An electronic lock includes a lock mechanism, an actuator coupled to the lock mechanism and configured to lock and release the lock mechanism, and an actuator control circuit coupled to the actuator. The electronic lock also includes a battery electrically coupled to the actuator, a super capacitor electrically coupled to the battery, and a processor coupled to the actuator, the battery, and the super capacitor. The processor is configured to selectively receive power from the battery and the super capacitor, wherein the processor receives power from the super capacitor when a state of charge of the battery is below a predetermined voltage threshold, and provide control signals to the actuator control circuit to control operation of the actuator.
|
10. A method of operating an electronic lock including a processor, a battery, and a super capacitor, the method comprising the steps of:
receiving power from the battery when a state of charge of the battery is above a predetermined voltage threshold,
providing power to the super capacitor from the battery when the state of charge of the battery is below the predetermined voltage threshold,
receiving power from the super capacitor when the state of charge of the battery is below the predetermined voltage threshold, and
sending a control signal to a actuator control circuit coupled to a actuator, the actuator coupled to a lock mechanism of the electronic lock, wherein the control signal causes the actuator to release the lock mechanism.
1. An electronic lock comprising:
a lock mechanism;
an actuator coupled to the lock mechanism and configured to lock and release the lock mechanism;
an actuator control circuit coupled to the actuator;
a battery electrically coupled to the actuator;
a super capacitor electrically coupled to the battery, the super capacitor configured to receive power from the battery when a state of charge of the battery is below a predetermined voltage threshold; and
a processor coupled to the actuator, the battery, and the super capacitor, the processor configured to
selectively receive power from the battery and the super capacitor, wherein the processor receives power from the super capacitor when the state of charge of the battery is below the predetermined voltage threshold, and
provide control signals to the actuator control circuit to control operation of the actuator.
2. The electronic lock of
3. The electronic lock of
4. The electronic lock of
5. The electronic lock of
6. The electronic lock of
receive a data signal from one of the first authentication board and the second authentication board,
compare the data signal with authorized information stored in a memory of the electronic lock, and
send a control signal to the actuator control circuit indicating to release the lock mechanism when the data signal matches the authorized information stored in the memory of the electronic lock.
7. The electronic lock of
operate in a monitoring mode, in which the speaker board is disabled,
operate in an operational mode, in which the speaker board is enabled, and
switch from the monitoring mode to the operational mode based on a data signal received from one of the camera board, the touch-enabled screen board, the keypad board, or the wireless communication board, the data signal indicating a user input.
8. The electronic lock of
9. The electronic lock of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
selectively receiving a data signal from one of a first authentication board coupled to the processor and a second authentication board coupled to the processor, wherein the first authentication board includes a keypad and the second authentication board includes a biometric scanner,
comparing the data signal to authorized information stored in a memory of the electronic lock, and
wherein sending the control signal to the actuator control circuit includes sending the control signal when the data signal matches the authorized information.
16. The method of
operating in a monitoring mode in which at least a peripheral component of the electronic lock is disabled,
operating in an awake mode in which the peripheral component is enabled, and
switching from the monitoring mode to the awake mode based on a data signal received from one of a group including a camera board coupled to the processor, a touch-enabled screen board coupled to the processor, a keypad board coupled to the processor, and a wireless communication board coupled to the processor, wherein the data signal is indicative of a user input.
17. The method of
storing a list of features available to a user when the electronic lock operates in the awake mode, and
wherein switching from the monitoring mode to the awake mode includes providing power only to circuits associated with the list of features when the processor switches from the monitoring mode to the awake mode.
18. The method of
19. The method of
|
The present invention relates to back-up power systems for consumer electronic devices and adaptive power-up sequences.
Providing a reliable power supply on an electronic lock is important to provide the users with a reliable product. If the electronic lock is accidentally disconnected or if the power supply is interrupted, a user may find him/herself locked outside their house, for example, because their electronic lock does not have power. Therefore, the present invention provides a back-up power system used with an electronic lock, thereby making the electronic lock more reliable
In some embodiments, the invention provides an electronic lock including a super capacitor to provide power to the control circuitry, for example a master board, of the electronic lock. In some embodiments, the electronic lock triggers the super capacitor to charge when a battery voltage is below a predetermined voltage threshold. In some embodiments, the super capacitor is charged with at least some of the same batteries of the electronic lock. In some embodiments, the super capacitor provides power to the electronic lock for a predetermined period of time and only powers some components of the electronic lock.
In other embodiments, the invention provides a method of operating the electronic lock described above. In yet other embodiments, the invention provides a physical lock that automatically enters a monitoring state without any user input. In some embodiments, during the monitoring mode, the electronic lock powers the master board, the display board and the wireless communication board. In some embodiments, the physical lock can authenticate the user and enter a different mode that is not a monitoring mode.
In still other embodiments, the invention provides a physical lock that wakes up with an adaptive sequence based on a selected mode for the physical lock.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect. Also, electronic communications and notifications may be performed using any known means including direct connections, wireless connections, etc.
It should also be noted that a number of hardware and software based devices, as well as a number of different structural components may be utilized to implement the invention. A number of hardware and software based devices, as well as a number of different structural components, may be used to implement the invention. In addition, it should be understood that embodiments of the invention may include hardware, software, and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that in at least one embodiment, the electronic based aspects of the invention may be implemented in software (e.g., stored on non-transitory computer-readable medium) executable by one or more processors. As such, it should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components, may be utilized to implement the invention. For example, “control units” and “controllers” described in the specification can include processing components, such as one or more processors, one or more memory modules including non-transitory computer-readable medium, one or more input/output interfaces, and various connections (e.g., a system bus) connecting the components.
To operate independently some secondary boards 12-44 include a power switch. The power switch is switchable between an on position in which power is delivered to the secondary board 12-44 and an off position in which power is interrupted before being delivered to the secondary board 12-44. The master board 46 sends a control signal to the power switch indicating a position for the power switch. When the master board 46 determines that the secondary board 12-46 may be utilized by the user, the master board 46 sends a control signal (e.g., commands) to the power switch to be in the on position. The secondary board 12-44 then receives power and can perform its respective functionality.
While some secondary boards 12-44 may include the power switch described above, other secondary boards 12-44 include a microcontroller instead. The microcontroller controls other electronic components of the secondary board 12-44. The microcontroller communicates with the master board 46 and is configured to receive, via an input port, a signal from the master board 46 indicating whether the secondary board 12-44 should perform its respective functionality. The microcontroller then operates the electronic components of the secondary board 12-44 as necessary to perform the functionality associated with the secondary board 12-44. In some embodiments, some or all of the secondary boards 12-44 may include both the power switch and the microcontroller.
The master board 46 decides when to activate (e.g., power) each secondary board 12-44 based on operational modes for the electronic lock 10. In some embodiments, the master board 46 stores a configuration file that specifies which functionalities are desired by the user, which secondary boards 12-44 provide the desired functionality, and therefore, which secondary boards 12-44 are to be activated. Each configuration file may then be associated with each operational mode of the electronic lock 10, such that each mode includes a specific set of functionalities available to the user, and the master board 46 powers only the secondary boards 12-44 responsible for the desired functionality.
As illustrated in
The camera 56 is also coupled to the image signal processor 60. The image signal processor 60 receives visual signals from the camera 56 and generates a digital image based on the visual signals. In some embodiments, the image signal processor 60 may include a filter, or more, to enhance the image obtained by the camera 56. The camera 56 and the ambient light sensor 58 are coupled to the power switch 62. The power switch 62 is then coupled to the master board 46 to receive control signals indicating when the camera board 14 is to be powered. In some embodiments, the ambient light sensor 58 is coupled to the image signal processor 60 and the image signal processor 60 commands the camera 56 when to switch between capturing visual images and capturing infrared images based on the output from the ambient light sensor 58. In other embodiments, the ambient light sensor 58 is coupled directly to the master board 46, or is part of the master board 46, and the master board 46 sends a control signal to the camera board 14 indicating whether the camera 56 should capture visual light images or infrared images. In some embodiments, rather than having the camera 56 switch between capturing visual light images and capturing infrared images, the camera board 14 includes a visual light camera and an infrared camera. A control signal from the image signal processor 60 or the master board 46 indicates whether the visual light camera or the infrared camera should be activated. In some embodiments, both cameras may be activated and the camera board 14 may then obtain visual light and infrared images.
As shown in
The indoor touch LCD board 16 and the outdoor touch LCD board 18 includes similar components, and are, therefore, described together herein and referred to collectively as the touch LCD boards 16, 18. The touch LCD boards 16, 18 include a touch-enabled LCD 72, a touch signal processor 74, and a power switch 76. In the illustrated embodiment, the touch LCD 72 includes a capacitive screen. In other words, in the illustrated embodiment, the touch LCD 72 includes a layer that stores electrical charge and that is below a glass panel of the LCD screen 72. When a finger comes close or touches the LCD screen 72, the amount of stored electrical charge changes. The LCD screen 72 also includes voltage measuring circuits positioned around the LCD screen 72, for example, one in each corner of the LCD screen 72. The LCD screen 72 is coupled to the touch signal processor 74. The touch signal processor 74 receives voltage measuring signals from the voltage measuring circuits positioned around the LCD screen 72. The touch signal processor 74 then uses the voltage measurements to determine where (e.g., map) the user touched the LCD screen 72. The touch signal processor 74 may then communicate with the master board 46 to relay information regarding where the user touched the LCD screen 72. The master board 46 may then communicate with the touch signal processor 74 to communicate what is displayed on the LCD screen 72. The power switch 76 is coupled to the touch LCD screen 72, the touch signal processor 74, and to the master board 46. The power switch 76 receives a control signal from the master board 46 to determine when the touch LCD boards 16, 18 is to be activated. The user may interact with the electronic lock 10 through the touch LCD boards 16, 18 to change settings and/or control functionality of the electronic lock 10 or to request an authentication action from the master board 46 to gain access to the restricted area. For example, the user may utilize the LCD screens 72 to replicate a pattern, to match specific pictures to each other, to input an access code. The master board 46 then performs an authentication action and compares the user's input to stored authorized actions and determines whether the user is an authorized user based on the comparison between the user's action and the stored actions.
The user can also request an authentication action from the master board 46 through the biometric authorization board 20. As shown in
The retinal scanner 80 includes an infrared emitter and an infrared detector. The infrared emitter directs infrared energy into the user's eyes while the infrared detector detects the amount of infrared energy reflected back from the user's eyes. The retinal scanner 80 then transmits the infrared energy information (e.g., data signals including infrared energy measurements) to the signal processor 84. The signal processor 84 then determines blood vessel patterns and sends the blood vessel pattern information to the master board 46. The master board 46 then performs an authentication action by comparing the blood vessel pattern obtained from the user to stored blood vessel patterns identifying authorized users. If the blood vessel pattern from the user matches at least one of the stored blood vessel patterns, the master board 46 determines that the user is an authorized user.
The camera 82 may be used by the biometric authorization board 20 to detect a person's face and determine, from that alone, who the person is, whether they feel ok, etc. In other embodiments, however, the camera board 14 performs this function and therefore, the camera 82 is not included in the biometric authorization board 20. In other embodiments, the biometric authorization board 20 also includes an iris scanner that obtains an image of a user's iris. The master board 46 can then compare the user's iris scan to stored iris scans for authorized users.
The power switch 86 of the biometric authorization board 20 is coupled to each of the fingerprint scanner 78, the retinal scanner 80, and the camera 82, the signal processor 84, and the master board 46. The power switch 86 receives a control signal from the master board 46 indicating when each of the scanners 78, 80, 82 is to be activated. The power switch 86 can turn one of the scanners 78, 80, 82 on, while the rest remained deactivated 78, 80, 82.
The z-wave communication board 22, the internet communication board 24, and the Bluetooth communication board 26 all generally allow the electronic lock 10 to communicate wirelessly with other devices. These boards 22, 24, 26 also include similar components and are described together herein, and collectively called the communication boards 22-26. As shown in
The master board 46 can also receive signals from the microphone board 28. As shown in
The display board 30, the speaker board 32, and the buzzer board 34 include similar components. These boards 30, 32, 34 will be described together and collectively referred to as the output boards 30, 32, 34. As shown in
The motor control board 36 controls the lock mechanism 108 of the electronic lock 10. As shown in
The electronic lock 10 also includes the wired communication board 38. The wired communication board 38 includes different connectors to receive compatible connectors and transmit data to the master board 46. For example, in the illustrated embodiment, the wired communication board 38 includes a USB connector, a microUSB connector, etc. The connectors are coupled to the master board 46. The wired communication board 38 may be used to configure various settings of the electronic lock 10, or to transfer information to the electronic lock 10. For example, a USB storage device (e.g., a flashdrive) may be used to input fingerprint scans of authorized users, access codes, patterns, etc. of authorized users. The wired communication board 38 may also be used to export data from the electronic lock 10. For example, the stored access codes for authorized users, the fingerprint scans, etc. may be copied or moved to an external USB storage device, for later transfer to, for example, another electronic lock 10. In the illustrated embodiment, the master board 46 first authenticates a user as an authorized user before allowing data to be imported or exported from the electronic lock 10 to prevent theft of authorization information.
The electronic lock 10 also includes various methods to power the desired secondary boards 12-44 and the master board 46. For example, the electronic lock 10 includes the power over Ethernet board 40 that receives power from an internet connection. The power over Ethernet board 40 includes a receptacle configured to receive a cable with sufficient lines to communicate both data and power. For example, the receptacle may be configured to receive a Cat5 cable. In other embodiments, the receptacle may receive other types of cables.
As shown in
The electronic lock 10 also includes the super capacitor board 44 to provide back-up power for the electronic lock 10 when the battery in the battery receptacle 122 becomes discharged. As shown in
Although the battery may not provide enough power to power the electronic lock 10, the battery still continuous to provide electrical power. Therefore, the buck-boost circuit 132 receives power from the battery through the battery receptacle 122 and provides approximately 6V power output to the super capacitor 134. The super capacitor 134 receives the electrical energy from the buck-boost circuit 132 and stores the electrical energy until the super capacitor is fully charge (e.g., reaches its maximum energy storage capacity). Once the super capacitor 134 is fully charged, the super capacitor 134 provides an electrical power output to the master board 46 to power the master board 46 and the secondary boards 12-42. In the illustrated embodiment, the super capacitor 134 is a four microfarad capacitor and charges in approximately 60 seconds and provides a 7V power output. The super capacitor 134, in the illustrated embodiment, provides approximately 350 mA at about 63% efficiency. Because the super capacitor 134 stores a limited amount of energy, the super capacitor 134 only power the electronic lock 10 for a limited time period. In the illustrated embodiment, the super capacitor 134 powers the electronic lock (e.g., the master board 46 and the secondary board 12-42) for approximately 12 seconds. In other embodiments, the period of time during which the electronic lock 10 receives power from the super capacitor 134 varies from for example zero seconds to five minutes. In other embodiments, the period of time for which the super capacitor powers the processor may be different. Therefore, when the electronic lock 10 is powered by the super capacitor 134, the electronic lock 10 operates in an ultra-low power mode designed specifically to minimize energy usage of the electronic lock 10.
The super capacitor board 44 allows the electronic lock 10 to receive power from the battery through the battery receptacle 122 even after the battery is not able (e.g., too low) to provide power directly to the master board 46 and to the secondary boards 12-42. For example, in the illustrated embodiment, the battery provides approximately 6.5V to the electronic lock 10. When the battery drops below the predetermined voltage threshold (e.g., 4.4V), the battery no longer provides power to the master board 46 and the secondary boards 12-42 directly, but the battery can indirectly provide power to the electronic lock 10 through the super capacitor 134. The super capacitor 134 is charged with the remaining voltage of the battery and builds up charge over time. When the super capacitor 134 harvests sufficient power (e.g., 7V), the super capacitor 134 powers the master board 46 and any desired secondary boards 12-42. Because the super capacitor 134 is charged from the battery, which is an already slightly discharged battery, the more discharged the battery (i.e., the lower the state of charge of the battery), the longer it takes for the super capacitor 134 to reach full charge. This delay in the charging of the super capacitor 134 helps indicate to the user that the battery needs to be replaced and/or recharged.
The master board 46 is electrically and/or communicatively connected to the secondary boards 12-44 as shown in
The memory 152 includes, for example, a program storage area and a data storage area. The program storage area and the data storage area can include combinations of different types of memory, such as read-only memory (“ROM”), random access memory (“RAM”), electrically erasable programmable read-only memory (“EEPROM”), flash memory, a hard disk, an SD card, or other suitable magnetic, optical, physical, or electronic memory devices. The processing unit 150 is connected to the memory 152 and executes software instructions that are stored in a RAM of the memory 152 (e.g., during execution), a ROM of the memory 152 (e.g., on a generally permanent bases), or another non-transitory computer readable medium such as another memory or a disc. Software included in the implementation of the electronic lock 10 can be stored in the memory 152 of the master board 46. The software includes, for example, firmware, one or more applications, program data, filters, rules, one or more program modules, and other executable instructions. The master board 46 is configured to retrieve from memory 152 and execute, among other things, instructions related to the control processes and methods described herein. In other embodiments, the master board 46 include additional, fewer, or different components. In particular, the memory 152 stores information regarding the different operational modes of the electronic lock 10. The memory 152 also stores a configuration file that specifies which secondary boards 12-44 are activated during a particular mode. The configuration file is then associated with the stored mode such that when the master board 46 begins to operate the electronic lock 10 in a specific mode, the configuration file includes information regarding which secondary boards 12-44 are to be activated to operate in that mode.
In the illustrated embodiments, the memory 152 stores a plurality of preset modes from which the user can select (e.g., using the touch LCD 72) an operational mode for the electronic lock 10. In the illustrated embodiments, the user can also program new modes by selecting specific features desired in the electronic lock 10. When a user programs a new mode, the master board 46 determines which secondary boards 12-44 provide the desired features and stores information (e.g., a list of desired features) regarding these secondary boards 12-44 in a configuration file that is associated with the user defined mode. When the user-defined mode is selected, the master board 46 retrieves the configuration file associated with the selected mode and activates the secondary boards 12-44 as indicated by the configuration file. In some embodiments, the master board 46 may store a table that associates a specific mode with its respective configuration file. In other embodiments, the configuration file is labeled with its respective mode. In other embodiments, the master board 46 may associate the configuration file and the mode using a different method.
In the illustrated embodiment, the preset modes for the electronic lock 10 include an active communication mode, a polling mode, a monitoring mode, and the ultra-low power mode. The active communication mode allows a user to remotely open the electronic lock 10 with minimal wait time (i.e., immediately). During the active communication mode, the wireless communication boards 22, 24, 26, the display board 30, the speaker board 32, the motor control board 36, and the power input boards 40-44 are activated. To ensure minimal wait time between the time that the user sends an open command to the electronic lock 10 and the time when the electronic lock 10 actually opens. The wireless communication boards 22, 24, 26 periodically determine whether a wireless communication signal has been received from an external device 2 at short time intervals (e.g., one second). The electronic lock 10 can then receive the remote command from the user soon after (e.g., almost immediately) after the user sends the command. After receiving the remote unlock command from the user, the master board 46 performs a remote authentication action to ensure that the user is an authorized user. In some embodiments, the external device 2 identifies itself when sending the remote unlock command, and the master board 46 determines whether the external device 2 is part of a list of authorized users. After the user has been verified as an authorized user, the master board 46 communicates with the motor control board 36 to release the lock mechanism 108 of the electronic lock 10.
In some embodiments, the electronic lock 10 may output messages to the person waiting to gain access to the restricted area. The electronic lock 10 may, for example, display a message indicating that the master board 46 is validating the remote unlock command from the user. In other embodiments, the electronic lock 10 may emit a sound when the remote unlock command has been verified. Because the wireless communication boards 22, 24, 26 periodically check for received communications, the active communication mode generally has a higher power consumption than other preset modes for the electronic lock 10. The electronic lock 10 operates in the active communication mode when the user instructs the electronic lock 10 to operate in the active communication mode or when the active communication mode as a default mode. The electronic lock 10 exits the active communication mode when the user selects a different mode, or when the state of charge of the battery is too low to support activation and periodic polling of the wireless communication boards 22, 24, 26.
The polling mode is similar to the active communication mode described above since it allows for the user to send a remote unlock command to the electronic lock 10. However, the polling mode places a lower priority on minimal wait time thereby reducing power consumption of the electronic lock 10. In the polling mode, the wireless communication boards 22, 24, 26, the display board 30, the speaker board 32, the motor control board 36, and the power input boards 40-44 are activated. In the polling mode, the wireless communication boards 22, 24, 26 periodically determine whether a wireless communication signal has been received from the external device 2 at longer time intervals (e.g., 5 seconds). Therefore, the electronic lock 10 may not release the lock mechanism 108 as quickly as when the electronic lock 10 operates in the active communication mode. On the other hand, however, the power consumption of the electronic lock 10 when operating in the polling mode is lower than when the electronic lock 10 operates in the active communication mode. The electronic lock 10 operates in the polling mode when the user instructs the electronic lock 10 to operate in the polling mode, or when the user selects the polling mode as the default mode. The electronic lock 10 exits the polling mode when the user selects a different mode, or when the state of charge of the battery is too low to support activation and polling by the wireless communication boards 22, 24, 26. In some embodiments, the active communication mode and the polling mode are combined into one wireless communication mode and the polling time (e.g., how often the wireless communication boards 22, 24, 26 check for wireless communication from the external device 2) can be adjusted by the user.
In the monitoring mode, the electronic lock 10 detects wake up events indicating that a user wishes to gain access to the restricted area. The monitoring mode is a low-power mode for the electronic lock 10 that allows the electronic lock 10 to increase its battery life. In the monitoring mode, the electronic lock 10 minimizes power usage by activating only the secondary boards 15, 16, 22 that allow the master board 46 to detect wake up events. In the illustrated embodiment, the wake up events include detecting motion near the electronic lock 10, detecting touch on an LCD touch screen 72, and/or receiving a z-wave communication message. In the illustrated embodiment, the electronic lock 10 activates the infrared sensor board 15 to enable detection of motion, the outdoor touch LCD board 16 to enable detection of touch input, and the z-wave communication board 22 to enable reception of a z-wave communication message. In other embodiments, the electronic lock 10 can detect more or less wake up events. In other embodiments, the electronic lock 10 can detect different wake up events such as, for example, receiving a user input through the keypad 50, receiving a voice input through the microphone 96, detecting communication through the wired communication board 38, etc. In such embodiments, the electronic lock 10 may energize different secondary boards 12-44 to properly detect different wake up events.
The electronic lock 10 enters the monitoring mode when the user sets the monitoring mode as the default mode. The user may set the default mode to be the monitoring mode to conserve power. In other embodiments, the electronic lock 10 enters the monitoring mode if the electronic lock 10 is inactive (e.g., without user interaction) for a predetermined period of time (e.g., 2 hours). In such embodiments, the monitoring mode is a sleep mode that allows minimal functions of the electronic lock 10 to be available, while also being accessible to enter a different operational mode easily. In other embodiments, the electronic lock 10 automatically enters the monitoring mode when the state of charge of the battery is below a predetermined voltage level. For example, if the electronic lock 10 operates with approximately 8V, the electronic lock 10 may automatically (e.g., without user interaction) enter the monitoring mode when the state of charge of the battery is less than 8.5V. In the illustrated embodiment, the predetermined voltage level at which the monitoring mode is entered is higher than the voltage used by the electronic lock 10. In such embodiments, the electronic lock (e.g., the master board 46) detects that the state of charge of the battery is decreasing and approaching a voltage level at which the battery is not able to completely power the electronic lock 10. Therefore, the electronic lock 10, in an effort to slow the discharge of the battery, automatically enters the monitoring mode and helps prolong the remaining battery life.
The electronic lock 10 exits the monitoring mode after the electronic lock 10 detects the wake up event. After the master board 46 detects a wake up event, the master board 46 enters a different mode to authenticate the user as an authorized user. In some embodiments, the user may set the electronic lock 10 to enter a different mode as soon as the wake up event is detected. In other embodiments, the user may select how to identify him/herself to the electronic lock 10 once the wake up event is detected. From the different mode, the user can be authenticated and gain access to the restricted area.
In the ultra-low power mode, the electronic lock 10 provides the user limited authentication options in an effort to minimize consumption power by the electronic lock 10. During the ultra-low power mode, only the keypad board 12, the biometric authorization board 20, and the super capacitor board 44 are activated. Therefore, the user can either enter an access code or provide his/her fingerprint to be authenticated. In the ultra-low power mode, the electronic lock 10 disables any peripheral components or any other secondary board. For example, speakers, microphones, wireless communication, and other such additional components to the electronic lock 10 are not powered and are thereby disabled. The electronic lock 10 enters the ultra-low power mode when the state of charge of the battery is insufficient to power the secondary boards 12-42 associated with the other operational modes.
The electronic lock 10 enters the ultra-low power mode when the super capacitor 134 begins to provide power to the electronic lock 10. Because the super capacitor 134 only harvests a limited amount of energy, the electronic lock 10 only provides the user with two authentication options: the keypad 50 and the biometric board 20. Once the user is authenticated, the electronic lock 10 returns to the monitoring mode in an effort to continue saving energy. When the battery is replaced or recharged, the electronic lock 10 is again released to enter different operational modes. Until then, the electronic lock 10 operates between the monitoring mode and the ultra-low power mode.
Referring back to step 202, if the state of charge of the battery is below the predetermined voltage threshold, the battery begins to charge the super capacitor 134 (step 210). As explained above, the charge time for the super capacitor 134 varies according to the remaining charge on the battery. For example, if the remaining charge on the battery is lower, the super capacitor 134 takes longer to charge. If, on the other hand, the state of charge of the battery is just below the predetermined voltage threshold, the super capacitor 134 takes a shorter amount of time to charge. While the super capacitor 134 charges, the electronic lock 10 provides the user an indication that the super capacitor 134 is currently charging (step 212). The indication can be a noise, a vibratory signal, a visual signal, etc. The indication signals to the user that the electronic lock 10 operates on a back-up power system. The indication can serve to remind the user to replace and/or recharge the battery, and also assures the user that the electronic lock 10 has not malfunctioned. Once the super capacitor 134 has fully charged, the super capacitor 134 provides a second indication to the user (step 214) and begins to power the electronic lock 10 (step 216). The second indication may be different than the first indication provided to the user. The second indication signals to the user that the super capacitor 134 (or back up power system) is now powering the electronic lock 10.
While the super capacitor 134 powers the electronic lock 10, the electronic lock 10 enters the ultra-low power mode (step 218). The user is then authenticated via the keypad 50 or the fingerprint scanner 78 (step 220). Once the user has been authenticated, the electronic lock 10 returns to operating in the monitoring mode (step 222). In contrast to step 208 in which the electronic lock 10 may enter any operational mode, when the super capacitor 134 powers the electronic lock 10, the electronic lock 10 remains in the monitoring mode to continue to conserve energy and inhibit the battery from becoming fully discharged.
The electronic lock 10 authenticates the user by determining whether the inputted code, fingerprint, or the associated external device match information stored for an authorized user. If the provided information matches information stored regarding the authorized users, the electronic lock 10 opens and provides access to the restricted area. If, on the other hand, the provided information does not match an authorized user, the electronic lock 10 remains closed.
When the electronic lock 10 enters a different mode as referred to in step 208 of
Thus, the invention provides, among other things, an electronic lock including a super capacitor as a back-up power supply. Various features and advantages of the invention are set forth in the following claims.
Patent | Priority | Assignee | Title |
10443267, | May 04 2015 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Lockset with cylinder integrity sensor |
10698495, | May 15 2017 | NEWTONOID TECHNOLOGIES, L.L.C. | Intelligent gesture based security system and method |
10794090, | Jan 21 2016 | NEO HOUSE CO , INC | Input device for door lock |
10916889, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11210427, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11250654, | Nov 06 2018 | Carrier Corporation | Access control system with sensor |
11341278, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11341279, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11465878, | Mar 31 2017 | Otis Elevator Company | Visual status indicator for door and lock state |
11531787, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11639617, | Apr 03 2019 | The Chamberlain Group LLC; The Chamberlain Group, Inc | Access control system and method |
11669602, | Jul 29 2019 | International Business Machines Corporation | Management of securable computing resources |
11846121, | Jun 02 2017 | LOCK II, LLC | Device and methods for providing a lock for preventing unwanted access to a locked enclosure |
11935343, | Nov 06 2018 | Carrier Corporation | Access control system with sensor |
9785250, | May 15 2017 | NEWTONOID TECHNOLOGIES, L L C | Intelligent gesture based security system and method |
D883068, | Oct 31 2018 | Shenzhen Cnest Electronic Technology Co., Ltd. | Door lock |
D906086, | May 23 2018 | ZKTECO CO., LTD. | Smart lock |
Patent | Priority | Assignee | Title |
5493279, | Mar 24 1993 | Mas-Hamilton Group | Electronic combination lock with covert entry detection feature and method of covert entry detection |
5896026, | Mar 20 1998 | Mas-Hamilton Group | Power conservation and management system for a self-powered electronic lock |
7334443, | Feb 22 2002 | Master Lock Company LLC | Radio frequency electronic lock |
7734068, | Oct 26 2005 | SentriLock, LLC | Electronic lock box using a biometric identification device |
7908896, | Oct 23 2006 | Biometric deadbolt lock assembly | |
8079240, | Jun 27 2008 | Schlage Lock Company | Electronic door lock with programmable options |
8354914, | Jan 27 2005 | Inncom International, Inc. | Reduced power electronic lock system |
8593252, | Sep 16 2010 | SentriLock, LLC | Electronic lock box proximity access control |
8772970, | Jul 27 2006 | Gainsborough Hardware Industries Limited | Lock arrangement and a method of providing power to a lock |
8912884, | Sep 16 2010 | SentriLock, LLC | Electronic key lockout control in lockbox system |
8922333, | Sep 10 2013 | LOCKFOB, LLC | Contactless electronic access control system |
9024759, | Mar 15 2013 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Wireless lockset with integrated antenna, touch activation, and light communication method |
9235942, | Jan 15 2013 | CHEN, CHUNG-YU | Non-contact power supply device for an electronic lock |
9328532, | Mar 12 2013 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Electronic lockset with multi-source energy harvesting circuit |
20040061343, | |||
20070176491, | |||
20070257772, | |||
20080256999, | |||
20100031714, | |||
20110289124, | |||
20120169453, | |||
20130305353, | |||
20130335193, | |||
20140340032, | |||
20150179011, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2020 | STRATTEC ADVANCED LOGIC, LLC | Strattec Security Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052803 | /0270 |
Date | Maintenance Fee Events |
Oct 12 2020 | REM: Maintenance Fee Reminder Mailed. |
Mar 29 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 21 2020 | 4 years fee payment window open |
Aug 21 2020 | 6 months grace period start (w surcharge) |
Feb 21 2021 | patent expiry (for year 4) |
Feb 21 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 21 2024 | 8 years fee payment window open |
Aug 21 2024 | 6 months grace period start (w surcharge) |
Feb 21 2025 | patent expiry (for year 8) |
Feb 21 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 21 2028 | 12 years fee payment window open |
Aug 21 2028 | 6 months grace period start (w surcharge) |
Feb 21 2029 | patent expiry (for year 12) |
Feb 21 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |