A method for producing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate, and forming a first insulating film; a second step of forming a second insulating film, and forming a pillar-shaped semiconductor layer, a first dummy gate, and a first hard mask; a third step of forming a second hard mask on a side wall of the first hard mask, and etching a second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate; and a fourth step of forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film, and forming a first epitaxially grown layer on the fin-shaped semiconductor layer.
|
7. A semiconductor device, comprising:
a fin-shaped semiconductor layer formed on a semiconductor substrate;
a pillar-shaped semiconductor layer formed on the fin-shaped semiconductor layer;
a gate insulating film formed around the pillar-shaped semiconductor layer;
a gate electrode of metal formed around the gate insulating film;
a gate line formed of metal connected to the gate electrode; and
a first epitaxially grown layer formed on the fin-shaped semiconductor layer,
wherein the gate electrode and the gate line have a top surface and a bottom surface, the top surface having a larger area than the bottom surface, and a width of the first epitaxially grown layer in a direction perpendicular to the fin-shaped semiconductor layer is greater than a width of the fin-shaped semiconductor layer in the direction perpendicular to the fin-shaped semiconductor layer.
1. A method for producing a semiconductor device, the method comprising:
a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate, and forming a first insulating film around the fin-shaped semiconductor layer;
a second step, after the first step, of forming a second insulating film around the fin-shaped semiconductor layer, depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, forming a third insulating film on the first polysilicon, forming a second resist for forming a gate line and a pillar-shaped semiconductor layer, in a direction perpendicular to a direction the fin-shaped in which the semiconductor layer extends, etching the third insulating film, the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer to form a pillar-shaped semiconductor layer, a first dummy gate formed of the first polysilicon, and a first hard mask formed of the third insulating film;
a third step, after the second step, of forming a fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, depositing a second polysilicon around the fourth insulating film and planarizing the second polysilicon, performing etch back to expose the first hard mask, depositing a sixth insulating film, etching the sixth insulating film to form a second hard mask on a side wall of the first hard mask, and etching the second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate; and
a fourth step of forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film, and forming a first epitaxially grown layer on the fin-shaped semiconductor layer.
2. The method for producing a semiconductor device according to
3. The method for producing a semiconductor device according to
4. The method for producing a semiconductor device according to
5. The method for producing a semiconductor device according to
6. The method for producing a semiconductor device according to
8. The semiconductor device according to
9. The semiconductor device according to
a first diffusion layer formed in an upper portion of the pillar-shaped semiconductor layer; and
a second diffusion layer formed in an upper portion of the fin-shaped semiconductor layer and a lower portion of the pillar-shaped semiconductor layer.
10. The semiconductor device according to
|
This application is a continuation of international patent application PCT/JP2014/069611, filed Jul. 24, 2014, the entire contents of which are incorporated herein by reference.
Field of the Invention
The present invention relates to a method for producing a semiconductor device and a semiconductor device.
Description of the Related Art
For semiconductor integrated circuits, in particular, integrated circuits employing MOS transistors, the degree of integration has been continuously increased. With this increase in the degree of integration, the size of MOS transistors in such integrated circuits has been reduced to the order of nanometers. In such small MOS transistors, leak current is difficult to suppress. Thus, from the standpoint of ensuring a sufficiently large current, reduction in the circuit area is difficult to achieve, which has been problematic. In order to address this problem, a Surrounding Gate Transistor (hereafter, referred to as an “SGT”) has been proposed, the SGT having a structure in which a source, a gate, and a drain are disposed so as to be perpendicular to a substrate and a gate electrode is disposed so as to surround a pillar-shaped semiconductor layer (for example, refer to Japanese Unexamined Patent Application Publication Nos. 2-71556, 2-188966, and 3-145761).
In existing SGT production methods, a mask for defining a silicon pillar is used to form the silicon pillar including a pillar-shaped nitride-film hard mask; a mask for defining a planar silicon layer is used to form the planar silicon layer under the silicon pillar; and a mask for defining a gate line is used to form the gate line (for example, refer to Japanese Unexamined Patent Application Publication No. 2009-182317). In other words, three masks are used to form the silicon pillar, the planar silicon layer, and the gate line.
In production of existing MOS transistors, in order to successfully perform a metal-gate process and a high-temperature process, a metal-gate last process of performing the high-temperature process and subsequently forming a metal gate is employed for actual products (IEDM2007 K. Mistry et. al, pp 247-250). Specifically, a gate is formed of polysilicon; an interlayer insulating film is then deposited; chemical mechanical polishing is then performed to expose the polysilicon gate; the polysilicon gate is etched; and metal is then deposited. Thus, also for SGTs, in order to successfully perform the metal-gate process and the high-temperature process, the metal-gate last process of performing the high-temperature process and subsequently forming the metal gate needs to be employed.
When metal is deposited to fill a hole in which the upper portion is narrower than the lower portion, the upper portion of the hole is first filled with the metal, so that the lower portion is left unfilled.
Existing MOS transistors employ a first insulating film in order to decrease the parasitic capacitance between the gate line and the substrate. For example, in FINFET (IEDM2010 C C. Wu, et. al, 27.1.1-27.1.4), a first insulating film is formed around a fin-shaped semiconductor layer and the first insulating film is subjected to etch back to expose the fin-shaped semiconductor layer, so that the parasitic capacitance between the gate line and the substrate is decreased. Thus, SGTs also need to employ a first insulating film in order to decrease the parasitic capacitance between the gate line and the substrate. Since SGTs include a fin-shaped semiconductor layer and also a pillar-shaped semiconductor layer, how to form the pillar-shaped semiconductor layer needs to be considered.
When the fin-shaped semiconductor layer has high parasitic resistance, the current driving force of the transistor decreases.
Accordingly, an object is to provide a method for producing an SGT having a structure with a low parasitic resistance, the method employing a gate last process, in which two masks are used to form a fin-shaped semiconductor layer, a pillar-shaped semiconductor layer, a gate electrode, and a gate line; and to provide the resultant SGT structure.
A method for producing a semiconductor device according to an embodiment of the present invention includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate, and forming a first insulating film around the fin-shaped semiconductor layer; a second step of, after the first step, forming a second insulating film around the fin-shaped semiconductor layer, depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, forming a third insulating film on the first polysilicon, forming a second resist for forming a gate line and a pillar-shaped semiconductor layer, in a direction perpendicular to a direction the fin-shaped in which the semiconductor layer extends, etching the third insulating film, the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer to form a pillar-shaped semiconductor layer, a first dummy gate formed of the first polysilicon, and a first hard mask formed of the third insulating film; a third step of, after the second step, forming a fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, depositing a second polysilicon around the fourth insulating film and planarizing the second polysilicon, performing etch back to expose the first hard mask, depositing a sixth insulating film, etching the sixth insulating film to form a second hard mask on a side wall of the first hard mask, and etching the second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate; and a fourth step of forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film, and forming a first epitaxially grown layer on the fin-shaped semiconductor layer.
The second dummy gate may have a top surface and a bottom surface, the top surface having a larger area than the bottom surface.
The method may further include, after formation of the fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, forming a third resist, performing etch back to expose an upper portion of the pillar-shaped semiconductor layer, and forming a first diffusion layer in an upper portion of the pillar-shaped semiconductor layer.
The method may further include, after formation of the sidewall formed of the fifth insulating film, forming a second diffusion layer in an upper portion of the fin-shaped semiconductor layer and a lower portion of the pillar-shaped semiconductor layer.
The method may further include forming a metal-semiconductor compound on the first epitaxially grown layer.
The method may further include a fifth step of, after the fourth step, depositing a contact stopper film, depositing an interlayer insulating film, performing chemical mechanical polishing to expose upper portions of the second dummy gate and the first dummy gate, removing the second dummy gate and the first dummy gate, removing the second insulating film and the fourth insulating film, forming a gate insulating film around the pillar-shaped semiconductor layer and on an inner side of the fifth insulating film, depositing metal, and performing etch back to form a gate electrode and a gate line.
A semiconductor device according to an embodiment of the present invention includes a fin-shaped semiconductor layer formed on a semiconductor substrate; a pillar-shaped semiconductor layer formed on the fin-shaped semiconductor layer; a gate insulating film formed around the pillar-shaped semiconductor layer; a gate electrode formed around the gate insulating film and formed of metal; a gate line formed of metal connected to the gate electrode; and a first epitaxially grown layer formed on the fin-shaped semiconductor layer. The gate electrode and the gate line have a top surface and a bottom surface, the top surface having a larger area than the bottom surface, and a width of the first epitaxially grown layer in a direction perpendicular to the fin-shaped semiconductor layer is larger than a width of the fin-shaped semiconductor layer in the direction perpendicular to the fin-shaped semiconductor layer.
A semiconductor device according to a further embodiment of the present invention includes a fin-shaped semiconductor layer formed on a semiconductor substrate; a first insulating film formed around the fin-shaped semiconductor layer; a pillar-shaped semiconductor layer formed on the fin-shaped semiconductor layer; a gate insulating film formed around the pillar-shaped semiconductor layer; a gate electrode formed around the gate insulating film and formed of metal; a gate line connected to the gate electrode, formed of metal, and extending in a direction perpendicular to the fin-shaped semiconductor layer; and a first epitaxially grown layer formed on the fin-shaped semiconductor layer, wherein the gate electrode and the gate line have a top surface and a bottom surface, the top surface having a larger area than the bottom surface, and a width of the first epitaxially grown layer in a direction perpendicular to the fin-shaped semiconductor layer is larger than a width of the fin-shaped semiconductor layer in the direction perpendicular to the fin-shaped semiconductor layer.
The semiconductor device may further include a first diffusion layer formed in an upper portion of the pillar-shaped semiconductor layer; and a second diffusion layer formed in an upper portion of the fin-shaped semiconductor layer and a lower portion of the pillar-shaped semiconductor layer.
The semiconductor device may further include the gate insulating film formed around and under the gate electrode and the gate line.
Embodiments of the present invention can provide a method for producing an SGT having a structure with a low parasitic resistance, the method employing a gate last process, in which two masks are used to form a fin-shaped semiconductor layer, a pillar-shaped semiconductor layer, a gate electrode, and a gate line; and can provide the resultant SGT structure.
A method for producing a semiconductor device according to an embodiment of the present invention includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate, and forming a first insulating film around the fin-shaped semiconductor layer; a second step of, after the first step, forming a second insulating film around the fin-shaped semiconductor layer, depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, forming a third insulating film on the first polysilicon, forming a second resist for forming a gate line and a pillar-shaped semiconductor layer, in a direction perpendicular to a direction the fin-shaped in which the semiconductor layer extends, etching the third insulating film, the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer to form a pillar-shaped semiconductor layer, a first dummy gate formed of the first polysilicon, and a first hard mask formed of the third insulating film; and a third step of, after the second step, forming a fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, depositing a second polysilicon around the fourth insulating film and planarizing the second polysilicon, performing etch back to expose the first hard mask, depositing a sixth insulating film, etching the sixth insulating film to form a second hard mask on a side wall of the first hard mask, and etching the second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate. As a result, two masks are used to form the fin-shaped semiconductor layer, the pillar-shaped semiconductor layer, and the first dummy gate and the second dummy gate that are to provide a gate electrode and a gate line. Thus, the number of steps can be reduced.
The method further includes forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film. Thus, the first dummy gate and the second dummy gate are covered by the first and second hard masks and the sidewall formed of the fifth insulating film, so that an upper portion of the fin-shaped semiconductor layer alone can be exposed. As a result, the first epitaxially grown layer can be formed only on the fin-shaped semiconductor layer, to thereby achieve a decrease in the parasitic resistance. The first and second hard masks and the sidewall formed of the fifth insulating film prevent formation of a metal-semiconductor compound on the first and second dummy gates and enable formation of a metal-semiconductor compound only on the first epitaxially grown layer on the fin-shaped semiconductor layer.
The second polysilicon may be etched so as to have an inversely tapering shape, so that the second dummy gate has a top surface and a bottom surface, the top surface having a larger area than the bottom surface. As a result, when metal is deposited to fill the hole for forming a gate, the hole is prevented from being partially unfilled.
The misalignment between the pillar-shaped semiconductor layer and the gate line can be eliminated.
An existing metal-gate last process can be employed in which a first dummy gate and a second dummy gate are formed of polysilicon; an interlayer insulating film is then deposited; chemical mechanical polishing is then performed to expose the first dummy gate and the second dummy gate; the polysilicon gates are etched; and metal is then deposited. Thus, metal-gate SGTs can be easily formed.
The gate insulating film formed around and under the gate electrode and the gate line enables insulation of the gate electrode and the gate line from the pillar-shaped semiconductor layer and the fin-shaped semiconductor layer.
Hereinafter, production steps for forming an SGT structure according to an embodiment of the present invention will be described with reference to
A first step will be first described, the first step including forming a fin-shaped semiconductor layer on a semiconductor substrate, and forming a first insulating film around the fin-shaped semiconductor layer. This embodiment employs a silicon substrate; alternatively, substrates formed of semiconductors other than silicon may be employed.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the first step has been described, the first step including forming the fin-shaped silicon layer 103 on the silicon substrate 101, and forming the first insulating film 104 around the fin-shaped silicon layer 103.
Hereafter, a second step will be described, the second step including forming a second insulating film around the fin-shaped semiconductor layer, depositing a first polysilicon on the second insulating film, planarizing the first polysilicon, forming a third insulating film on the first polysilicon, forming a second resist for forming a gate line and a pillar-shaped semiconductor layer, in a direction perpendicular to a direction the fin-shaped in which the semiconductor layer extends, and etching the third insulating film, the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer to form a pillar-shaped semiconductor layer, a first dummy gate formed of the first polysilicon, and a first hard mask formed of the third insulating film.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the second step has been described, the second step including forming a second insulating film around the fin-shaped semiconductor layer, depositing a first polysilicon on the second insulating film, planarizing the first polysilicon, forming a third insulating film on the first polysilicon, forming a second resist for forming a gate line and a pillar-shaped semiconductor layer, in a direction perpendicular to a direction the fin-shaped in which the semiconductor layer extends, and etching the third insulating film, the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer to form a pillar-shaped semiconductor layer, a first dummy gate formed of the first polysilicon, and a first hard mask formed of the third insulating film.
Hereafter, a third step will be described, the third step including, after the second step, forming a fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, depositing a second polysilicon around the fourth insulating film, planarizing the second polysilicon, performing etch back to expose the first hard mask, depositing a sixth insulating film, etching the sixth insulating film to form a second hard mask on a side wall of the first hard mask, and etching the second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the third step has been described, the third step including, after the second step, forming a fourth insulating film around the pillar-shaped semiconductor layer and the first dummy gate, depositing a second polysilicon around the fourth insulating film, planarizing the second polysilicon, performing etch back to expose the first hard mask, depositing a sixth insulating film, etching the sixth insulating film to form a second hard mask on a side wall of the first hard mask, and etching the second polysilicon so as to be left on side walls of the first dummy gate and the pillar-shaped semiconductor layer to form a second dummy gate.
Hereafter, a fourth step will be described, the fourth step including forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film, and forming a first epitaxially grown layer on the fin-shaped semiconductor layer.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the fourth step has been described, the fourth step including forming a fifth insulating film around the second dummy gate, etching the fifth insulating film so as to have a sidewall shape to form a sidewall formed of the fifth insulating film, and forming a first epitaxially grown layer on the fin-shaped semiconductor layer.
Hereafter, a fifth step will be described, the fifth step including, after the fourth step, depositing a contact stopper film, depositing an interlayer insulating film, performing chemical mechanical polishing to expose upper portions of the second dummy gate and the first dummy gate, removing the second dummy gate and the first dummy gate, removing the second insulating film and the fourth insulating film, forming a gate insulating film around the pillar-shaped semiconductor layer and on an inner side of the fifth insulating film, depositing metal, and performing etch back to form a gate electrode and a gate line.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the fifth step has been described, the fifth step including, after the fourth step, depositing a contact stopper film, depositing an interlayer insulating film, performing chemical mechanical polishing to expose upper portions of the second dummy gate and the first dummy gate, removing the second dummy gate and the first dummy gate, removing the second insulating film and the fourth insulating film, forming a gate insulating film around the pillar-shaped semiconductor layer and on an inner side of the fifth insulating film, depositing metal, and performing etch back to form a gate electrode and a gate line.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Thus, the method for producing an SGT having structure with a low parasitic resistance, the method employing a gate last process, has been described in which two masks are used to form a fin-shaped semiconductor layer, a pillar-shaped semiconductor layer, a gate electrode, and a gate line.
As illustrated in
The semiconductor device further includes a first diffusion layer 112 formed in an upper portion of the pillar-shaped silicon layer 109 and a second diffusion layer 116 formed in an upper portion of the fin-shaped silicon layer 103 and a lower portion of the pillar-shaped silicon layer 109.
The semiconductor device further includes the gate insulating film 121 formed around and under the gate electrode 122a and the gate line 122b.
The first epitaxially grown layer 117 having a larger width than the fin-shaped silicon layer 103 is formed on the fin-shaped silicon layer 103. As a result, the parasitic resistance can be decreased. In addition, the metal-semiconductor compound layer also has an increased width accordingly, to thereby achieve a further decrease in the parasitic resistance. In addition, the area in contact with contacts is increased, to thereby achieve a decrease in the contact resistance with contacts.
Since the pillar-shaped silicon layer 109 and the gate line 122b are formed in a self-alignment manner, misalignment therebetween can be eliminated.
The gate insulating film 121 formed around and under the gate electrode 122a and the gate line 122b enables insulation of the gate electrode 122a and the gate line 122b from the pillar-shaped silicon layer 109 and the fin-shaped silicon layer 103.
Note that the present invention encompasses various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are used to describe examples of the present invention and do not limit the scope of the present invention.
For example, a method for producing a semiconductor device in which the p-type (including p+ type) and the n-type (including n+ type) in the above-described embodiment are changed to the opposite conductivity types and a semiconductor device produced by this method are obviously within the technical scope of the present invention.
Nakamura, Hiroki, Masuoka, Fujio
Patent | Priority | Assignee | Title |
10026842, | Jun 16 2014 | UNISANTIS ELECTRONICS SINGAPORE PTE. LTD. | Method for producing semiconductor device |
10804397, | May 02 2016 | UNISANTIS ELECTRONICS SINGAPORE PTE. LTD. | Semiconductor device with surrounding gate transistor (SGT) |
9780215, | Jun 16 2014 | UNISANTIS ELECTRONICS SINGAPORE PTE. LTD. | Method for producing semiconductor device and semiconductor device |
9960277, | Mar 05 2014 | UNISANTIS ELECTRONICS SINGAPORE PTE. LTD. | Method for producing semiconductor device |
Patent | Priority | Assignee | Title |
5258635, | Sep 06 1988 | Kabushiki Kaisha Toshiba | MOS-type semiconductor integrated circuit device |
8178399, | Feb 15 2008 | UNISANTIS ELECTRONICS SINGAPORE PTE LTD. | Production method for semiconductor device |
8188537, | Jan 29 2008 | UNISANTIS ELECTRONICS SINGAPORE PTE LTD | Semiconductor device and production method therefor |
8647947, | Apr 28 2009 | UNISANTIS ELECTRONICS SINGAPORE PTE LTD. | Semiconductor device including a MOS transistor and production method therefor |
9064899, | Feb 27 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
20050161739, | |||
20060011994, | |||
20160190317, | |||
20160225791, | |||
JP2009182317, | |||
JP2010258345, | |||
JP2013258427, | |||
JP2014060286, | |||
JP2071556, | |||
JP2188966, | |||
JP3145761, | |||
WO2014073103, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 26 2016 | NAKAMURA, HIROKI | UNISANTIS ELECTRONICS SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039397 | /0472 | |
Jul 28 2016 | MASUOKA, FUJIO | UNISANTIS ELECTRONICS SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039397 | /0472 | |
Aug 04 2016 | UNISANTIS ELECTRONICS SINGAPORE PTE. LTD. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 17 2020 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 21 2024 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Feb 28 2020 | 4 years fee payment window open |
Aug 28 2020 | 6 months grace period start (w surcharge) |
Feb 28 2021 | patent expiry (for year 4) |
Feb 28 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 28 2024 | 8 years fee payment window open |
Aug 28 2024 | 6 months grace period start (w surcharge) |
Feb 28 2025 | patent expiry (for year 8) |
Feb 28 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 28 2028 | 12 years fee payment window open |
Aug 28 2028 | 6 months grace period start (w surcharge) |
Feb 28 2029 | patent expiry (for year 12) |
Feb 28 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |