A method of annealing a thin film deposited on a substrate. According to the method, the thin film deposited on the substrate is provided. The provided thin film is irradiated with electromagnetic radiation until a predetermined crystal quality of the thin film is achieved. The spectral band of the electromagnetic radiation is selected such that the thin film is substantially absorptive to the electromagnetic radiation and the substrate is substantially transparent to the electromagnetic radiation.
|
13. A method of annealing a thin film deposited on a substrate, the method comprising:
providing the thin film deposited on the substrate;
irradiating the thin film with electromagnetic radiation through the substrate until a predetermined crystal quality of the thin film is achieved using a gyrotron or an light emitting diode, a spectral band of the electromagnetic radiation selected such that the thin film is substantially absorptive to the electromagnetic radiation and the substrate is substantially transparent to the electromagnetic radiation.
9. A method of annealing a cathode of a thin film battery, the method comprising:
providing the thin film battery, the thin film battery including:
a substrate;
the cathode deposited on the substrate;
an electrolyte layer formed on the cathode; and
an anode formed on the electrolyte layer;
heating the cathode to an annealing temperature by using an inductive heater to inductively couple medium frequency to radio-frequency radiation into the thin film until a predetermined crystal quality of the thin film is achieved; and
limiting a temperature increase of the substrate, the electrolyte layer, and the anode during annealing of the cathode.
1. A method of annealing a thin film deposited on a substrate, the method comprising:
providing the thin film deposited on the substrate;
irradiating the thin film with electromagnetic radiation until a predetermined crystal quality of the thin film is achieved, a spectral band of the electromagnetic radiation selected such that the thin film is substantially absorptive to the electromagnetic radiation and the substrate is substantially transparent to the electromagnetic radiation;
wherein irradiating the thin film with the electromagnetic radiation until the predetermined crystal quality of the thin film is achieved includes one of:
using a gyrotron to irradiate the thin film with narrow bandwidth microwave radiation until the predetermined crystal quality of the thin film is achieved; or
using an light emitting diode to irradiate the thin film with narrow bandwidth radiation until the predetermined crystal quality of the thin film is achieved.
2. The method of
3. The method of
amorphous lithium cobalt oxide (LiCoO2); or
polycrystalline LiCoO2.
4. The method of
5. The method of
6. The method of
7. The method of
the spectral band of the electromagnetic radiation further selected such that the thin film is heated by absorbing the electromagnetic radiation; and
irradiating the thin film with the electromagnetic radiation until the predetermined crystal quality of the thin film is achieved:
increases a film temperature of the thin film to an annealing temperature; and
limits a substrate temperature of the substrate to less than a substrate damage temperature.
8. The method of
10. The method of
the cathode is substantially absorptive to the radio-frequency radiation; and
the substrate, the electrolyte layer, and the anode are substantially transparent to the radio-frequency radiation.
11. The method of
maintaining the cathode at the annealing temperature, or higher, until a predetermined crystal quality of the cathode is achieved.
12. The method of
thermally coupling at least one of the substrate, the electrolyte layer, or the anode to a heat sink.
14. The method of
15. The method of
16. The method of
using the gyrotron to irradiate the thin film with narrow bandwidth microwave radiation; or
using the LED to irradiate the thin film with narrow bandwidth radiation.
17. The method of
18. The method of
19. The method of
the spectral band of the electromagnetic radiation further selected such that the thin film is heated by absorbing the electromagnetic radiation; and
irradiating the thin film with the electromagnetic radiation until the predetermined crystal quality of the thin film is achieved using the gyrotron or the light emitting diode:
increases a film temperature of the thin film to an annealing temperature; and
limits a substrate temperature of the substrate to less than a substrate damage temperature.
20. The method of
|
This application claims the benefit under 35 U.S.C. §1.119(e) of U.S. Provisional Patent Application No. 61/799,226, filed Mar. 15, 2013, entitled “Annealing Method for Thin Film Electrodes,” the entirety of which is incorporated herein by reference as if fully recited herein.
The present invention relates to methods of annealing thin film electrodes deposited on thermally sensitive substrates generally and methods for annealing thin film battery cathodes particularly
Many electronic devices, such as laptops, tablet computers, smartphones, and the like, use rechargeable batteries to provide power to one or more electronic components. A number of electronic devices use thin film batteries as the power source because of the many advantages it has over other batteries. For example, lithium ion thin film batteries which have a potential high energy density while maintaining a relatively compact configuration.
A lithium thin film battery's performance is significantly affected by properties of the cathode electrode. Currently, a number of lithium ion thin film batteries use a lithium cobalt oxide (LiCoO2) cathode that has a thickness of 10 micron or thinner. These batteries have a capacity of about 2 mAh or less. One approach to increase battery capacity, and thus increase the number of applications the battery can be used for, is to increase the thickness of the LiCoO2 film. Another is to increase the quality of the cathode material. In both of these approaches, it may be useful to anneal the thin film cathode material.
In a typical annealing process, after the LiCoO2 film has been deposited on a substrate, the substrate is loaded into a furnace at a temperature as high as 700 C for a few hours. This thermal annealing process is useful to change the crystalline structure and improve the crystal quality of the LiCoO2 film. Unfortunately, current annealing processes have several disadvantages, including: the high temperature used significantly limits possible substrate selections, as the substrate material has to be able to stably withstand at the anneal temperature; practically mass production may be difficult; increased production costs related to the use of a high temperature annealing process. Example embodiments include annealing processes that allow the improvement of the crystal quality of LiCoO2 cathode material in thin film batteries, as well as other thin film materials, without subjecting the substrate on which the film is deposited having to withstand the high temperature conditions typically associated with annealing processes.
One sample embodiment, as described herein, is a method of annealing a thin film deposited on a substrate. According to the method, the thin film deposited on the substrate is provided. The provided thin film is irradiated with electromagnetic radiation until a predetermined crystal quality of the thin film is achieved. The spectral band of the electromagnetic radiation is selected such that the thin film is substantially absorptive to the electromagnetic radiation and the substrate is substantially transparent to the electromagnetic radiation.
Another example embodiment, as described herein, is a method of annealing a thin film deposited on a substrate. According to the method, the thin film deposited on the substrate is provided. The thin film has a film electrical conductivity that is greater than the substrate electrical conductivity of the substrate. An electrical current is passed through the thin film to heat the thin film to an annealing temperature.
A further example embodiment, as described herein, is a method of annealing a cathode of a thin film battery. According to the method, the thin film battery is provided. The thin film battery includes: a substrate; the cathode deposited on the substrate; an electrolyte layer formed on the cathode; and an anode formed on the electrolyte layer. The cathode is heated to an annealing temperature. And the temperature increase of the substrate, the electrolyte layer, and the anode are limited during annealing of the cathode.
While multiple embodiments are disclosed, including variations thereof, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the disclosure. As will be realized, the disclosure is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the present disclosure, it is believed that the embodiments are best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:
Production of thicker films may pose various difficulties that may reduce the quality of the cathode material. For example, thicker films may result in film cracking and undesirable crystal structures due to the high deposition rate often used to form thick films. Film cracking and/or undesirable crystal structure may cause low utilization and lithium diffusion rates, which may result in poor battery performance. Such issues may significantly limit the film thickness in lithium thin film batteries.
These issues may be particularly prevalent when physical vapor deposition (PVD) methods are used, such as: cathodic arc deposition, electron beam physical vapor deposition; evaporative deposition; pulsed laser deposition; and sputter deposition. Lithium cobalt oxide (LiCoO2) having a (104) crystal orientation may be useful to produce an improved cathode of a Li ion thin film battery, as such a cathode may allow for increased Li ion utilization in the thin film battery. However, PVD deposited LiCoO2 may typically result in a film made up of amorphous or polycrystalline structures, which may include (003), (102), (101) and/or (104) crystal orientations. One approach to achieve the (104) oriented structure from PVD-grown LiCoO2 is to anneal the deposited film. In a typical annealing process, once the LiCoO2 film has been deposited on a substrate, the substrate is loaded into a furnace at a temperature as high as 700 C for a few hours. This thermal annealing process is useful to change the crystalline structure of the LiCoO2 film to be substantially aligned in the (104) crystal orientation.
As noted above, current annealing processes have several disadvantages, including: the high temperature used significantly limits possible substrate selections, as the substrate material has to be able to stably withstand at the anneal temperature; practically mass production may be difficult; increased production costs related to the use of a high temperature annealing process. Example embodiments described herein include annealing processes that may transform the crystalline structure and improve the crystal quality of LiCoO2 cathode material in thin film batteries, as well as other thin film materials, without subjecting the substrate on which the film is deposited having to withstand the high temperature conditions typically associated with annealing processes. These example processes may also allow for improved mass production capabilities and reduced production costs, as compared to typical furnace annealing processes.
In the example thin film battery of
Electrolyte 106, anode 108, and anode current collector 110 are assembled on substrate 100 with deposited cathode current collector 102 and cathode 104, and encapsulation layer 112 is useful to seal the battery, as well as holding the anode structure in place. Electrolyte 106 may be an organic solvent, such as ethylene or a methyl ethyl carbonate. Anode 108 is typically includes a carbon structure and anode current collector 110 is selected to be a material that is both relatively chemically inert with anode material and highly electrically conductive, possibly the same material as cathode current collector 102. Encapsulation layer 112 often includes a polymer and may include a ceramic layer or metal case.
The thin film is irradiated with electromagnetic radiation, step 302. The spectral band of this electromagnetic radiation is selected such that energy from the electromagnetic radiation is readily absorbed by the thin film and not by the substrate. It may be useful for the substrate to be substantially transparent to the electromagnetic radiation, particularly is the electromagnetic radiation may irradiate the thin film through the substrate. As noted above, in the example embodiment illustrated in
This electromagnetic irradiation may be continued until a predetermined crystal quality of the thin film is achieved, step 312, and the annealing process is complete. One example approach is to continue the irradiation for a predetermined period of time. In the example embodiment of
Because the electromagnetic energy is being absorbed directly into the thin film, and is not substantially absorbed by the substrate, the example method of
One of these example approaches is to use an inductive heater to inductively couple medium frequency (MF) to radio-frequency (RF) radiation into the thin film, alternative substep 304. MF radiation is traditionally used to describe electromagnetic radiation in the frequency range from 1 to 10 kHz, while RF radiation is traditionally used to describe electromagnetic radiation in the frequency range from 100 kHz up to 10 MHz. Inductive heaters operate by irradiating a target object with MF or RF radiation to generate eddy currents within a conductive target object via induction. These eddy currents then heat the target object through joule heating. If the thin film has a significantly higher conductivity than the substrate (low conductivity material being essentially transparent to these wavelengths), then inductive heating may selectively heat the thin film to the annealing temperature, or above, with minimal direct heating of the substrate. Although the temperature of the substrate may rise due to heat conduction from the thin film, the lack of direct heating from the electromagnetic radiation allows the substrate to remain at a significantly lower temperature (i.e. lower than a substrate damage temperature) throughout the annealing process. Heating of the substrate may be lowered further by thermally coupling the substrate to a heatsink. The example embodiment of
Two additional example approaches to irradiating the thin film are to use a gyrotron, alternative substep 306, or to use an LED, alternative substep 308, to irradiate the thin film with narrow bandwidth radiation. Gyrotrons may generate relatively narrow bandwidth microwave radiation, while LEDs are capable of generating narrow bandwidth radiation at frequencies ranging from the infrared (IR), through the visible, and even into the ultraviolet (UV) spectrum. Both gyrotrons and LEDs can be designed to supply electromagnetic radiation in a predetermine bandwidth. Proper selection of their spectral bands may allow for selective absorption of the electromagnetic radiation by the thin film and not by the substrate. The absorbed electromagnetic energy in these alternative substeps may manifest as heat within the thin film to increases its temperature to the annealing temperature, or above, as in alternative substep 304, described above.
Alternatively, the spectral band of the electromagnetic radiation may be selected such that the thin film is annealed by absorbing the electromagnetic radiation through a non-thermal process, i.e. the electromagnetic energy is absorbed directly into quantum states that result in realignment of the crystal structure of the thin film. This alternative approach may allow the thin film to be annealed without heating either the substrate, or the thin film.
The final of the four example approaches to irradiating the thin film illustrated in
It is noted that if the spectral band of the electromagnetic radiation is tuned to such that the electromagnetic energy is absorbed directly into quantum states that result in realignment of the crystal structure of the thin film, it may be possible to determine when the predetermined crystal quality of the thin film has been achieved in step 312 by measuring the amount of electromagnetic radiation transmitted through the thin film and ceasing irradiation once a predetermined transmission coefficient is achieved.
An electrical current is passed through the thin film to heat the thin film to an annealing temperature through joule heating, step 402. As in various embodiments of the example method of
The thin film is maintained at the annealing temperature, or higher, until a predetermined crystal quality of the thin film is achieved, step 404, and the annealing process is complete. As in the example method of
The cathode is heated to an annealing temperature, step 602, while limiting a temperature increase of the substrate, the electrolyte layer, and the anode, step 604. The cathode is maintained at the annealing temperature, or higher, until a predetermined crystal quality of the cathode is achieved, step 606, and the annealing process is complete. It is noted that the temperature increase of the substrate, the electrolyte layer, and the anode is to be limited (step 604) throughout the annealing process.
In an alternative embodiment of the example method of
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context of particular embodiments. Functionality may be separated or combined in procedures differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.
Patent | Priority | Assignee | Title |
10439187, | Nov 27 2012 | Apple Inc. | Laminar battery system |
11508984, | Mar 15 2013 | Apple Inc. | Thin film pattern layer battery systems |
11824220, | Sep 03 2020 | Apple Inc. | Electronic device having a vented battery barrier |
Patent | Priority | Assignee | Title |
3655455, | |||
4369225, | Dec 27 1979 | Toyoda Gosei Kabushiki Kaisha | Flexible lustrously metallized resinous articles and a process for manufacturing same |
5134046, | Apr 04 1990 | ULTRALIFE BATTERIES, INC | Battery with metal foil coated plastic housing |
5523179, | Nov 23 1994 | POLY-PLUS BATTERY COMPANY | Rechargeable positive electrode |
5554459, | Jan 23 1996 | VALENCE TECHNOLOGY, INC DE | Material and method for low internal resistance LI-ion battery |
5561004, | Feb 25 1994 | MARTIN MARIETTA ENERGY SYSTEMS, INC | Packaging material for thin film lithium batteries |
6001138, | Aug 22 1997 | Round Rock Research, LLC | Methods of forming battery electrodes |
6200634, | May 26 1995 | Mattson Technology, Inc. | Thermal processing system with supplemental resistive heater and shielded optical pyrometry |
6319631, | Sep 08 1999 | Amperex Technology Limited | Contact system for interconnection of substrate and battery cell |
6410189, | Dec 25 1998 | Tokai Aluminum Fiol Co., Ltd. | Current collectors for battery |
6610572, | Nov 26 1999 | FUJI ELECTRIC CO , LTD | Semiconductor device and method for manufacturing the same |
6713987, | Feb 28 2002 | KLA Corporation | Rechargeable battery having permeable anode current collector |
7585582, | Jun 28 2006 | Nan Ya Printed Circuit Board Corporation | Fuel cell module utilizing wave-shaped flow board |
7801613, | Apr 26 2007 | Medtronic, Inc | Metal injection molded titanium alloy housing for implantable medical devices |
7927744, | Sep 30 2004 | MURATA MANUFACTURING CO , LTD | Anode active material and battery using the same |
7931989, | Jul 15 2005 | Cymbet Corporation | Thin-film batteries with soft and hard electrolyte layers and method |
7935439, | Apr 27 2005 | SAMSUNG SDI CO , LTD | Pouch type lithium secondary battery |
7939195, | Dec 23 2004 | COMMISSARIAT A L ENERGIE ATOMIQUE | Structured electrolyte for micro-battery |
7959769, | Dec 08 2004 | Sapurast Research LLC | Deposition of LiCoO2 |
7960054, | Jan 10 2002 | JOHNSON IP HOLDING, LLC | Packaged thin film batteries |
8044813, | Nov 16 2006 | Semiconductor Energy Laboratory Co., Ltd. | Radio field intensity measurement device, and radio field intensity detector and game console using the same |
8153301, | Jul 21 2008 | 3M Innovative Properties Company | Cathode compositions for lithium-ion electrochemical cells |
8168322, | Mar 25 2005 | KLA Corporation | Thin film battery with protective packaging |
8431264, | Aug 09 2002 | Sapurast Research LLC | Hybrid thin-film battery |
8435312, | Oct 20 2010 | LAMBDAINNOVATION PTE LTD; Empire Technology Development LLC | Calcium hexaboride anodes for electrochemical cells |
8445130, | Nov 17 2005 | Sapurast Research LLC | Hybrid thin-film battery |
8518583, | Sep 18 2009 | Toyota Jidosha Kabushiki Kaisha; The University Court of The University of St Andrews | Air cathode and metal-air battery |
8669345, | Jan 27 2006 | Biogen MA Inc | Nogo receptor antagonists |
8679674, | Mar 25 2005 | KLA Corporation | Battery with protective packaging |
8822059, | Dec 28 2011 | Tsinghua University; Hon Hai Precision Industry Co., Ltd. | Lithium ion battery |
8956761, | Nov 30 2009 | Oerlikon Advanced Technologies AG | Lithium ion battery and method for manufacturing of such battery |
9209451, | Dec 24 2010 | Kyocera Corporation | Lithium rechargeable battery comprising a lithium titanate sintered body |
20010032666, | |||
20050079418, | |||
20050153078, | |||
20050250010, | |||
20060210880, | |||
20080032236, | |||
20090181303, | |||
20090193649, | |||
20090208754, | |||
20090214899, | |||
20090317708, | |||
20100035152, | |||
20100066683, | |||
20110123844, | |||
20110129594, | |||
20110177398, | |||
20110183183, | |||
20110195271, | |||
20110200868, | |||
20110294015, | |||
20120078317, | |||
20120251867, | |||
20130029205, | |||
20130176654, | |||
20130344363, | |||
20140007418, | |||
20140011067, | |||
20140147731, | |||
20140147737, | |||
20140147742, | |||
20140264915, | |||
20140265915, | |||
20140272541, | |||
20140272560, | |||
20140272561, | |||
20140273890, | |||
20150325862, | |||
20160064719, | |||
20160093837, | |||
CN101640968, | |||
CN101676845, | |||
CN1144017, | |||
EP792741, | |||
EP975031, | |||
EP1804315, | |||
EP2105983, | |||
EP2481499, | |||
JP2013004173, | |||
JP2013021347, | |||
JP61032951, | |||
JP63314770, | |||
TW201010094, | |||
TW201014020, | |||
TW201108441, | |||
TW201218494, | |||
TW306319, | |||
WO2008007867, | |||
WO2010033609, | |||
WO2012086557, | |||
WO2012090929, | |||
WO2012114162, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 24 2013 | HUANG, LILI | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031956 | /0115 | |
Sep 27 2013 | Apple Inc. | (assignment on the face of the patent) | / | |||
Dec 18 2013 | MANK, RICHARD M | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031956 | /0115 |
Date | Maintenance Fee Events |
Feb 21 2017 | ASPN: Payor Number Assigned. |
Sep 10 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 04 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 21 2020 | 4 years fee payment window open |
Sep 21 2020 | 6 months grace period start (w surcharge) |
Mar 21 2021 | patent expiry (for year 4) |
Mar 21 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 21 2024 | 8 years fee payment window open |
Sep 21 2024 | 6 months grace period start (w surcharge) |
Mar 21 2025 | patent expiry (for year 8) |
Mar 21 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 21 2028 | 12 years fee payment window open |
Sep 21 2028 | 6 months grace period start (w surcharge) |
Mar 21 2029 | patent expiry (for year 12) |
Mar 21 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |