neurostimulation lead by passing the neurostimulation lead laterally through the open channel of the outer insertion needle;
removing the outer insertion needle from the patient, leaving the neurostimulation lead disposed in the splitable member;
separating the splitable member into at least two parts along the length of the lumen of the splitable member; and
removing the splitable member from the patient, leaving the distal end of the neurostimulation lead implanted in the patient at a target stimulation location.
17. The method of
18. The method of
guiding the splitable member, the inner insertion needle, and the outer insertion needle to the position within the patient, wherein an obturator is disposed in the inner insertion needle, and
removing the obturator from the inner insertion needle.
19. The method of
20. The implantation system of
|
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/312,621 filed on Mar. 10, 2010, which is incorporated herein by reference.
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to a lead introducer for facilitating insertion of implantable electrical stimulation leads having non-isodiametric lead bodies into patients, as well as methods of making and using the lead introducers and electrical stimulation leads.
Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients.
Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
In one embodiment, a lead introducer includes a multi-piece insertion needle and a splitable member. The multi-piece insertion needle includes an outer insertion needle and an inner insertion needle. The outer insertion needle includes a proximal hub and defines an open channel that extends along substantially entirely a length of the outer insertion needle. The inner insertion needle includes a proximal hub and defines a lumen that extends from the proximal hub along substantially entirely a length of the inner insertion needle. The inner insertion needle is configured and arranged for insertion into the open channel of the outer insertion needle. The splitable member includes a proximal hub and defines a lumen configured and arranged for receiving at least a portion of the multi-piece insertion needle. The splitable member includes at least two pull-apart tabs disposed on the proximal hub of the splitable member and at least one weakened region extending along at least a portion of a length of the splitable member from between the at least two pull-apart tabs. The at least one weakened region is configured and arranged for separating when the at least two pull-apart tabs are pulled apart from one another in directions approximately orthogonal to the splitable member.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to a lead introducer for facilitating insertion of implantable electrical stimulation leads having non-isodiametric lead bodies into patients, as well as methods of making and using the lead introducers and electrical stimulation leads.
Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead. Leads include, for example, percutaneous leads, paddle leads, and cuff leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; and 6,741,892; and U.S. Patent Applications Publication Nos. 2003/0114905, 2005/0165465, 2007/0150036; 2007/0161294; 2007/0219595; 2007/0239243; 2007/0150007; and 2008/0071320, and U.S. patent application Ser. No. 11/238,240, all of which are incorporated by reference.
The electrical stimulation system or components of the electrical stimulation system, including one or more of the leads 106 and the control module 102, are typically implanted into the body of a patient. The electrical stimulation system can be used for a variety of applications including, but not limited to, brain stimulation, neural stimulation, spinal cord stimulation, muscle stimulation, and the like.
The electrodes 134 can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof. The number of electrodes 134 in the array of electrodes 134 may vary. For example, there can be two, four, six, eight, ten, twelve, fourteen, sixteen, or more electrodes 134. As will be recognized, other numbers of electrodes 134 may also be used.
The electrodes of one or more leads 106 are typically disposed in, or separated by, a non-conductive, biocompatible material such as, for example, silicone, polyurethane, polyetheretherketone (“PEEK”), epoxy, and the like or combinations thereof. The leads 106 may be formed in the desired shape by any process including, for example, molding (including injection molding), casting, and the like. The non-conductive material typically extends from the distal end of the one or more leads 106 to the proximal end of each of the one or more leads 106.
Terminals (e.g., 210 in
In at least some embodiments, leads are coupled to connectors disposed on control modules. In
In
In at least some embodiments, the proximal end of a lead extension is similarly configured and arranged as a proximal end of a lead. The lead extension 224 may include a plurality of conductive wires (not shown) that electrically couple the conductive contacts 240 to a proximal end 248 of the lead extension 224 that is opposite to the distal end 226. In at least some embodiments, the conductive wires disposed in the lead extension 224 can be electrically coupled to a plurality of terminals (not shown) disposed on the proximal end 248 of the lead extension 224. In at least some embodiments, the proximal end 248 of the lead extension 224 is configured and arranged for insertion into a connector disposed in another lead extension. In other embodiments, the proximal end 248 of the lead extension 224 is configured and arranged for insertion into a connector disposed in a control module. As an example, in
Some conventional percutaneous implantation techniques involve inserting a lead introducer, such as an epidural needle, into a patient. Once the lead introducer is inserted into the patient, a lead is inserted into the lead introducer and the lead introducer is positioned at a target stimulation location. Once the lead introducer is positioned at the target stimulation location, the lead introducer is removed from the patient, leaving the lead in place. Typically, the lead introducer is removed from the patient by sliding the lead introducer off the proximal end of the lead.
Unfortunately, when a lead has a body that is not isodiametric, it may be difficult to slide the lead introducer off the proximal end of the lead. For example, when a proximal end of a lead body has a diameter that is larger than a distal end of the lead body, or when an oversized junction or adapter is disposed along the length of the lead body, the varying diameters along the length of the lead body may hinder, or even prevent, the lead introducer from sliding off the proximal end of the lead.
A lateral-release lead introducer (“lead introducer”) uses a multi-piece insertion needle that enables a lead to be laterally separated from the multi-piece insertion needle. In at least some embodiments, the lead may be laterally separated from the multi-piece insertion needle without sliding the multi-piece insertion needle off the proximal end of the lead. In at least some embodiments, the lead laterally separates from the multi-piece insertion needle by passing the lead through an open channel defined along a length of the multi-piece insertion needle. In at least some embodiments, during implantation of the lead the multi-piece insertion needle is disposed in a splitable member that separates from the lead by splitting apart along a length of the splitable member.
In at least some embodiments, the distal end 304b of the obturator 304 is configured and arranged for insertion into the lumen of the inner insertion needle 306. In at least some embodiment, the distal end 306b of the inner insertion needle 306 is configured and arranged for insertion into the open channel (704 in
In at least some embodiments, the obturator 304, the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310 are coupleable to one another such that the obturator 304, the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310 form a nested arrangement.
In at least some embodiments, the obturator 304, the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310 are coupleable to one another such that the proximal hubs 304a, 306a, 308a, and 310a of the obturator 304, the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310, respectively, align axially to one another. In at least some embodiments, the obturator 304, the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310 are coupleable to one another such that the distal ends 304b, 306b, and 308b of the obturator 304, the inner insertion needle 306, and the outer insertion needle 308, respectively, extend distally beyond the distal end 310b of the splitable member 310.
In at least some embodiments, the outer insertion needle 308 is formed from a rigid material suitable for implantation, such as stainless steel. In at least some embodiments, the inner insertion needle 306 is formed from the same material as the outer insertion needle 308. In at least some embodiments, the inner insertion needle 306 is formed from a material that is more flexible than the outer insertion needle 308. In at least some embodiments, the outer insertion needle 308 is formed from a material that is more rigid than the splitable member 310. In at least some embodiments, the outer insertion needle 308 is formed from a material that is rigid enough to enable the outer insertion needle 308 to be used to guide (e.g., enable lateral steering) the splitable member 310 within a patient when the outer insertion needle 308 is disposed in the splitable member 310.
In at least some embodiments, the lateral circumference of the outer insertion needle 308 is no greater than sixteen-gauge. In at least some embodiments, the lateral circumference of the outer insertion needle 308 is no greater than fifteen-gauge. In at least some embodiments, the lateral circumference of the outer insertion needle 308 is no greater than fourteen-gauge. In at least some embodiments, the lateral circumference of the outer insertion needle 308 is no greater than thirteen-gauge. In at least some embodiments, the lateral circumference of the outer insertion needle 308 is no greater than twelve-gauge.
In at least some embodiments, the proximal hub 306a of the inner insertion needle includes a luer fitting 602 configured and arranged to receive a syringe. In at least some embodiments, fluid (e.g., saline solution, air, or the like) may be introduced or removed through the luer fitting 602 to check for precise positioning of the lead introducer 302, for example, whether or not the epidural space has been entered.
In at least some embodiments, the outer insertion needle 308 is configured and arranged to receive a distal end of a lead when the inner insertion needle 306 is not disposed in the outer insertion needle 308.
In some embodiments, the lead 702 has an isodiametric lead body. In other embodiments, the lead 702 has a non-isodiametric lead body. In at least some embodiments, the lead 702 includes one or more elements (e.g., a junction, adaptor, or the like) disposed along the length of the lead 702 which have a transverse cross-sectional shape or size that is different from at least one other portion of the lead 702. In at least some embodiments, the distal end of the lead 702 has a transverse cross-sectional shape that is similar to the inner insertion needle 306. In at least some embodiments, the one or more elements having a different transverse cross-sectional shape or size are disposed on a proximal end of the lead 702.
In at least some embodiments, the inner insertion needle 306 is retained in the open channel 704 by the splitable member 310. In at least some embodiments, the inner insertion needle 306 is configured and arranged to at least substantially fill the open channel 704 when the inner insertion needle 306 is disposed in the open channel 704. In at least some embodiments, the inner insertion needle 306 is configured and arranged for insertion into and out of the open channel 704 of the outer insertion needle 308 by sliding the inner insertion needle 306 axially along the open channel 704.
In at least some embodiments, the open channel 704 is configured and arranged to receive the lead 702 when the inner insertion needle 306 is not disposed in the open channel 704. In at least some embodiments, the open channel 704 has a width that is no less than a diameter of the lead 702. In at least some embodiments, the open channel 704 is configured and arranged to receive the lead 702 such that the lead 702 may be separated from the open channel 704 without moving the lead 702 axially relative to the outer insertion needle 308.
In at least some embodiments, the lead 702 may be removed from the open channel 704 by applying enough lateral force to at least one of the lead 702 or the outer insertion needle 308 to pass the lead 702 out through the open channel 704. In at least some embodiments, the open channel 704 is configured and arranged such that, when the splitable member 310 is removed from the outer insertion needle 308, the lead 702 separates from the outer insertion needle 308 without needing to apply lateral force to either the lead 702 or the outer insertion needle 308.
In at least some embodiments, the lead 702 may be inserted into a patient using the lead introducer 302. In at least some embodiments, the obturator 304 is inserted into the lumen of the inner insertion needle 306, the inner insertion needle 306 is inserted into the open channel 704 of the outer insertion needle 308, and the outer insertion needle 308 is inserted into the splitable member 310, as shown in
The assembled lead introducer 302 is inserted into a patient and guided in proximity to a target stimulation location (e.g., several vertebrae levels above or below the target stimulation location). In at least some embodiments, once the lead introducer 302 is in proximity to a target stimulation location, the obturator 304 is removed and fluid is introduced or removed through the luer fitting 602 of the inner insertion needle 306 to check for precise positioning of the lead introducer 302, for example, in an epidural space of the patient.
Once the lead introducer 302 is positioned in the epidural space in proximity to the target stimulation location, the inner insertion needle 306 may be removed and the distal end of the lead 702 may be inserted into the open channel 704 of the outer insertion needle 308.
It may be an advantage to guide the lead 702 within the patient while the lead 702 is disposed in the outer insertion needle 308 and the splitable member 310. The outer insertion needle 308 and the splitable member 310 may provide the clinician with the ability to steer the lead introducer 302 by applying a laterally force of the lead introducer 302 to direct the trajectory of the lead 702. When the outer insertion needle 308 is removed from the lead 702 prior to insertion, then the splitable member 310 may be too flexible to provide this steering ability.
Once the distal end of the lead 702 has been guided to the target stimulation location, the splitable member 310 and the outer insertion needle 308 may be separated from the lead 702 and removed from the patient. It will be understood that the splitable member 310 may be separated from the lead 702 either before or after the outer insertion needle 308 is separated from the lead 702. It will also be understood that the splitable member 310 may be removed from the patient either before or after the outer insertion needle 308 is removed from the patient. In some embodiments, the outer insertion needle 308 is separated from the lead 702 prior to the splitable member 310 being separated from the lead 702. In other embodiments, the splitable member 310 is separated from the lead 702 prior to the outer insertion needle 308 being separated from the lead 702. In some embodiments, the outer insertion needle 308 is removed from the patient prior to removal of the splitable member 310. In other embodiments, the splitable member 310 is removed from the patient prior to removal of the outer insertion needle 308.
In preferred embodiments, the lead 702 is guided to the target stimulation location while disposed in the outer insertion needle 308 and the splitable member 310. The outer insertion needle 308 is removed from the lead 702 (and from the patient). The splitable member 310 is then split apart from the lead 702 and removed from the patient.
In at least some embodiments, the splitable member 310 is formed from a flexible material suitable for implantation into the patient 802 including, for example, fluorinated ethylene propylene, polytetrafluoroethylene, high-density polyethylene, polyetheretherketone, and the like or combinations thereof. Additionally, one or more radiopaque materials may be added including, for example, barium sulfate and bismuth subcarbonate, and the like or combinations thereof to facilitate implantation of the introducer sheath through the use of one or more medical imaging techniques, such as fluoroscopy.
In at least some embodiments, the splitable member includes one or more weakened regions 1006, such as score lines or perforations, extending along at least a portion of a length of the splitable member 310 from between the at least two pull-apart tabs 1002 and 1004. In at least some embodiments, when the at least two pull-apart tabs 1002 and 1004 are separated from one another, for example, by pulling each pull-apart tab away from the other pull-apart tab(s) in directions approximately orthogonal to the splitable member 310, the splitable member 310 separates along the one or more weakened regions 1006.
In at least some embodiments, the splitable member 310 is separated into a plurality of longitudinal strips while pulling the splitable member 310 proximally along the lead 702. As the splitable member 310 splits apart, the distal end 310b of the splitable member 310 moves proximally along the lead 702 (as shown by arrow 1008), with an increasing amount of the lead 702 extending through the distal end 310b of the splitable member 310. In at least some embodiments, an undersurface of the splitable member 310 includes a lubricious coating to facilitate the proximal movement of the splitable member 310.
Eventually, the splitable member 310 may be completely separated into two or more longitudinal strips, thereby separating completely from the lead 702 and also from the patient. In at least some embodiments, the distal ends of the splitable member 310 may be extracted from the patient as the splitable member 310 is split apart. In at least some embodiments, the splitable member 310 may be split apart without causing the lead 702 to move.
Once the lead 702 is positioned at the target stimulation site, the lead 702 may be coupled to a control module (e.g., 102 of
In at least some embodiments, the inner insertion needle 306 includes one or more protrusions that align with the open channel 704 to facilitate alignment of the inner insertion needle 306 in the open channel 704 of the outer insertion needle 308.
In at least some embodiments, a luer lock collar may be disposed on the proximal hub 306a of the inner insertion needle 306 to lock the inner insertion needle 306, the outer insertion needle 308, and the splitable member 310 all together during insertion.
Some of the components (for example, power source 1312, antenna 1318, receiver 1302, and processor 1304) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator, if desired. Any power source 1312 can be used including, for example, a battery such as a primary battery or a rechargeable battery. Examples of other power sources include super capacitors, nuclear or atomic batteries, mechanical resonators, infrared collectors, thermally-powered energy sources, flexural powered energy sources, bioenergy power sources, fuel cells, bioelectric cells, osmotic pressure pumps, and the like including the power sources described in U.S. Patent Application Publication No. 2004/0059392, incorporated herein by reference.
As another alternative, power can be supplied by an external power source through inductive coupling via the optional antenna 1318 or a secondary antenna. The external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.
If the power source 1312 is a rechargeable battery, the battery may be recharged using the optional antenna 1318, if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 1316 external to the user. Examples of such arrangements can be found in the references identified above.
In one embodiment, electrical current is emitted by the electrodes 134 on the paddle or lead body to stimulate nerve fibers, muscle fibers, or other body tissues near the electrical stimulation system. A processor 1304 is generally included to control the timing and electrical characteristics of the electrical stimulation system. For example, the processor 1304 can, if desired, control one or more of the timing, frequency, strength, duration, and waveform of the pulses. In addition, the processor 1304 can select which electrodes can be used to provide stimulation, if desired. In some embodiments, the processor 1304 may select which electrode(s) are cathodes and which electrode(s) are anodes. In some embodiments, the processor 1304 may be used to identify which electrodes provide the most useful stimulation of the desired tissue.
Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 1308 that, for example, allows modification of pulse characteristics. In the illustrated embodiment, the processor 1304 is coupled to a receiver 1302 which, in turn, is coupled to the optional antenna 1318. This allows the processor 1304 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.
In one embodiment, the antenna 1318 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 1306 which is programmed by a programming unit 1308. The programming unit 1308 can be external to, or part of, the telemetry unit 1306. The telemetry unit 1306 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired. As another alternative, the telemetry unit 1306 may not be worn or carried by the user but may only be available at a home station or at a clinician's office. The programming unit 1308 can be any unit that can provide information to the telemetry unit 1306 for transmission to the electrical stimulation system 1300. The programming unit 1308 can be part of the telemetry unit 1306 or can provide signals or information to the telemetry unit 1306 via a wireless or wired connection. One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 1306.
The signals sent to the processor 1304 via the antenna 1318 and receiver 1302 can be used to modify or otherwise direct the operation of the electrical stimulation system. For example, the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength. The signals may also direct the electrical stimulation system 1300 to cease operation, to start operation, to start charging the battery, or to stop charging the battery. In other embodiments, the stimulation system does not include an antenna 1318 or receiver 1302 and the processor 1304 operates as programmed.
Optionally, the electrical stimulation system 1300 may include a transmitter (not shown) coupled to the processor 1304 and the antenna 1318 for transmitting signals back to the telemetry unit 1306 or another unit capable of receiving the signals. For example, the electrical stimulation system 1300 may transmit signals indicating whether the electrical stimulation system 1300 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery. The processor 1304 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.
The above specification, examples and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
Patent | Priority | Assignee | Title |
11529510, | Feb 19 2019 | Boston Scientific Neuromodulation Corporation | Lead introducers and systems and methods including the lead introducers |
11801072, | Sep 12 2017 | Multi-port epidural needle | |
9629658, | Sep 06 2013 | Boston Scientific Neuromodulation Corporation | Systems and methods for making and using a lead introducer for an implantable electrical stimulation system |
9700350, | Sep 06 2013 | Boston Scientific Neuromodulation Corporation | Systems and methods for making and using a lead introducer for an implantable electrical stimulation system |
Patent | Priority | Assignee | Title |
4512351, | Nov 19 1982 | Pacesetter, Inc | Percutaneous lead introducing system and method |
5125904, | Jul 09 1991 | HL MEDICAL INVENTIONS, INC | Splittable hemostatic valve and sheath and the method for using the same |
5320602, | May 14 1993 | Cook Medical Technologies LLC | Peel-away endoscopic retrograde cholangio pancreatography catheter and a method for using the same |
5409469, | Nov 04 1993 | Medtronic, Inc. | Introducer system having kink resistant splittable sheath |
5441504, | Apr 09 1992 | Medtronic, Inc. | Splittable lead introducer with mechanical opening valve |
5443492, | Feb 02 1994 | Medtronic, Inc.; Medtronic, Inc | Medical electrical lead and introducer system for implantable pulse generator |
5713867, | Apr 29 1996 | Medtronic, Inc. | Introducer system having kink resistant splittable sheath |
5741233, | Oct 20 1995 | Technology Holding Company II | Introducer device and methods of use thereof |
5752937, | Apr 30 1997 | Medtronic Inc. | Reinforced splittable medical introducer cannula |
5755693, | Sep 09 1992 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Bloodless splittable introducer |
6080141, | Dec 22 1997 | Becton, Dickinson and Company | Splittable tubular medical device and method for manufacture |
6181969, | Jun 26 1998 | Advanced Bionics, LLC | Programmable current output stimulus stage for implantable device |
6251119, | Aug 07 1998 | Edwards Lifesciences Corporation | Direct stick tear-away introducer and methods of use |
6358460, | Dec 23 1999 | TELEFLEX MEDICAL INCORPORATED | Method for tip forming peelable PTFE tubing |
6454744, | Dec 23 1999 | TELEFLEX MEDICAL INCORPORATED | Peelable PTFE sheaths and methods for manufacture of same |
6494860, | Feb 08 2001 | OSCOR, INC | Introducer with multiple sheaths and method of use therefor |
6516227, | Jul 27 1999 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulator system |
6582390, | Nov 08 2000 | LifeShield Sciences LLC | Dual lumen peel-away sheath introducer |
6609029, | Feb 04 2000 | Boston Scientific Neuromodulation Corporation | Clip lock mechanism for retaining lead |
6609032, | Jan 07 1999 | Boston Scientific Neuromodulation Corporation | Fitting process for a neural stimulation system |
6641564, | Nov 06 2000 | Greatbatch Ltd | Safety introducer apparatus and method therefor |
6645178, | Apr 21 1997 | Apparatus for inserting medical device | |
6712791, | Dec 30 1999 | Cook Medical Technologies LLC | Splittable medical valve |
6741892, | Mar 10 2000 | Boston Scientific Neuromodulation Corporation | Movable contact locking mechanism for spinal cord stimulator lead connector |
6749600, | Nov 15 2000 | IMPULSE DYNAMICS N V | Braided splittable catheter sheath |
6758854, | May 09 1997 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Splittable occlusion balloon sheath and process of use |
6869416, | Sep 13 1996 | SciMed Life Systems, Inc. | Multi-size convertible catheter |
6939327, | May 07 2002 | Cardiac Pacemakers, Inc. | Peel-away sheath |
7001396, | Mar 26 2003 | Greatbatch Ltd | Safety introducer assembly and method |
7014626, | Nov 08 2000 | LifeShield Sciences LLC | Dual-lumen peel-away sheath introducer |
7101353, | Dec 30 1999 | Cook Medical Technologies LLC | Splittable medical valve |
7192433, | Mar 15 2002 | Oscor Inc | Locking vascular introducer assembly with adjustable hemostatic seal |
7244150, | Jan 09 2006 | Boston Scientific Neuromodulation Corporation | Connector and methods of fabrication |
7524305, | Sep 07 2004 | B. Braun Medical, Inc. | Peel-away introducer and method for making the same |
7672734, | Dec 27 2005 | Boston Scientific Neuromodulation Corporation | Non-linear electrode array |
7744571, | Jun 22 2007 | MEDICAL COMPONENTS, INC | Tearaway sheath assembly with hemostasis valve |
7761165, | Sep 29 2005 | Boston Scientific Neuromodulation Corporation | Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use |
7792590, | Dec 29 2000 | Boston Scientific Neuromodulation Corporation | Implantable lead systems for brain stimulation |
7887733, | Sep 07 2004 | B. Braun Medical, Inc. | Method of making a peel-away introducer |
7909798, | Jul 25 2007 | Oscor Inc | Peel-away introducer sheath having pitched peel lines and method of making same |
7938806, | Mar 14 2008 | Medical Components, Inc.; MEDICAL COMPONENTS, INC | Tearaway introducer sheath with hemostasis valve |
7941227, | Sep 03 2008 | Boston Scientific Neuromodulation Corporation | Implantable electric stimulation system and methods of making and using |
7985232, | Jul 08 2003 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Detachable hemostasis valve and splittable sheath assembly |
7993305, | Oct 22 2008 | Greatbatch Ltd. | Splittable valved introducer apparatus |
8043263, | Oct 09 2008 | Pacesetter, Inc.; Pacesetter, Inc | Slittable delivery device assembly for the delivery of a cardiac surgical device |
8105287, | Mar 11 2009 | Medical Components, Inc. | Tearaway introducer sheath with hemostasis valve |
8105315, | Nov 08 2006 | Cardiac Pacemakers, Inc. | Break-away hemostasis hub |
8147456, | Apr 05 2010 | MEDICAL COMPONENTS INC | Hub for tearaway sheath assembly |
8273059, | Sep 18 2007 | Medical Components, Inc. | Tearaway sheath assembly with split hemostasis valve seal |
20030114905, | |||
20050165465, | |||
20070150036, | |||
20070219595, | |||
20070239243, | |||
20080071320, | |||
20080103570, | |||
20110218549, | |||
20110224681, | |||
20110230893, | |||
RE31855, | Dec 01 1978 | Cook, Inc. | Tear apart cannula |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 02 2011 | Boston Scientific Neuromodulation Corporation | (assignment on the face of the patent) | / | |||
Oct 04 2016 | BARKER, JOHN MICHAEL | Boston Scientific Neuromodulation Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039988 | /0860 |
Date | Maintenance Fee Events |
Nov 14 2016 | ASPN: Payor Number Assigned. |
Jul 27 2020 | REM: Maintenance Fee Reminder Mailed. |
Jan 11 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 06 2019 | 4 years fee payment window open |
Jun 06 2020 | 6 months grace period start (w surcharge) |
Dec 06 2020 | patent expiry (for year 4) |
Dec 06 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 06 2023 | 8 years fee payment window open |
Jun 06 2024 | 6 months grace period start (w surcharge) |
Dec 06 2024 | patent expiry (for year 8) |
Dec 06 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 06 2027 | 12 years fee payment window open |
Jun 06 2028 | 6 months grace period start (w surcharge) |
Dec 06 2028 | patent expiry (for year 12) |
Dec 06 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |