A depolarizer, including: a photoalignment layer deposited on the substrate; and a birefringent layer deposited on the photoalignment layer; wherein the photoalignment layer includes a plurality of segments, each segment with a different fast axis orientation and a different pretilt angle, such that each segment of the birefringent layer over the corresponding segment of the photoalignment layer has a different fast axis angle and a different birefringent value.
|
1. A depolarizer, comprising:
a first photoalignment layer; and
a first birefringent layer deposited on the first photoalignment layer;
wherein the first photoalignment layer comprises a first plurality of segments, each of the first plurality of segments with at least one of a different fast axis orientation and a different pretilt angle, such that each of a first plurality of segments of the first birefringent layer over the corresponding segment of the first photoalignment layer has at least one of a first different fast axis angle and a first different birefringent value.
14. A method of manufacturing a depolarizer, comprising:
applying a layer of photoalignment material on a substrate;
scanning a beam over a plurality of segments of the photoalignment layer, with at least one of a different power, a different polarization angle and a different duration of the beam over each segment, in order to create a different fast axis orientation and a different pretilt angle in each segment;
applying a layer of birefringent material over a cured photoalignment layer, wherein the birefringent material comprises molecules that automatically arrange themselves to the alignment layer's fast axis orientations and pretilt angles; and
stabilizing the molecules in the birefringent layer.
13. A depolarizer, comprising:
a first substrate;
a first photoalignment layer deposited on the first substrate;
an active birefringent layer deposited on the first photoalignment layer;
a second photoalignment layer deposited on the active birefringent layer; and
a second substrate deposited on the second photoalignment layer;
wherein the first and second photoalignment layers comprise a plurality of segments, each segment with a different fast axis orientation and a different pretilt angle, such that each segment of the active birefringent layer over the corresponding segment of the photoalignment layers has a different fast axis angle and a different birefringent value; and
wherein the active birefringent layer is further configured to vary its birefringent value in response to an applied voltage.
2. The depolarizer of
3. The depolarizer of
4. The depolarizer of
5. The depolarizer of
a second photoalignment layer arranged over the first birefringent layer; and
a second birefringent layer deposited on the second photoalignment layer;
wherein the second photoalignment layer comprises a second plurality of segments, each of the second plurality of segments with at least one of a second different fast axis orientation and a second different pretilt angle, such that each of the second plurality of segments of the second birefringent layer over the corresponding segment of the second photoalignment layer has at least one of a second different fast axis angle and a second different birefringent value.
6. The depolarizer of
7. The depolarizer of
8. The depolarizer of
11. The depolarizer of
a second photoalignment layer deposited on the opposite surface of the first surface of the substrate; and
a second birefringent layer deposited on the second photoalignment layer;
wherein the second photoalignment layer comprises a second plurality of segments, each of the second plurality of segments with at least one of a second different fast axis orientation and a second different pretilt angle, such that each of the second plurality of segments of the second birefringent layer over the corresponding segment of the second photoalignment layer has at least one of a second different fast axis angle and a second different birefringent value.
12. A stack of depolarizers, comprising:
a first depolarizer and one or more second depolarizer, each of the first depolarizer and the one or more second depolarizer being a depolarizer of
wherein the first depolarizer's photoalignment layer is different from the one or more second depolarizer's photoalignment layer at least in one of segment, fast axis orientation and pretilt angle.
18. The method of
19. The method of
|
This application claims the benefit of U.S. Provisional Patent Application No. 62/049,789 filed on Sep. 12, 2014. The disclosure and entire teachings of U.S. Provisional Patent Application 62/049,789 are hereby incorporated by reference.
The invention generally relates to depolarizers. More particularly, the invention relates to depolarizers that can depolarize a beam of light.
Since many optical systems, optical components and samples to be analyzed, exhibit polarization dependent behavior, it is desired to have optical beams that are depolarized, before applying the beam to such samples, optical elements, or detectors. Therefore, there is a need to create an optical element that can substantially depolarize a beam of light, regardless of the size of the beam, its center wavelength, optical linewidth, angle of incidence (or numerical aperture), or the coherence of the beam.
Current solutions for depolarization of light beams are limited by either being heavily depended on the beam being spectrally broadband and large in size (such as the Lyot depolarizer), or being an effective depolarizer only in specific wavelength or small range of wavelengths (such as US 2008/0049321A1). In one example, of an optical system doing spectral analysis of a sample (such as a spectrophotometer), since a sample can be polarization sensitive, it is desired to have the beam applied to the sample depolarized, while at the same time to have the beam be as narrowband as possible, in order to obtain spectral resolution. Additionally, a system such as a spectrophotometer performs the measurement in multiple wavelengths, by scanning the center wavelength of the probe beam over a range of wavelengths. If one was to use a Lyot depolarizer in such a system, the performance would be limited to only beams with at least a ten nanometers of optical bandwidth, as the currently existing depolarizers can only depolarizer large bandwidth, achromatic beams, as described in U.S. Pat. No. 3,433,553A. Additionally, the beam would have to be quite large in size (>6 mm), in order for the currently existing solutions to work, which imposes many limitations on the optical design, and efficiency of detection by the optical detector.
If instead one would choose the depolarizer described in US 2008/0049321A1, the depolarizer, by being a half-wave waveplate, would be limited to work only in one specific wavelength, or in a narrow range of wavelengths, due to the nature of having one monolithic birefringent layer, which would make it an effective depolarizer in only a small range of wavelengths. Additionally, by being a half waveplate, this type of depolarizer outputs a plurality of linearly polarized beams, with different fast axis orientation. But since all the parts of the beam are linearly polarized, its effectiveness as a depolarizer is not perfect. This type of depolarizer is not suitable for such applications that require a large spectral range of operation. In the example above, of a spectral scanning device such a spectrophotometer, the said invention would make the device effective only on a small range of wavelength, of a couple of hundreds of nanometers at most, while the spectrophotometers would usually be used to scan over wavelength ranges of a couple of thousands of nanometers.
Previous work includes the Lyot and wedge type depolarizers, which is the most common commercial products but has significant limitations to the beams it can depolarize. Other proposed solutions (but not yet seen commercially) including scattering depolarizers which cause negative side effects to the beam, temporal depolarizes that change the polarization properties over time, and are limited only to applications with large time scales. Fiber optic depolarizers, which are limited for use only in situations where the beams are confined to a fiber optic delivery system. Lastly, a type of depolarizer that is made of an array of segments with different properties, have been suggested by US2008/0049321A1, and U.S. Pat. No. 8,111,458, all of which describe an array of retarders, which rotate different parts of the beam into different linear polarizations, with different orientation angles for fast axis. While those depolarizers provide a good improvement in terms of limitation on size of beam, and bandwidth of coherent beams, they depolarize the beams in a very limited way, due to being only a plurality of polarization rotators, and can work only in very specific wavelengths, which limit their usability considerably, as one would require having multiple devices in situations of tunable lasers, or broadband sources. The device described in U.S. Pat. No. 8,696,134 improves further by having segments that also have different phase delays (similar to our invention), but is complicated and costly to manufacture, as it requires significant work in order to produce it, and is therefore not practical. Additionally, by having the segments have different thicknesses, the design has significant side effects of reflections, scattering and diffraction effects, caused by the uneven surface of the device.
A Lyot and wedge type depolarizers are made by combining two birefringent materials, with different thicknesses, in a way that creates a spatially varying fast axis. First described in the 1930s, this type of depolarizer is commonly available today from many commercial providers, and is commonly used in achromatic systems, where the beams are very broadband, and large in physical size. As can be seen in the graph in
However, a typical application that requires depolarization involves, for example, the use of a broadband source which is then spectrally filtered down to a narrow bandwidth beam, often by using a grating or other means of tunable spectral filtering. The narrow bandwidth beam, which often has a bandwidth in the order of 0.1 nm, is then applied to a sample to be tested for wavelength dependent transmission and reflection. The resulting beam is then detected to identify wavelength dependent behavior. This is then repeated hundreds or thousands of times, each time after tuning slightly the filtered wavelength, such that the spectral dependence of a sample can be obtained across thousands of individual wavelengths, in a broad range of wavelengths. Since the sample tested often has some dependence to polarization, it is required that the beam applied to the sample be depolarized. However, since the available depolarizers can only work for broadband beams, the existing solutions cannot provide a useful solution for such a case.
Some variations on the classic Lyot solution all contain two or more optical elements, which create some spatial variation to the polarization, such as wedge depolarizers. Those can decrease the minimum required beam size, but have a significant disadvantage of causing a beam deviation, due to the angle between the wedged glass elements, making this type of depolarizer not practical.
Another type of proposed solutions has arrays of half-wave waveplates, with different orientation axis, across the clear aperture. Examples include US patent US2008/0049321A1 and U.S. Pat. No. 8,111,458, in which a plurality of segments is proposed, each segment having a different fast axis orientation, and all segments sharing the same amount of birefringence, by having one homogeneous birefringent layer. In effect those solutions create an array of half-wave waveplates, where all the segments in this array act as half-wave waveplates, but with different angles of alignment for their respective fast axis. This in effect divides the incoming beam into multiple beams, and rotates the polarization axis of each such sub-beam going through each segment in a different amount. This allows the creation of arrays with very small segment sizes, and thus can significantly reduce the requirements of the minimum beam size that can be depolarized, as compare to the classic Lyot depolarizer. However, since these devices only vary the fast axis of each segment, but still use one layer of homogeneous birefringent material, it is effective only for cases where the value of birefringence equals exactly a half wave of the wavelength of the incident beam, as it can only effectively rotate the fast axis in the case that the wavelength of the beam applied to the device equals exactly twice the value of the half-wave of the device, dictated by the homogeneous birefringent layer. In other words, the above discussed devices act effectively as a depolarizer only for incident beams with a wavelength equal twice its birefringence value.
Another type of depolarizer that was proposed and discussed in the literature is a scattering type depolarizer. This depolarizer such as the one described in the paper titled “liquid crystal depolarizers” Journal of applied physics, Volume 90, number 15, October 2001, and a similar one described in U.S. Pat. No. 3,433,553, can create a depolarization effect, but with the cost of the side effect of scattering, and diffraction effects. Such side effects cause a portion the beam passing through the depolarizer to split out of the main beam, and continue to propagate in another direction, or a different angle. Since very often the beam to be depolarized is used for very accurate and tightly controlled measurements (such as the spectral measurement of a sample mentioned above), it is required to confine the beam to a tightly defined space, or area, and not have any parts of the beam scatter around and affect the measurement. This scattering effect is therefore very disruptive, and therefore such depolarizers with a scattering side effect are not commonly used.
U.S. Pat. No. 8,696,134 provides a further enhancement to the devices mentioned above, by adding an additional dimension of variation between the pixels of the array, in which the additional dimension provides a difference in phase delay between the different pixels. This in effect makes the device into having two variables: the difference in fast axis, and a difference in phase delay, which leads to a difference in birefringence between axes. This difference in birefringence makes the device an efficient depolarizer for multiple wavelengths, due to the multiple different birefringence values within the array. This in turn makes in a depolarizer that can handle small beams (due to the small pixel sizes), handle narrowband beams (due to variety of values within the pixels), but also handle beams with multiple wavelengths, or multiple beams with different wavelengths, or changing wavelengths, due to the variety of birefringence values across the clear aperture. This device is however extremely difficult and costly to manufacture, due to the required additional steps needed to create the different values of birefringence (by modifying the surface of the birefringent layer), and has significant side effects to the optical quality of the beam, primarily scattering, wavefront distortion, and diffraction, due to uneven surface of the device, needed to create the varying birefringent layer, in this method.
Therefore, there is a need to have a depolarizer that overcomes the above mentioned difficulties in the existing devices and yet can substantially depolarize a beam of light, regardless of the size of the beam, its center wavelength, optical linewidth, angle of incidence (or numerical aperture), or the coherence of the beam.
One embodiment is a depolarizer array, for use with both coherent and incoherent sources, as well as tunable coherent sources, and with beams as small as half a millimeter in diameter, for example. In one embodiment, the depolarizer array includes multiple segments with different fast axis orientation, as well as different retardation values, made of at least one birefringent layer, with varying fast axis, and varying pre-tilt angles. Additionally, the depolarizer array can be made to be completely achromatic, or also to have a retardation value which changes with time, for temporal, as well as spatial depolarization. Accordingly, any beam of light applied to the device will be substantially depolarized, regardless of wavelength, and beam size.
One embodiment of the invention provides a depolarizer, including: a photoalignment layer; and a birefringent layer deposited on the photoalignment layer; wherein the photoalignment layer includes a plurality of segments, each of the plurality of segments with at least one of a different fast axis orientation and a different pretilt angle, such that each of the plurality of segments of the birefringent layer over the corresponding segment of the photoalignment layer has at least one of a different fast axis angle and a different birefringent value.
Another embodiment of the invention provides a stack of depolarizers, including: a first depolarizer and one or more second depolarizer, each of the first depolarizer and the one or more second depolarizer being a depolarizer of the above; wherein the first depolarizer's photoalignment layer is different from the one or more second depolarizer's photoalignment layer at least in one of segment, fast axis orientation and pretilt angle.
Another embodiment of the invention provides a depolarizer, including: a first substrate; a first photoalignment layer deposited on the first substrate; an active birefringent layer deposited on the first photoalignment layer; a second photoalignment layer deposited on the active birefringent layer; and a second substrate deposited on the second photoalignment layer; wherein the first and second photoalignment layers comprise a plurality of segments, each segment with a different fast axis orientation and a different pretilt angle, such that each segment of the active birefringent layer over the corresponding segment of the photoalignment layers has a different fast axis angle and a different birefringent value; and wherein the active birefringent layer is further configured to vary its birefringent value in response to an applied voltage.
Yet another embodiment of the invention provides a method of manufacturing a depolarizer, including: applying a layer of photoalignment material on a substrate; scanning a beam over a plurality of segments of the photoalignment layer, with at least one of a different power, a different polarization angle and a different duration of the beam over each segment, in order to create a different fast axis orientation and a different pretilt angle in each segment; applying a layer of birefringent material over the cured photoalignment layer, wherein the birefringent material comprises molecules that automatically arrange themselves to the alignment layer's fast axis orientations and pretilt angles; and stabilizing the molecules in the birefringent layer.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
This disclosure describes the best mode or modes of practicing the invention as presently contemplated. This description is not intended to be understood in a limiting sense, but provides an example of the invention presented solely for illustrative purposes by reference to the accompanying drawings to advise one of ordinary skill in the art of the advantages and construction of the invention. In the various views of the drawings, like reference characters designate like or similar parts.
In one embodiment, a depolarizer has a plurality of spatially separated segments, which has both spatial changes of fast axis of the different segments of the device, as well as changes in the retardation value of the segments. In one embodiment, the device is produced using a photoalignment technique, followed by coating (preferably spin coating) of a birefringent material. This three step process allows for very fast, efficient and cost saving production, enabling efficient mass production of the device, typically within a few minutes. Furthermore, in some other embodiments, the retardation values of the device are designed in such a way that they are either achromatic (provide the same or similar retardation value over a large range of wavelengths), or tunable, allowing the user to dynamically change them according to the working wavelength of his system.
Other previously proposed devices are designed to either work in specific wavelengths (due to the single homogeneous layer of birefringent materials), or are limited to beam above a certain beam diameter, and with a wide bandwidth (not a coherent beam such as a laser), as in the case of a classic Lyot depolarizer.
In solutions disclosed earlier (US patents 2008/0049321A1, and U.S. Pat. No. 8,111,458), the depolarizers has multiple segments, with varying fast axis of the segments, and one layer of equal amount of birefringence for all segments, making this device effectively a collection of half-wave waveplates that rotate the fast axis of each segment in a different amount. Those devices are an effective depolarizer, however since they only have one birefringence value across the whole device, they are effective only for a very small range of wavelengths. Additionally, those proposed devices, by being a collection of half-wave waveplate, can not completely depolarize a beam, and can only reduce its degree of polarization).
Another type of device (U.S. Pat. No. 8,696,134) includes an array of pixels with different birefringence values and different fast axis orientation, which make it a very efficient depolarizer, for a wide range of wavelengths. This device however requires a very complicated manufacturing process, making it impractical, and expensive.
An embodiment of the invention provides a device that has a plurality of segments, with distinctive values for each segment of both the fast axis orientation, as well as the value of retardation, and is produced in a fast, inexpensive and efficient method. By having distinctive values of both retardation and fast axis, one can create in effect an array of waveplates that can rotate and convert the polarization almost independent of wavelength and beam size.
One embodiment of the invention makes use of photoalignment of liquid crystals, by using a writing beam that can determine both the orientation angle (controlling the fast axis angle), and the pretilt angle (controlling the birefringence value), of each segment of the depolarizer array separately. A liquid crystal device includes liquid crystal molecules that exhibit birefringence when aligned according to an external force. Such an external force is achieved using an alignment layer at the border of the liquid crystal molecules, such that the force leads the molecules to be aligned according the angle of alignment and fast axis orientation of that alignment layer. Additionally, the pretilt angle created by the alignment layer will determine the tilt angle of the liquid crystal molecules. A different tilt angle of the liquid crystal molecules leads to a different value of birefringence. In an active liquid crystal device, for example, alignment layers on both sides of the liquid crystal determine the fast axis alignment, as well as the pretilt angle for the molecules in the active layer. As long as no other forces are applied (such as magnetic or electrical fields), the molecules will self-arrange according the pretilt angle, and fast axis angle of the alignment layer. As the birefringence value of a liquid crystal depends on the side view of its molecules, the tilt angle of the liquid crystal molecules, dictates in effect the value of birefringence of the device. In an active device, for example, once an electric field is applied, the tilt angle will change (according to the strength and direction of the electric field), and the molecules will rotate, leading to a change in birefringence.
Therefore, as shown in
Note that while the above example embodiment illustrate a different fast axis orientation and a different pretilt angle in each segment, it is possible to have two different segments that have the same fast axis orientation and different pretilt angles, or two segments that have different fast axis orientations but the same pretilt angle, or two segments that have both different fast axis orientations and different pretilt angles. For each segment, at least one of the pretilt angle and fast axis orientation is varied in different ways or amounts.
Until recently, the standard method for creating the alignment layer has been using mechanically created micro grooves on the surface of the alignment layer by for example, rubbing a fine cloth on the surface of the alignment layer. Those micro grooves determine the fast axis orientation (direction of the groove), and pretilt angle (depth of the groove, together with the mechanical and chemical characteristics of the alignment material). However, in this method, the entire surface of the device is usually aligned in the same direction and amount, as it is not possible to change the mechanical rubbing spatially.
In recent years, a new solution for creating the alignment layer has been developed in the form of photoalignment. By using a light sensitive material, the direction and strength of alignment in the alignment layer can be controlled using a writing beam, typically of a UV or blue wavelength. In other embodiments, the writing beam is an electron beam, a different wavelength beam or other beams that excites the photoalignment material. In the example of an SD-1 type of photoalignment material (made of Azo-Dye materials), the angle of polarization of the writing beam determines the alignment angle (fast axis orientation), and the level of energy of the beam, controls the pretilt angle of the alignment layer. Using this technique, one embodiment of the invention can create an alignment layer which can have a plurality of segments, each segment with a different fast axis orientation and different pretilt angle. Once a layer of birefringent material, such as liquid crystal, is applied on top of the photoalignment layer, the molecules will arrange their orientation and tilt angle according to the anchoring energy and direction of the photoalignment materials, and it will result in a birefringent device, with a plurality of segments with each segment acting as a different waveplate, with different values of fast axis orientation, as well as different values of birefringence. Effectively the depolarizer becomes a collection of waveplates that are each optimized for different conditions, making it an effective depolarizer for a very wide range of conditions, such as different wavelengths, different bandwidths and more.
By controlling the exposure time of the writing beam, and/or the power values of the said writing beam, the process can effectively control the level of energy delivered to the photoalignment material, and thus control the pretilt angle of the photo alignment layer. Since the birefringence value of the birefringent layer applied above depends on both the properties of the material and the pre-tilt angle dictated by the photoalignment layer, the process can in effect modify the value of the birefringence of the birefringent layer, in such a way that different birefringent values can be assigned, to different segments of the device.
Additionally the process can control the fast axis orientation of each segment independently, thus creating a device that has spatially varying fast axis, and spatially varying birefringence. Adding this extra degree of control allows the creation of a device that alters the polarization of an applied beam in multiple ways, creating a significantly stronger depolarization effect, over a significantly wider wavelength range, and independent of beam size and bandwidth.
Furthermore, since the photoalignment material is by itself also birefringent, there is in effect a multi-layer device (two birefringent layers), which provide much bigger design flexibility, and allow to produce a complex depolarizer, with a much more detailed polarization transfer function (compare to existing monolithic devices), thus allowing again for a much stronger depolarization effect, regardless of wavelength, bandwidth and beam size.
As shown in
As shown in
Note that the depolarizers discussed above do not have to be manufactured as a single part. In one embodiment, the depolarizer is made in two parts, and then gluing them together. The first part is a glass with the alignment layer and birefringent layer. The second part is a second glass with the same (but different segments/orientation angles and/or pretilt in that second glass). Then the two parts are stacked or glued together (or just hold them one after the other without even touching), and they make essentially the same type of depolarizer as discussed above.
As shown in
The different pretilt angles cause the liquid crystal molecules to arrange in different tilt angles, along the propagation axis. As a result, a beam passing perpendicular to the surface, will see a different value of birefringence, for the two different pretilt angles, and there for the beam's polarization will be varied differently. In addition, since two separate values of retardation exists. As opposed to previous inventions that have a uniform layer of birefringent material, the different pretilt angles throughout our device, lead to a variation in both retardation and fast axis angle across the device, and for any beam applied to it. As a result, the device is capable of significantly depolarizing even monochromatic beams, which until now where not possible.
In certain embodiments, the above mentioned depolarizer are made reflective (which works as a mirror as well as being a depolarizer), by having the substrate be a reflective substrate such as a mirror, or a glass coated with a single layer, or multiple layers reflective coating. These reflective depolarizers have an additional function of being both a mirror and a depolarizer. An advantage of these reflective depolarizers is that it would save the user of having two separate optical components. Note that in making such cases reflective depolarizers, the values of birefringence will need to be adjusted to account for the beam passing twice through the birefringent layer(s).
In one embodiment, a substrate is used only during production of the depolarizer, (and does not have to be transparent or reflective), and after production is completed, the depolarizer is removed from the substrate, by means of, for example, peeling off, and then the depolarizer is used without any substrate, or is glued on to a different substrate.
In another embodiment, both sides of a transparent substrate are used for depositing the photoalignment layers. As shown in
In one embodiment, multiple depolarizers are stacked or glued together. These multiple depolarizers differ from each other by at least one of segment, fast axis orientation and pretilt angle. Therefore a more effective and flexible depolarizer stack is formed with a number of a variety of depolarizers according to some embodiments discussed above.
Depolarizers according to various embodiments have many unique advantages over existing devices. Previously, the common practice has been to use a Lyot depolarizer, which is composed of two birefringent materials, and has a significant limitation in being able to operate only for achromatic beams (bandwidth>10 nm), and for beam sized greater the 6 mm. Another approach is to have a depolarizer array that is made of segments with different polarization fast axis, but with one homogenous birefringent layer above. As the layer above has a homogenous birefringence value, a monochromatic light passing through the various segments will have its polarization state rotated by different angles (according to the value of the fats axis angles), but its polarization state will not be modified. If for example a linearly polarized light will be applied, the lights exiting all segments will have different fast axis angles for different segments, but each segment will still be linearly polarized. A device according to one embodiment, on the other hand, by having segments with different birefringence values, in addition to different fast axis values, will further modify the polarization, and will depolarize even light beams with very narrow bandwidth, as low as 0.1 nm or less.
While the present invention has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the invention. Furthermore, the foregoing describes the invention in terms of embodiments foreseen by the inventor for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto.
Zhang, Lichao, Rubin, Sam, Zhang, Cary
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3433553, | |||
6055103, | Jun 28 1997 | Sharp Kabushiki Kaisha | Passive polarisation modulating optical element and method of making such an element |
6590605, | Oct 14 1998 | Dimension Technologies, Inc.; DIMENSION TECHNOLOGIES, INC | Autostereoscopic display |
8111458, | Jan 09 2008 | FUJIFILM Corporation | Optical device |
8696134, | Mar 15 2011 | AGC INC | Depolarization element and projection type display device |
20080049321, | |||
20090016191, | |||
20090257106, | |||
20100045924, | |||
20120268818, | |||
20130242365, | |||
WO2013128446, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 11 2015 | Thorlabs, Inc. | (assignment on the face of the patent) | / | |||
Nov 03 2015 | ZHANG, LICHAO | THORLABS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037003 | /0613 | |
Nov 03 2015 | RUBIN, SAM | THORLABS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037003 | /0613 | |
Nov 04 2015 | ZHANG, CARY | THORLABS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037003 | /0613 |
Date | Maintenance Fee Events |
Sep 21 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 11 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Mar 21 2020 | 4 years fee payment window open |
Sep 21 2020 | 6 months grace period start (w surcharge) |
Mar 21 2021 | patent expiry (for year 4) |
Mar 21 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 21 2024 | 8 years fee payment window open |
Sep 21 2024 | 6 months grace period start (w surcharge) |
Mar 21 2025 | patent expiry (for year 8) |
Mar 21 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 21 2028 | 12 years fee payment window open |
Sep 21 2028 | 6 months grace period start (w surcharge) |
Mar 21 2029 | patent expiry (for year 12) |
Mar 21 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |