correlation marks and gloss effect image patterns are created with vector-based electronic pattern inks. In creating a correlation mark, which is only visible by viewing the image through a reference screen, two vector-based electronic pattern inks are utilized to create the correlation mark, wherein the vector pattern in one electronic pattern ink is parallel, but out of phase, to the vector pattern in the other electronic pattern ink and the vectors of both electronic pattern inks are painted as thin lines. In creating a gloss effect, which is only visible by viewing the image at a predetermined angle, two vector-based electronic pattern inks are utilized to create the gloss effect, wherein the vector pattern in one electronic pattern ink is orthogonal to the vector pattern in the other electronic pattern ink and the vectors of both electronic pattern inks are painted as thick lines.
|
7. A method for rendering a correlation mark pattern on a recording medium, comprising:
electronically creating a first vector based pattern cell having first vectors;
electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being orthogonal to said second vectors of said second vector based pattern cell;
electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thin lines;
electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thin lines;
electronically painting, using said second electronic pattern ink, a background of an electronic image region;
electronically painting, using said first electronic pattern ink, a foreground in said electronic image region; and
rendering, using marking materials, said electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when viewing the rendered image area through a reference screen, said pattern in the rendered image area being not visible when viewing the rendered image area without the reference screen.
1. A method for rendering a correlation mark pattern on a recording medium, comprising:
electronically creating a first vector based pattern cell having first vectors;
electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being parallel to said second vectors of said second vector based pattern cell and said first vectors of said first vector based pattern cell being out of phase with said second vectors of said second vector based pattern cell;
electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thin lines;
electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thin lines;
electronically painting, using said second electronic pattern ink, a background of a first electronic image region;
electronically painting, using said first electronic pattern ink, a foreground in said first electronic image region; and
rendering, using marking materials, said first electronic image region on the recording medium to create a first rendered image area such that a first pattern in the first rendered image area is only visible when viewing the first rendered image area through a reference screen, said first pattern in the first rendered image area being not visible when viewing the first rendered image area without the reference screen.
17. A system for rendering a correlation mark pattern on a recording medium, comprising:
a processor for electronically creating a first vector based pattern cell having first vectors;
said processor electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being orthogonal to said second vectors of said second vector based pattern cell;
said processor electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thin lines;
said processor electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thin lines;
said processor electronically painting, using said second electronic pattern ink, a background of an electronic image region;
said processor electronically painting, using said first electronic pattern ink, a foreground in said electronic image region; and
a print engine for rendering, using marking materials, said electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area, the pattern in the rendered image area corresponding to said foreground in said electronic image region, is only visible when viewing the rendered image area through a reference screen, said pattern in the rendered image area being not visible when viewing the rendered image area without the reference screen.
21. A method for rendering a gloss effect image pattern on a recording medium, comprising:
electronically creating a first vector based pattern cell having first vectors;
electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being orthogonal to said second vectors of said second vector based pattern cell;
electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thick lines;
electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thick lines;
electronically painting, using said second electronic pattern ink, a background of an electronic image region;
electronically painting, using said first electronic pattern ink, a foreground in said electronic image region; and
rendering, using marking materials, said electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when a relative angle between an observer's viewing angle and an angle of illuminating the recording medium by an illumination source is a first angle, said pattern in the rendered image area being not visible when the relative angle between the observer's viewing angle and the angle of illuminating the recording medium by the illumination source is a second angle, said second angle being not equal to said first angle.
11. A system for rendering a correlation mark pattern on a recording medium, comprising:
a processor for electronically creating a first vector based pattern cell having first vectors;
said processor electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being parallel to said second vectors of said second vector based pattern cell and said first vectors of said first vector based pattern cell being out of phase with said second vectors of said second vector based pattern cell;
said processor electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thin lines;
said processor electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thin lines;
said processor electronically painting, using said second electronic pattern ink, a background of a first electronic image region;
said processor electronically painting, using said first electronic pattern ink, a foreground in said first electronic image region; and
a print engine for rendering, using marking materials, said first electronic image region on the recording medium to create a first rendered image area such that a first pattern in the first rendered image area is only visible when viewing the first rendered image area through a reference screen, said first pattern in the first rendered image area being not visible when viewing the first rendered image area without the reference screen.
25. A system for rendering a gloss effect image pattern on a recording medium, comprising:
a processor for electronically creating a first vector based pattern cell having first vectors;
said processor electronically creating a second vector based pattern cell having second vectors, said first vectors of said first vector based pattern cell being orthogonal to said second vectors of said second vector based pattern cell;
said processor electronically creating a first electronic pattern ink, using said first vector based pattern cell, said first electronic pattern ink having an electronic painting procedure for said first vectors in said first vector based pattern cell defining an electronic painting of said first vectors as thick lines;
said processor electronically creating a second electronic pattern ink, using said second vector based pattern cell, said second electronic pattern ink having an electronic painting procedure for said second vectors in said second vector based pattern cell defining an electronic painting of said second vectors as thick lines;
said processor electronically painting, using said second electronic pattern ink, a background of an electronic image region;
said processor electronically painting, using said first electronic pattern ink, a foreground in said electronic image region; and
a print engine for rendering, using marking materials, said electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when a relative angle between an observer's viewing angle and an angle of illuminating the recording medium by an illumination source is a first angle, said pattern in the rendered image area being not visible when the relative angle between the observer's viewing angle and the angle of illuminating the recording medium by the illumination source is a second angle, said second angle being not equal to said first angle.
2. The method as claimed in
electronically creating a third vector based pattern cell having third vectors, said third vector based pattern cell being orthogonal to said first vector based pattern cell;
electronically creating a fourth vector based pattern cell having fourth vectors, said third vectors of said third vector based pattern cell being parallel to said fourth vectors of said fourth vector based pattern cell and said third vectors of said third vector based pattern cell being out of phase with said fourth vectors of said fourth vector based pattern cell, said fourth vector based pattern cell being orthogonal to said second vector based pattern cell;
electronically creating a third electronic pattern ink, using said third vector based pattern cell, said third electronic pattern ink having an electronic painting procedure for said third vectors in said third vector based pattern cell defining an electronic painting of said third vectors as thin lines;
electronically creating a fourth electronic pattern ink, using said fourth vector based pattern cell, said fourth electronic pattern ink having an electronic painting procedure for said fourth vectors in said fourth vector based pattern cell defining an electronic painting of said fourth vectors as thin lines;
electronically painting, using said fourth electronic pattern ink, a background of a second electronic image region;
electronically painting, using said third electronic pattern ink, a foreground in said second electronic image region; and
rendering, using marking materials, said second electronic image region on the recording medium to create a second rendered image area such that a second pattern in the second rendered image area is only visible when viewing the second rendered image area through the reference screen and an orientation of the reference screen is orthogonal to an orientation of the reference screen when said first pattern in the first rendered image area is only visible, said second pattern in the second rendered image area being not visible when viewing the second rendered image area without the reference screen.
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
6. The method as claimed in
8. The method as claimed in
9. The method as claimed in
10. The method as claimed in
12. The system as claimed in
said processor electronically creating a fourth vector based pattern cell having fourth vectors, said third vectors of said third vector based pattern cell being parallel to said fourth vectors of said fourth vector based pattern cell and said third vectors of said third vector based pattern cell being out of phase with said fourth vectors of said fourth vector based pattern cell, said fourth vector based pattern cell being orthogonal to said second vector based pattern cell;
said processor electronically creating a third electronic pattern ink, using said third vector based pattern cell, said third electronic pattern ink having an electronic painting procedure for said third vectors in said third vector based pattern cell defining an electronic painting of said third vectors as thin lines;
said processor electronically creating a fourth electronic pattern ink, using said fourth vector based pattern cell, said fourth electronic pattern ink having an electronic painting procedure for said fourth vectors in said fourth vector based pattern cell defining an electronic painting of said fourth vectors as thin lines;
said processor electronically painting, using said fourth electronic pattern ink, a background of a second electronic image region;
said processor electronically painting, using said third electronic pattern ink, a foreground in said second electronic image region; and
said print engine rendering, using marking materials, said second electronic image region on the recording medium to create a second rendered image area such that a second pattern in the second rendered image area is only visible when viewing the second rendered image area through the reference screen and an orientation of the reference screen is orthogonal to an orientation of the reference screen when said first pattern in the first rendered image area is only visible, said second pattern in the second rendered image area being not visible when viewing the second rendered image area without the reference screen.
13. The system as claimed in
14. The system as claimed in
15. The system as claimed in
16. The system as claimed in
18. The system as claimed in
19. The system as claimed in
20. The system as claimed in
22. The method as claimed in
23. The method as claimed in
24. The method as claimed in
26. The system as claimed in
27. The system as claimed in
28. The system as claimed in
|
In conventional printing processes, requiring security measures, a pattern color space having specialty imaging characteristics have been utilized to provide the security measures and prevent counterfeiting of printed materials.
In addition, in conventional printing processes, a pattern color space has been utilized, in part on variable data, such as printing logos, serial numbers, seat locations, or other types of unique identifying information on printed materials.
In security applications, it is desirable to add information to a document that prevents or hinders alterations and counterfeiting. These security elements may conflict with the overall aesthetics of the document.
Specialty imaging has been used, conventionally, in printed materials to provide fraud protection and anti-counterfeiting measures. Some examples are in prescriptions, contracts, documents, coupons, and tickets. Typically, several specialty imaging techniques are used at various positions in a document. However, specialty imaging text techniques take up space in the document.
One example of a conventional specialty imaging technique restricts designers to use rectangular areas for security elements of documents. This may be acceptable for locating security elements in headers, footers, or similar areas of documents. However, rectangular security elements may not be as “pleasing” in other document areas.
With reference to
In
In
Examples of conventional specialty imaging techniques are disclosed in U.S. Pat. No. 8,310,718; U.S. Pat. No. 7,324,241; U.S. Pat. No. 7,391,529; Published US Patent Application Number 2007/0139680; Published US Patent Application Number 2007/0139681; Published US Patent Application Number 2009/0207433; Published US Patent Application Number 2009/0262400; Published US Patent Application Number 2010/0214595; Published US Patent Application Number 2010/0238513; Published US Patent Application Number 2011/00127331; Published US Patent Application Number 2011/0191670; Published US Patent Application Number 2011/0205569; Published US Patent Application Number 2012/0140290; co-pending U.S. patent application Ser. No. 13/671,071, filed on Nov. 7, 2012; co-pending U.S. patent application Ser. No. 13/776,868, filed on Feb. 26, 2013; and co-pending U.S. patent application Ser. No. 14/951,663, filed on Nov. 25, 2015.
The entire content of U.S. Pat. No. 8,310,718 is hereby incorporated by reference. The entire content of U.S. Pat. No. 7,324,241 is hereby incorporated by reference. The entire content of U.S. Pat. No. 7,391,529 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2007/0139680 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2007/0139681 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2009/0207433 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2009/0262400 is hereby incorporated by reference.
The entire content of Published US Patent Application Number 2010/0214595 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2010/0238513 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2011/00127331 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2011/0191670 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2011/0205569 is hereby incorporated by reference. The entire content of Published US Patent Application Number 2012/0140290 is hereby incorporated by reference.
The entire content of co-pending U.S. patent application Ser. No. 13/671,071, filed on Nov. 7, 2012, is hereby incorporated by reference. The entire content of co-pending U.S. patent application Ser. No. 13/776,868, filed on Feb. 26, 2013, is hereby incorporated by reference. The entire content of co-pending U.S. patent application Ser. No. 14/951,663, filed on Nov. 25, 2015, is hereby incorporated by reference.
In one conventional specialty imaging technique, the method includes defining a variable portion of the pattern color space in a page description language; defining a fixed portion of the pattern color space in the page description language; defining a bounding shape for the pattern color space in the page description language; and defining a procedure for painting the variable and fixed portions within the bounding shape in the page description language.
In this conventional specialty imaging technique, the variable portion of the pattern color space is based at least in part on variable data associated with the print job and at least one object within the print job identifies the pattern color space for a color parameter.
In another conventional security printing technique, the method includes the use of color shifting ink, which appears as one color from a certain angle and another color from another angle. In other words a special ink is required to realize the color shift effect.
For example, a printed security feature for printed currency utilizes color-shifting ink to print the numerals located in the corners on the front of the bill. More specifically, on a US $100 banknote, the green color use to print the denomination in the corners on the front of the bill will “shift” to grey and back to green as the bill is tilted back and forth to change the viewing angle.
The “optically variable ink” is not widely commercially available and cannot be replicated by any copiers, which only “see” and replicate patterns from a fixed angle.
Therefore, it is desirable to provide a specialty imaging technique, utilizing color-shifting, which does not require special inks or marking materials, and still cannot be readily replicated by conventional copiers and/or scanner.
In addition, it is desirable to provide a specialty imaging technique that is applicable to Variable-Data Intelligent PostScript™ Printware workflows and that transmit an image a single time and subsequently only submit the variable text string to the digital front end.
Furthermore, it is desirable to provide a specialty imaging technique utilizing a see-saw scalable gloss effect.
The drawings are only for purposes of illustrating various embodiments and are not to be construed as limiting, wherein:
For a general understanding, reference is made to the drawings. In the drawings, like references have been used throughout to designate identical or equivalent elements. It is also noted that the drawings may not have been drawn to scale and that certain regions may have been purposely drawn disproportionately so that the features and concepts may be properly illustrated.
The term “data” refers herein to physical signals that indicate or include information. An “image,” as a pattern of physical light or a collection of data representing said physical light, may include characters, words, and text as well as other features such as graphics.
A “digital image” is by extension an image represented by a collection of digital data. An image may be divided into “segments,” each of which is itself an image. A segment of an image may be of any size up to and including the whole image.
The term “image object” or “object” as used herein is believed to be considered in the art generally equivalent to the term “segment” and will be employed herein interchangeably.
In a digital image composed of data representing physical light, each element of data may be called a “pixel,” which is common usage in the art and refers to a picture element. Each pixel has a location and value. Each pixel value is a bit in a “binary form” of an image, a gray scale value in a “gray scale form” of an image, or a set of color space coordinates in a “color coordinate form” of an image, the binary form, gray scale form, and color coordinate form each being a two-dimensional array defining an image.
An operation performs “image processing” when it operates on an item of data that relates to part of an image.
“Contrast” is used to denote the visual difference between items, data points, and the like. It can be measured as a color difference or as a luminance difference or both.
A digital color printing system is an apparatus arrangement suited to accepting image data and rendering that image data upon a substrate.
The “RGB color model” is an additive color model in which red, green, and blue light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.
The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems. RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements and their response to the individual R, G, and B levels vary from manufacturer to manufacturer, or even in the same device over time. Thus, an RGB value does not define the same color across devices without some kind of color management.
The “CMYK color model” is a subtractive color model, used in color printing, and is also used to describe the printing process itself. CMYK refers to the four inks used in some color printing: cyan, magenta, yellow, and black.
“Colorant” refers to one of the fundamental subtractive C, M, Y, K, primaries, which may be realized in formulation as, liquid ink, solid ink, dye, or electrostatographic toner. A “colorant mixture” is a particular combination of C, M, Y, K colorants.
An “infrared mark” is a watermark embedded in the image that has the property of being relatively indecipherable under normal light, and yet decipherable under infrared illumination by appropriate infrared sensing devices, such as infrared cameras.
“Metameric” rendering/printing is the ability to use multiple colorant combinations to render a single visual color, as can be achieved when printing with more than three colorants.
With reference to
The word “printer” and the term “printing system” as used herein encompass any apparatus and/or system; such as a digital copier, xerographic and reprographic printing systems, bookmaking machine, facsimile machine, multi-function machine, ink-jet machine, continuous feed, sheet-fed printing device, etc.; which may contain a print controller and a print engine and which may perform a print outputting function for any purpose.
The printing system 100 generally includes a user interface 110, a digital front end controller 120, and at least one print engine 130. The print engine 130 has access to print media 135 of various sizes and cost for a print job.
A “print job” or “document” is normally a set of related sheets, usually one or more collated copy sets copied from a set of original print job sheets or electronic document page images, from a particular user, or otherwise related. For submission of a regular print job (or customer job), digital data is generally sent to the printing system 100.
A sorter 140 operates after a job is printed by the print engine 130 to manage arrangement of the hard copy output, including cutting functions. A user can access and operate the printing system 100 using the user interface 110 or via a workstation 150. The workstation 150 communicates with the printing system 100 via a communications network 160.
A user profile, a work product for printing, a media library, and various print job parameters can be stored in a database or memory 170 accessible by the workstation 150 or the printing system 100 via the network 160, or such data can be directly accessed via the printing system 100. One or more color sensors (not shown) may be embedded in the printer paper path, as known in the art.
With respect to
In the embodiment shown, the processor is in communication with a bus 202 (e.g., a backplane interface bus, cross-over bar, or data network). The digital front end 200 also includes a main memory 204 that is used to store machine readable instructions. The main memory also being capable of storing data. Main memory may alternatively include random access memory (RAM) to support reprogramming and flexible data storage. Buffer 266 is used to temporarily store data for access by the processor.
Program memory 264 includes, for example, executable programs that implement the embodiments of the methods described herein. The program memory 264 stores at least a subset of the data contained in the buffer.
The digital front end 200 includes a display interface 208 that forwards data from communication bus 202 (or from a frame buffer not shown) to a display 210. The digital front end 200 also includes a secondary memory 212 includes, for example, a hard disk drive 214 and/or a removable storage drive 216, which reads and writes to removable storage 218, such as a floppy disk, magnetic tape, optical disk, etc., that stores computer software and/or data.
The secondary memory 212 alternatively includes other similar mechanisms for allowing computer programs or other instructions to be loaded into the computer system. Such mechanisms include, for example, a removable storage unit 222 adapted to exchange data through interface 220.
Examples of such mechanisms include a program cartridge and cartridge interface (such as that found in video game devices), a removable memory chip (such as an EPROM, or PROM) and associated socket, and other removable units and interfaces which allow software and data to be transferred.
The digital front end 200 includes a communications interface 224, which acts as both an input and an output to allow software and data to be transferred between the digital front end 200 and external devices. Examples of a communications interface include a modem, a network interface (such as an Ethernet card), a communications port, a PCMCIA slot and card, etc.
Computer programs (also called computer control logic) may be stored in main memory 204 and/or secondary memory 212. Computer programs may also be received via a communications interface 224. Such computer programs, when executed, enable the computer system to perform the features and capabilities provided herein. Software and data transferred via the communications interface can be in the form of signals which may be, for example, electronic, electromagnetic, optical, or other signals capable of being received by a communications interface.
These signals are provided to a communications interface via a communications path (i.e., channel) which carries signals and may be implemented using wire, cable, fiber optic, phone line, cellular link, RF, or other communications channels.
Part of the data generally stored in secondary memory 212 for access during digital front end operation is a set of translation tables that convert an incoming color signal into a physical machine signal.
This color signal can be expressed either as a colorimetric value; usually three components as L*a*b*, RGB, XYZ, etc.; into physical exposure signals for the four toners cyan, magenta, yellow and black. These tables are commonly created outside of the digital front end and downloaded, but are optionally created inside the digital front end in a so-called characterization step.
In the some of the descriptions below, specialty imaging elements are used in a dynamic pattern generation process to provide security features.
For example, a specialty imaging technique, as illustrated in
Specialty imaging techniques can be implemented by creating a specialty image object. Alternatively, specialty imaging techniques can be implemented using page description language constructs, such as PostScript™ constructs, to create a pattern color space, sometimes referred to as a “pattern ink.” In other words, within page description languages, specialty imaging text and specialty imaging pattern inks can be implemented.
Rather than defining the specific string to be rendered at a specified location on the page, a specialty imaging string may be used to define a dynamically created pattern ink. This pattern ink is subsequently accessible by other page description language drawing and rendering commands through selection as a color parameter in the command.
With reference to
In this example, a “tile” of GlossMark™ text is defined as a pattern ink. This pattern ink can be previously designed with static characteristics. Alternatively, the pattern ink may be dynamically designed in conjunction with the processing of a corresponding print job. Both previously and dynamically-designed pattern inks can also incorporate variable data associated with the print job, as illustrated by the string “shirt” for the shirt (see
An exemplary embodiment of a pattern ink that includes a specialty imaging GlossMark™ test effect for the string “XEROX!”™ may be created using the following exemplary PostSript™ pseudo-code:
Note that the geometry and size of the pattern in
In one embodiment, a pattern ink (or pattern color space) used for tiling is defined with respect to an origin of a page (i.e., the pattern ink is available for all objects on the page, except for image objects) and not with respect to a specific object.
For example, this means that the GlossMark™ text inside the shirt may start with the letter “X” or any other letter of the string depending on the location of the object in relation to the page. In other words, two identical shirts, drawn at different locations on the page may have different internal GlossMark™ patterns, since their starting position varies.
With reference to
Multiple pattern inks can be defined. For example, a pattern consisting of lines of microtext may be defined and used to render the rails at the bottom of the graphic.
As previously noted, specialty imaging techniques may be text based, wherein text is any symbol that is encapsulated as font, or image based. In the conventional specialty imaging techniques, the text based specialty imaging techniques can be realized in real-time, whereas the image-based conventional specialty imaging techniques are performed as an offline process, eliminating any real-time capabilities, because of the computational requirement for images that cannot easily be done inside a Postscript™ dataflow through a digital front end.
In the conventional specialty imaging techniques, pattern inks in page description languages; such as PostScript™ and PDF (Portable Document Format); are typically used for repeating patterns, essentially, the pattern inks correspond to tiles that are regularly laid across the page.
In a typical situation, each pattern ink is a rectangular area that is repeated in both x-direction and y-direction across the page. Subsequent PostScript™ commands ‘expose’ that pattern to the printed page in the desired spots, where the phasing of the pattern ink is constant with respect to the original definition.
For example, by defining two pattern inks that have the same average visual color (say in Lab space) but very distinct toner combinations, variable data (text-based) UV fluorescence specialty imaging can be realized.
In this example, the background is ‘painted’ with one of the pattern inks and the foreground with the other, resulting in a distinct UV fluorescence. In essence, the components of the specialty imaging effect are loaded into distinct pattern inks and subsequently selectively ‘paint’ with these two components.
For an image-based real-time specialty imaging technique, the approach described above needs to be inverted. In other words, the image is loaded into the pattern ink memory. This leads to a single pattern ink.
More specifically, the image based real-time specialty imaging technique uses a specialty imaging font (such as a GlossMark™ font or CorrelationMark™ font) in conjunction with the variable data string and uses the image as the “paint” that is poured through the specialty imaging font.
It is noted that the various features of the process disclosed herein may be implemented using hardware, software, or firmware in any suitable combination.
The image based real-time specialty imaging technique process for processing a print job begins when the print job, including variable data to be used in conjunction therewith, in a page description language is received at a digital front end associated with a printing system. At least one object within the print job includes a specialty imaging font (such as a GlossMark™ font or CorrelationMark™ font) that provides fraud protection for printed materials resulting from the print job.
A pattern color space is created using the actual image of the print job so that such that the specialty imaging font (such as a GlossMark™ font or CorrelationMark™ font) is painted with the pattern color space in a tiling manner. In other words, a data string is created using the specialty imaging font (such as a GlossMark™ font or CorrelationMark™ font) and the specialty imaging font data string is painted with the actual image of the print job.
The image based real-time specialty imaging technique process for processing a print job creates a GlossMark™ or CorrelationMark™, in real-time, by: defining, in the page description language, a variable portion; defining, in the page description language, a fixed portion of the pattern color space.
The fixed portion is the image of the print job; defining, in the page description language, a bounding shape for the pattern color space; and defining, in the page description language, a procedure for painting the variable and fixed portions within the bounding shape, with the image of the print job. The variable portion may be based in part on variable data associated with the print job. The fixed portion (“paint”) is the image of the print job.
The variable data string that is created using the specialty imaging font (such as a GlossMark™ font or CorrelationMark™ font) is painted with the image of the print job, wherein specialty imaging effects in the specialty imaging font is used to create the GlossMark™ or CorrelationMark™, with the image being used as the paint, instead of using two different pattern inks to create the GlossMark™ or CorrelationMark™.
In implementing the image based real-time specialty imaging technique and creating a variable data string, the process does not know, in advance, what the string is going to be used. Additionally, if the size of the font (in pixels) is compared with the size of the image, the selected image is not typically exactly N-lines high and M-characters wide.
In order to circumvent this situation, a single pattern ink cell white space is created on the top and side of the pattern cell, as illustrated in
It is noted that it is not important on which sides the white space is created as long as it is created in both the vertical and horizontal direction since the “pattern” of
The required size of the white space can be calculated from the specialty imaging font's properties. With respect to the vertical direction (320 of
When writing the variable data string with the effect, the ceiling {imageheight/lineheight} is the number of lines of variable data text. If the variable data text string does not extend across this range, the image based real-time specialty imaging technique can (a) fill the remainder with a blank “ ” character or preferably (b) replicate the string.
The horizontal white space (310) can be determined by two different scenarios.
In the first scenario, the image based real-time specialty imaging technique deals with strings that physically fit into image size. An upper bound to the white space would be the image width parameter.
It is noted that the upper bound could be extended by the known string length limitations [variable data field length association].
In a second scenario, the image based real-time specialty imaging technique adds additional white space to the side of the image (essentially the remainder of the page). This is utilized when the expected string is completely unknown.
Once the pattern ink (
An exemplary embodiment of specialty imaging effects in the specialty imaging font being used to create the GlossMark™ or CorrelationMark™, with the image being used as the paint, may be created using the following exemplary
PostScript ™ pseudo-code:
% creates a pattern ink from an image and whitespace
% xpix ypix = pixels lines of image
% xsize ysize = size of image
% xmargin ymargin = white space
<<
/PatternType 1
/PaintType 1
/TilingType 1
/BBox [xmargin ymargin xsize xmargin add
xgap add ysize ymargin add ygap add]
/XStep xsize xgap add
/YStep ysize ygap add
/PaintProc
{
[xsize 0 0 ysize xmargin ymargin] concat
/ImageDict 8 dict def
ImageDict begin
/ImageType 1 def
/Width x def
/Height y def
/BitsPerComponent 8 def
/ImageMatrix [xpix 0 0 -ypix 0 ypix] def
/DataSource imgFile def
/Decode [0 1 0 1 0 1] def
end
COLORSPACE setcolorspace
ImageDict image
imgFile resetfile
}
>>
matrix
makepattern setpattern
% fs = font height
/lines ysize fs div ceiling cvi def
/NeueSecurity-Bold-CR-36 fs selectfont
% write enough lines to create entire image
lines
{
x y fs DEC mul sub moveto
str show
/y y fs add def
} repeat
Variable or personalized data is then written using the pattern ink using CorrelationMark™ or GlossMark™ fonts.
More specifically, in
It is noted, from
Moreover, it is noted that the images turn ‘lighter’ than the image would have been printed in the normal path due to the additional white space. However, the darkness adjustment can be performed in an offline step. In addition, the darkness can be approximately adjustment by using a simple data scale inside the PostScript™ data.
An example of providing specialty marks is the use of color shifting ink, which appears as one color from a certain angle and another color from another angle. Conventionally, color shifting required a special ink or marking material.
To avoid the use of special inks or marking materials, the color shifting result may be realized by creating a pattern of two different colors, wherein each color has a different height and at least one of the colors is created with a very thin line; for example, one pixel width line.
It is noted, as illustrated in
For example, as illustrated in
In one example, the two colors 710 and 730 may be cyan (C) and magenta (M), while the third color 720 may be a composite black such that the color 720 is composed of 100% black (K) and 50% of cyan (C), magenta (M), and yellow (Y). The composite black (third color 720) would have marking material height, H2, which is 2.5 times greater than the marking material height, H1.
It is noted that in the example of
It is further noted that the reverse, where the low color is wider than the high color does not result in a color shift.
It is noted that the color shift may go from black and magenta to black, whereas conventional US currency goes from gold to green.
It is also noted that the low color may be created using a single color component marking material; a single color marking material may be cyan colored marking material (toner), magenta colored marking material (toner), or yellow colored marking material (toner). When the low color is created using a single color component marking material, the background of the color shifting region may be initially rendered with the single color component marking material associated with the low color. Thereafter, the high color can be rendered, in the color shifting region, over the rendered background so as to create the marking material height difference between the low color and the high color.
If the low color is created using more than one single color component marking material, the background of the color shifting region may be initially rendered with the single color component marking materials associated with the low color. Thereafter, the high color can be rendered, in the color shifting region, over the rendered background so as to create the marking material height difference between the low color and the high color.
As noted above, in the area of security printing, documents are protected from copying, forging, and counterfeiting using multiple techniques. Specialty Imaging is one such method of security printing which uses standard materials, such as papers, inks, and/or toners.
MicroGloss (or Artistic Black for VIPP) is a Specialty Imaging technique, which does not require a special tool; e.g., UV light to view and is especially strong in anti-copying.
MicroGloss uses a pair of colors which appear about the same when viewing straight on but show a differential gloss when the image is tilted due to the pile height of the toner or ink.
MicroGloss can also be used to create two micro gloss layers such that only the first micro gloss layer is visible when viewing the image straight on, and the second micro gloss layer is viewable upon tilting the image. It is noted that upon tilting the image the first micro gloss layer is no longer visible.
To create a two layered micro gloss image, one pattern ink with a MicroGloss color pair and variable data is created, and then a second pattern ink with a visibly different MicroGloss color pair but the same variable data is created.
The background of the image is written with the first pattern ink followed by the second layer with the second pattern ink and different variable data.
As illustrated in
As illustrated in
Upon rendering this image, the variable data “SAMPLE” is rendered in Color1-Low 810 and the background is rendered in Color1-High 800; however, where the portions of the variable data “MICRO” overlap the variable data “SAMPLE,” the overlapping portions (within ovals 830) are rendered with Color2-Low, and where the portions of the variable data “MICRO” overlap the background, the overlapping portions (within ovals 840) are rendered with Color2-Hi.
In the example discussed above, the rendered image would include a black hi background with black low “SAMPLE.” The rendered image would also include brown low portions (within ovals 830) where portions of the variable data “MICRO” overlap the variable data “SAMPLE,” and brown hi portions (within ovals 840) where the portions of the variable data “MICRO” overlap the background.
It is noted that hi/low color pair may be dark red or any of the hi/low color pairs identified in co-pending U.S. patent application Ser. No. 13/776,868, filed on Feb. 26, 2013. The entire content of co-pending U.S. patent application Ser. No. 13/776,868 is hereby incorporated by reference.
It is also noted that gloss marks are not scalable because gloss marks require a new font for each font size. Moreover, MicroGloss only works at small sizes.
Thus, it is desirable to realize a scalable gloss effect.
Such a scalable gloss effect can be realized by rendering one region with a relatively smooth surface while rendering another region with a relatively rougher surface. The appearances of the two surfaces are approximately the same at one angle, while giving a gloss effect; e.g., text or graphics; at another angle.
Gloss marks, as shown in
MicroGloss, as illustrated in
As illustrated in
In addition, as illustrated in
To a casual observer the image 1000 will appear as one color and pattern at one angle, while the character “H” can be seen when tilted. It is noted that this gloss effect is scalable.
To create the gloss effect of
As illustrated in
In addition, as illustrated in
To create the gloss effect of
It is noted that a better color match can be realized by adding darker pixels 1230, as illustrated in
Specialty Imaging techniques often rely on creating metameric pattern ink pairs such as UV (ultraviolet)/florescence and IR (infrared). The scalable gloss effect, described above, used a pair of pattern inks that appear about the same at one angle and show a differential gloss effect when tilted.
It is noted that Specialty Imaging quality is judged on the strength of the effect; e.g., UV signal and the hiding between the foreground and background pattern inks. In other words, the test is whether the signal (pattern) that is seen under UV illumination can be seen under ambient illumination. Conventionally, distraction patterns, color compensation, and/or noise have been used to help in hiding, but at the cost of effect (signal) degradation.
As illustrated in
In this example, as illustrated in
The background pattern ink colors may be cyan, magenta, and yellow while the foreground pattern ink colors may be red, blue, white, yellow, and magenta.
As illustrated in
The structure in the bottom half (1320) of the image 1300 is a diamond 1350 and a small square 1360 at its center. The diamond 1350 and small square 1360 structure is in both the foreground and the background.
As illustrated in
To enhance Specialty Imaging quality, color substrates are used in conjunction with Specialty Imaging color matching techniques, wherein at least one of the pattern inks has holes allowing the substrate color to show through.
To enhance quality, the substrate color that shows is matched in the other pattern ink by reproducing the same color via available markers, thereby realizing improved color matching (or better hiding) between the foreground and background pattern inks with little or no degradation in effect.
As noted above, to enhance quality, the substrate color that shows is matched in the other pattern ink by reproducing the same color via available markers.
In realizing this enhancement, as illustrated in
The pattern inks appear almost identical in color but exhibit differential properties in other areas, such as gloss effect.
This allows improved color consistency between the foreground and background pattern inks currently used in UV/florescence, IR, and gloss effects.
In the cases where the substrate does not match a primary marker color in the printer, the appropriate mix of marker materials filling the holes can be used to achieve color consistency.
It is further noted that a comparison of images using holes showing yellow substrate and holes filled with yellow marker verses using holes showing white substrate and holes filled with yellow ink, the gloss effect works in all cases.
However, the color matching is improved when the holes are filled with a marking material, preferably a marking material matching the color of the substrate, by making it more difficult to read the text when the substrate is not tilted.
In summary, the use of a color substrate and matching color marker enhances Specialty Imaging quality. The color of the substrate shows through holes in one pattern ink, while the corresponding holes in another pattern ink are filled with a color marker matching the color of the substrate.
The differential properties between the filled and unfilled holes are used to create Specialty Imaging effects such as gloss and UV.
More specifically, if the holes are filled with a marking material having a color matching the color of the substrate upon which the image is being rendered, a gloss effect is realized.
If the holes are filled with a marking material having a color matching the color of the substrate upon which the image is being rendered, a UV effect is realized by the fluorescents in the recording medium or substrate showing through the holes.
It is further noted that a copier or scanner also views the substrate color and marker filled holes the same for superior anti-copy properties.
For example, if the image illustrated in
At step S20, a rough surface emulation area is created in the electronic image region by electronically painting the electronic image region with an ink pattern that includes a first color and holes, wherein the holes are locations in the ink pattern where the first color is absent.
At step S30, a first image is electronically created in the electronic image region, and at step S40, holes in the first image are electronically painted with a second color to create a smooth surface emulation area in the first image in the electronic image region.
At step S50, a second image is electronically created in the electronic image region, and at step S60, the first color in the second image is electronically replaced with a third color to maintain a rough surface emulation area in the second image in the electronic image region where the first image does not intersect the second image and to maintain a smooth surface emulation area in the first image in the electronic image region where the first image intersects the second image.
The electronic image region resulting from the process, illustrated in
It is noted that
As illustrated in
It is noted that
As illustrated in
Furthermore, as illustrated in
It is noted that
The rendered electronic image region 1500 of
The various examples discussed above result from a pattern ink see-saw scalable gloss effect based on one region having a relatively smooth surface while the second region has a relatively rougher surface. A third region is added composed of a color different than the first two. This third region has a relatively smooth surface where it intersects with the first region and a relatively rougher surface where it intersects with the second.
In the various embodiments described above, with respect to
Furthermore, in the various embodiments described above, with respect to
In the various embodiments described above, with respect to
Correlation mark fonts and a decoding key, such as a reference screen, can be used in providing security features for a printed document.
For example, as illustrated in
The conventional correlation marks in
Moreover, the conventional correlation marks in
However, the conventional correlation mark fonts of
Since the conventional correlation mark fonts are not scalable, a user's font directory may fill up with many choices on a user interface wherein each displayed conventional correlation mark font corresponds to a single size.
Below is an example of the multiple conventional correlation mark fonts needed for the various sizes:
1175979 NeueModern-Bold-CR-18.fnt
1894742 NeueModern-Bold-CR-24.fnt
2628282 NeueModern-Bold-CR-30.fnt
3637473 NeueModern-Bold-CR-36.fnt
4628398 NeueModern-Bold-CR-42.fnt
5987706 NeueModern-Bold-CR-48.fnt
7185321 NeueModern-Bold-CR-54.fnt
8935901 NeueModern-Bold-CR-60.fnt
10385905 NeueModern-Bold-CR-66.fnt
12502884 NeueModern-Bold-CR-72.fnt
It is noted that the above example only shows bolded correlation mark fonts. If italicized correlation mark fonts are desired, a new set of fonts would need to be created.
It is also noted that the conventional correlation mark fonts can be very large (˜12.5 megabytes for the 72 point font), as shown above, causing performance to be slow.
An additional issue with that the conventional correlation mark fonts of
Furthermore, the conventional correlation mark fonts of
Lastly, the conventional correlation mark fonts of
Thus, it is desirable to create a correlation mark font which avoids the issues discussed above.
With respect to creating a correlation mark font, a foreground vector based pattern cell is created or defined. The foreground vector based pattern cell may be defined such that when cells are placed on top, bottom, or on either side of each other, the cells stitch together with no artifacts.
It is noted that the foreground vector based pattern cell may be created by a processor a digital front end of a printing device. The foreground vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
In addition to the foreground vector based pattern cell, a background vector based pattern cell is created or defined. It is noted that the background vector based pattern cell may be created by a processor a digital front end of a printing device. The background vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
It is noted that the background vector based pattern cell may be created by a processor a digital front end of a printing device. The background vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
It is also noted that the background vector is orthogonal to the foreground vector.
The background vector based pattern cell may be defined such that when cells are placed on top, bottom, or on either side of each other, the cells stitch together with no artifacts.
The rendered vector pattern 3710 of
After creating the foreground vector based pattern cell 3700 and the background vector based pattern cell 3600, a foreground pattern ink is created. The foreground pattern ink may be created at a fixed affine transformation. The paint procedure of the foreground pattern ink is defined to paint the vectors with a thin line.
Moreover, after creating the foreground vector based pattern cell 3700 and the background vector based pattern cell 3600, a background pattern ink is created. The background pattern ink may be created at a fixed affine transformation. The paint procedure of the background pattern ink is defined to paint the vectors with a thin line.
Upon creating the background pattern ink and the foreground pattern ink, any size object can be painted with the pattern inks such that the correlation effect appears at the intersection of the pattern inks.
In the embodiment described above, the terms background and foreground are interchangeable. To realize the correlation mark, the relative relationship between the vectors of one cell to the vectors of the other cell is orthogonal.
To create a vector based font based on an existing correlation mark outline font, the existing correlation mark outline font is converted to a Type 3 font, which supports fonts with color spaces. The vector based pattern inks are added outside the character and/or glyph building procedure so that the vector based pattern inks remain at a constant size, position, and orientation.
It is noted that the frequency or the period should match the existing correlation mark outline font so that the existing reference screen remains functional.
The character and/or glyph building procedure is modified to use the vector based pattern inks for any size font such that the outline of the character is the intersection between the foreground vector based pattern ink and the background vector based pattern ink.
The vector based pattern cells are defined outside the font routines that build characters and glyphs so that the vector based pattern cell size never changes. However the size, position, and shear of the font can now change without creating artifacts.
The correlation mark, as shown in
To create a multilayer correlation mark, the above process is followed except that the vectors in the foreground pattern ink are parallel to, but out of phase with, the vectors in the background pattern ink.
The rendered vector pattern 4010 of
After creating the foreground vector based pattern cell 4000 and the background vector based pattern cell 3900, a foreground pattern ink is created. The foreground pattern ink may be created at a fixed affine transformation. The paint procedure of the foreground pattern ink is defined to paint the vectors with a thin line.
Moreover, after creating the foreground vector based pattern cell 4000 and the background vector based pattern cell 3900, a background pattern ink is created. The background pattern ink may be created at a fixed affine transformation. The paint procedure of the background pattern ink is defined to paint the vectors with a thin line.
Upon creating the background pattern ink and the foreground pattern ink, any size object can be painted with the pattern inks such that the correlation effect appears at the intersection of the pattern inks.
In the embodiment described above, the terms background and foreground are interchangeable. To realize the correlation mark, the relative relationship between the vectors of one cell to the vectors of the other cell is parallel to, but out of phase therewith.
The correlation mark, as shown in
The rendered vector pattern 4610 of
It is further noted that the rendered vector pattern 4610 of
After creating the foreground vector based pattern cell 4600 and the background vector based pattern cell 4500, a foreground pattern ink is created. The foreground pattern ink may be created at a fixed affine transformation. The paint procedure of the foreground pattern ink is defined to paint the vectors with a thin line.
Moreover, after creating the foreground vector based pattern cell 4600 and the background vector based pattern cell 4500, a background pattern ink is created. The background pattern ink may be created at a fixed affine transformation. The paint procedure of the background pattern ink is defined to paint the vectors with a thin line.
Upon creating the background pattern ink and the foreground pattern ink, any size object can be painted with the pattern inks such that the correlation effect appears at the intersection of the pattern inks.
In the embodiment described above, the terms background and foreground are interchangeable. To realize the second layer of the correlation mark, the relative relationship between the vectors of one cell to the vectors of the other cell is parallel to, but out of phase therewith and orthogonal to the cells of the first layer.
The correlation mark of the multilayer correlation mark, as shown in
The second layer of the multilayer correlation mark may have the same vector pattern as the first layer of the multilayer correlation mark except that the second layer is rotated 90 or −90 degrees (orthogonal to the first layer).
The second layer can be used by itself and viewed (decoded) with the reference screen used to view the first layer, but the reference screen is rotated 90 or −90 degrees from a position used to view the first layer.
It is further noted that the second layer and the first layer of the multilayer correlation mark can be used in combination; i.e., rendered in a common area.
Also, it is noted that the second layer and the first layer of the multilayer correlation mark can be used to create different alphanumeric characters or special characters.
When used in combination, the first layer of the multilayer correlation mark is generated using a first scalar value and the second layer of the multilayer correlation mark is generated using a second scalar value, wherein the first scalar value is not equal to the second scalar value.
More specifically, the multi-layer correlation mark is a combination of a first layer and a second layer. The first layer has a predefined frequency of lines (vectors). The first layer, as illustrated, has the lines (vectors) set at a first angle.
To enable the multilayer correlation mark, the lines (vectors) in the first layer are printed by applying a first scalar value to a single channel of the printing apparatus. For example, wherein the single channel is a grayscale channel, the first scalar value may be a percentage value between 0 percent and 100 percent of a level of modulation of the single channel. In other words, the first scalar value may be a percentage value of the black pixel (e.g., 100% or the pixel is “ON”) that is printed by the grayscale channel, wherein the percentage value of a white pixel is 0% or the pixel is “OFF.”
The second layer has a predefined frequency of lines (vectors). The predefined frequency of the lines (vectors) of the second layer may be the same as the predefined frequency of lines (vectors) of the first layer. When the predefined frequency is the same for the lines (vectors) of the second layer and the lines (vectors) of the first layer, a single key can be used to decode the first layer and the second layer. The second layer, as illustrated, has the lines (vectors) set at a second angle.
The first angle and the second angle may be different, but as noted above, difference between the first angle and the second angle is 90 degrees so that the layers are orthogonal.
The lines (vectors) in the second layer may be printed by applying a second scalar value to the single channel of the printing apparatus. For example, wherein the single channel is a grayscale channel, the second scalar value may be a percentage value between 0 percent and 100 percent of a level of modulation of the single channel. In other words, the second scalar value may be a percentage value of the black pixel (e.g., 100% or the pixel is “ON”) that is printed by the grayscale channel, wherein the percentage value of a white pixel is 0% or the pixel is “OFF.”
As noted above, the first scalar value is not equal to the second scalar value. It is preferred that the difference of the first scalar value and the second scalar value should be at least 25 percent. For example, if the first scalar value is 50 percent, the second scalar value may be 25 percent or 75 percent. In another example, if the first scalar value is 70 percent, the second scalar value may be 45 percent or 90 percent, and so forth.
When the first and second layers of the multilayer correlation mark are rendered in the same common area, the reference screen may be positioned at a first angle to view the first layer of the multilayer correlation mark and then rotated 90 or −90 degrees to view the second layer of the multilayer correlation mark.
It is also desirable to create a gloss mark font which avoids the issues discussed above.
With respect to creating a gloss mark font, a foreground vector based pattern cell is created or defined. The foreground vector based pattern cell may be defined such that when cells are placed on top, bottom, or on either side of each other, the cells stitch together with no artifacts.
It is noted that the foreground vector based pattern cell may be created by a processor a digital front end of a printing device. The foreground vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
In addition to the foreground vector based pattern cell, a background vector based pattern cell is created or defined. It is noted that the background vector based pattern cell may be created by a processor a digital front end of a printing device. The background vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
It is noted that the background vector based pattern cell may be created by a processor a digital front end of a printing device. The background vector based pattern cell is an electronic representation of an image to be rendered by a printing device.
It is also noted that the background vector is orthogonal to the foreground vector.
The background vector based pattern cell may be defined such that when cells are placed on top, bottom, or on either side of each other, the cells stitch together with no artifacts.
The rendered vector pattern 4310 of
After creating the foreground vector based pattern cell 4300 and the background vector based pattern cell 4200, a foreground pattern ink is created. The foreground pattern ink may be created at a fixed affine transformation. The paint procedure of the foreground pattern ink is defined to paint the vectors with a thick line.
Moreover, after creating the foreground vector based pattern cell 4300 and the background vector based pattern cell 4200, a background pattern ink is created. The background pattern ink may be created at a fixed affine transformation. The paint procedure of the background pattern ink is defined to paint the vectors with a thick line.
Upon creating the background pattern ink and the foreground pattern ink, any size object can be painted with the pattern inks such that the gloss effect appears at the intersection of the pattern inks.
In the embodiment described above, the terms background and foreground are interchangeable. To realize the gloss effect, the relative relationship between the vectors of one cell to the vectors of the other cell is orthogonal.
To create a vector based font based on an existing Gloss Mark™ outline font, the existing Gloss Mark™ outline font is converted to a Type 3 font, which supports fonts with color spaces. The vector based pattern inks are added outside the character and/or glyph building procedure so that the vector based pattern inks remain at a constant size, position, and orientation.
The character and/or glyph building procedure is modified to use the vector based pattern inks for any size font such that the outline of the character is the intersection between the foreground vector based pattern ink and the background vector based pattern ink.
The vector based pattern cells are defined outside the font routines that build characters and glyphs so that the vector based pattern cell size never changes. However the size, position, and shear of the font can now change without creating artifacts.
More specifically, the actual rendered characters “B” (4410) and “D” (4420) would not be visible when viewing the image straight on, but would be visible when viewing the image at an angle (image tilted).
As illustrated in the first row of
The dashed lines indicate that the pattern ink is defined, but not rendered. At this point in the process the size pattern ink is fixed.
In the next row of
In the third row of
The set of vectors 4830 for the gloss mark is orthogonal to the set of vectors 4810 for the gloss mark, while the set of vectors 4820 for the correlation mark is parallel, but out of phase with, to the set of vectors 4840 for the correlation mark.
The dashed box 4835 of
In the fourth row of
In the fifth row of
In summary, a method for rendering a correlation mark pattern on a recording medium electronically creates a first vector based pattern cell having first vectors; electronically creates a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being parallel to the second vectors of the second vector based pattern cell and the first vectors of the first vector based pattern cell being out of phase with the second vectors of the second vector based pattern cell; electronically creates a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thin lines; electronically creates a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thin lines; electronically paints, using the second electronic pattern ink, a background of a first electronic image region; electronically paints, using the first electronic pattern ink, a foreground in the first electronic image region; and renders, using marking materials, the first electronic image region on the recording medium to create a first rendered image area such that a first pattern in the first rendered image area is only visible when viewing the first rendered image area through a reference screen, the first pattern in the first rendered image area being not visible when viewing the first rendered image area without the reference screen.
The method may further electronically create a third vector based pattern cell having third vectors, the third vector based pattern cell being orthogonal to the first vector based pattern cell; electronically create a fourth vector based pattern cell having fourth vectors, the third vectors of the third vector based pattern cell being parallel to the fourth vectors of the fourth vector based pattern cell and the third vectors of the third vector based pattern cell being out of phase with the fourth vectors of the fourth vector based pattern cell, the fourth vector based pattern cell being orthogonal to the second vector based pattern cell; electronically create a third electronic pattern ink, using the third vector based pattern cell, the third electronic pattern ink having an electronic painting procedure for the third vectors in the third vector based pattern cell defining an electronic painting of the third vectors as thin lines; electronically create a fourth electronic pattern ink, using the fourth vector based pattern cell, the fourth electronic pattern ink having an electronic painting procedure for the fourth vectors in the fourth vector based pattern cell defining an electronic painting of the fourth vectors as thin lines; electronically paint, using the fourth electronic pattern ink, a background of a second electronic image region; electronically paint, using the third electronic pattern ink, a foreground in the second electronic image region; and render, using marking materials, the second electronic image region on the recording medium to create a second rendered image area such that a second pattern in the second rendered image area is only visible when viewing the second rendered image area through the reference screen and an orientation of the reference screen is orthogonal to an orientation of the reference screen when the first pattern in the first rendered image area is only visible, the second pattern in the second rendered image area being not visible when viewing the second rendered image area without the reference screen.
The first rendered image area and the second rendered image area may be the same rendered image area.
The foreground of the electronic image region may be cleared of the second electronic pattern ink before the foreground of the electronic image region is electronically painted using the first electronic pattern ink.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
A method for rendering a correlation mark pattern on a recording medium electronically creates a first vector based pattern cell having first vectors; electronically creates a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being orthogonal to the second vectors of the second vector based pattern cell; electronically creates a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thin lines; electronically creates a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thin lines; electronically paints, using the second electronic pattern ink, a background of an electronic image region; electronically paints, using the first electronic pattern ink, a foreground in the electronic image region; and renders, using marking materials, the electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when viewing the rendered image area through a reference screen, the pattern in the rendered image area being not visible when viewing the rendered image area without the reference screen.
The foreground of the electronic image region may be cleared of the second electronic pattern ink before the foreground of the electronic image region is electronically painted using the first electronic pattern ink.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
A system for rendering a correlation mark pattern on a recording medium includes a processor for electronically creating a first vector based pattern cell having first vectors; the processor electronically creating a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being parallel to the second vectors of the second vector based pattern cell and the first vectors of the first vector based pattern cell being out of phase with the second vectors of the second vector based pattern cell; the processor electronically creating a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thin lines; the processor electronically creating a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thin lines; the processor electronically painting, using the second electronic pattern ink, a background of an electronic image region; the processor electronically painting, using the first electronic pattern ink, a foreground in the electronic image region; and a print engine for rendering, using marking materials, the electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when viewing the rendered image area through a reference screen, the pattern in the rendered image area being not visible when viewing the rendered image area without the reference screen.
The system may further electronically create a third vector based pattern cell having third vectors, the third vector based pattern cell being orthogonal to the first vector based pattern cell; electronically create a fourth vector based pattern cell having fourth vectors, the third vectors of the third vector based pattern cell being parallel to the fourth vectors of the fourth vector based pattern cell and the third vectors of the third vector based pattern cell being out of phase with the fourth vectors of the fourth vector based pattern cell, the fourth vector based pattern cell being orthogonal to the second vector based pattern cell; electronically create a third electronic pattern ink, using the third vector based pattern cell, the third electronic pattern ink having an electronic painting procedure for the third vectors in the third vector based pattern cell defining an electronic painting of the third vectors as thin lines; electronically create a fourth electronic pattern ink, using the fourth vector based pattern cell, the fourth electronic pattern ink having an electronic painting procedure for the fourth vectors in the fourth vector based pattern cell defining an electronic painting of the fourth vectors as thin lines; electronically paint, using the fourth electronic pattern ink, a background of a second electronic image region; electronically paint, using the third electronic pattern ink, a foreground in the second electronic image region; and render, using marking materials, the second electronic image region on the recording medium to create a second rendered image area such that a second pattern in the second rendered image area is only visible when viewing the second rendered image area through the reference screen and an orientation of the reference screen is orthogonal to an orientation of the reference screen when the first pattern in the first rendered image area is only visible, the second pattern in the second rendered image area being not visible when viewing the second rendered image area without the reference screen.
The first rendered image area and the second rendered image area may be the same rendered image area.
The foreground of the electronic image region may be cleared of the second electronic pattern ink before the foreground of the electronic image region is electronically painted using the first electronic pattern ink.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
A system for rendering a correlation mark pattern on a recording medium includes a processor for electronically creating a first vector based pattern cell having first vectors; the processor electronically creating a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being orthogonal to the second vectors of the second vector based pattern cell; the processor electronically creating a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thin lines; the processor electronically creating a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thin lines; the processor electronically painting, using the second electronic pattern ink, a background of an electronic image region; the processor electronically painting, using the first electronic pattern ink, a foreground in the electronic image region; and a print engine for rendering, using marking materials, the electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area, the pattern in the rendered image area corresponding to the foreground in the electronic image region, is only visible when viewing the rendered image area through a reference screen, the pattern in the rendered image area being not visible when viewing the rendered image area without the reference screen.
The foreground of the electronic image region may be cleared of the second electronic pattern ink before the foreground of the electronic image region is electronically painted using the first electronic pattern ink.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
A method for rendering a gloss effect image pattern on a recording medium electronically creates a first vector based pattern cell having first vectors; electronically creates a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being orthogonal to the second vectors of the second vector based pattern cell; electronically creates a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thick lines; electronically creates a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thick lines; electronically paints, using the second electronic pattern ink, a background of an electronic image region; electronically paints, using the first electronic pattern ink, a foreground in the electronic image region; and renders, using marking materials, the electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when a relative angle between an observer's viewing angle and an angle of illuminating the recording medium by an illumination source is a first angle, the pattern in the rendered image area being not visible when the relative angle between the observer's viewing angle and the angle of illuminating the recording medium by the illumination source is a second angle, the second angle being not equal to the first angle.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
The pattern in the rendered image area may be an alphanumeric character.
A system for rendering a gloss effect image pattern on a recording medium includes a processor for electronically creating a first vector based pattern cell having first vectors; the processor electronically creating a second vector based pattern cell having second vectors, the first vectors of the first vector based pattern cell being orthogonal to the second vectors of the second vector based pattern cell; the processor electronically creating a first electronic pattern ink, using the first vector based pattern cell, the first electronic pattern ink having an electronic painting procedure for the first vectors in the first vector based pattern cell defining an electronic painting of the first vectors as thick lines; the processor electronically creating a second electronic pattern ink, using the second vector based pattern cell, the second electronic pattern ink having an electronic painting procedure for the second vectors in the second vector based pattern cell defining an electronic painting of the second vectors as thick lines; the processor electronically painting, using the second electronic pattern ink, a background of an electronic image region; the processor electronically painting, using the first electronic pattern ink, a foreground in the electronic image region; and a print engine for rendering, using marking materials, the electronic image region on the recording medium to create a rendered image area such that a pattern in the rendered image area is only visible when a relative angle between an observer's viewing angle and an angle of illuminating the recording medium by an illumination source is a first angle, the pattern in the rendered image area being not visible when the relative angle between the observer's viewing angle and the angle of illuminating the recording medium by the illumination source is a second angle, the second angle being not equal to the first angle.
The pattern in the rendered image area may correspond to the foreground in the electronic image region. The pattern in the rendered image area may correspond to the background in the electronic image region.
The pattern in the rendered image area may be an alphanumeric character.
It will be appreciated that several of the above-disclosed embodiments and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the description above and the following claims.
Patent | Priority | Assignee | Title |
10009503, | May 11 2017 | Xerox Corporation | Overlapped vector patterned two layer correlation marks |
10313556, | Jan 16 2018 | Xerox Corporation | Method and system for production quality gloss marks |
10452964, | Aug 31 2018 | Xerox Corporation | Hidden bar code system via vector pattern correlation marks |
10791241, | May 28 2019 | Xerox Corporation | Vector pattern macro gloss |
10805494, | Dec 08 2019 | Xerox Corporation | Mirror of gloss effect image of gloss mark rendered on backside of medium |
10812675, | Aug 26 2019 | Xerox Corporation | Verifying document security using an infrared VOID pantograph mark |
10855878, | Mar 23 2018 | Xerox Corporation | Segmentation hiding layer for vector pattern correlation marks |
11006021, | Dec 31 2019 | Xerox Corporation | Non-copy correlation mark |
11032441, | Apr 16 2019 | Xerox Corporation | Watermark printed on matching color media forming metameric pair |
11190668, | Jun 25 2019 | Ricoh Company, Ltd. | Image processing apparatus, printing system, method for embedding latent image, and storage medium |
11288764, | Jul 01 2019 | Digimarc Corporation | Watermarking arrangements permitting vector graphics editing |
12073487, | Jul 01 2019 | Digimarc Corporation | Watermarking arrangements permitting vector graphics editing |
ER3037, | |||
ER5753, |
Patent | Priority | Assignee | Title |
4112189, | Oct 10 1974 | Tarkett AB | Process for multi-color valley printing and embossing of flooring material and the like and flooring material made by said process |
4703318, | Mar 30 1984 | LG Electronics Inc | Character-based monochromatic representation of color images |
5286286, | May 16 1991 | Xerox Corporation | Colorless fast-drying ink compositions for printing concealed images detectable by fluorescence |
5734752, | Sep 24 1996 | Xerox Corporation | Digital watermarking using stochastic screen patterns |
6172767, | Nov 15 1996 | MINOLTA CO , LTD | Multi-color image forming apparatus and multi-color image forming method |
6212805, | Jan 06 1996 | Contra Vision Limited | Panel with light permeable images |
7092128, | May 30 2002 | Xerox Corporation | Application of glossmarks for graphics enhancement |
7324241, | Sep 29 2004 | Xerox Corporation | Variable data differential gloss images |
7391529, | Jan 15 2003 | Xerox Corporation | Apparatus and method for managing and using reusable document components during the process of dynamic document construction |
7580153, | Dec 21 2005 | Xerox Corporation | Printed visible fonts with attendant background |
7639400, | Feb 13 2007 | Xerox Corporation | Glossmark image simulation with application of background modified gloss effect image |
7852515, | Jun 05 2007 | Xerox Corporation | Infrared encoding for embedding multiple variable data information collocated in printed documents |
7922209, | Dec 22 2006 | Hewlett-Packard Development Company, L.P. | Metamerism-based security patterns |
8064100, | Dec 05 2008 | Xerox Corporation | Watermark encoding and detection using narrow band illumination |
8098880, | Aug 31 2007 | Xerox Corporation | System and method for the generation of multi-layer correlation-based digital watermarks |
8111432, | Apr 21 2008 | Xerox Corporation | Infrared watermarking of photographic images by matched differential black strategies |
8147932, | May 04 2005 | SICPA HOLDING SA | Black-to-color shifting security element |
8310718, | Mar 16 2009 | Xerox Corporation | High resolution scalable gloss effect |
8355167, | Feb 25 2009 | Xerox Corporation | Method and apparatus for using pattern color space in print job processing |
8675259, | Nov 23 2011 | Xerox Corporation | Double layer glossmark image through dynamic patterninks |
8797602, | Mar 23 2011 | Xerox Corporation | UV and IR specialty imaging methods and systems |
8894098, | Feb 27 2009 | AUTHENTX, INC | Security device |
8896886, | Feb 26 2013 | Xerox Corporation | Color differential gloss security printing |
9082068, | May 06 2014 | Xerox Corporation | Color shift printing without using special marking materials |
9083896, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9085190, | Dec 17 2012 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL | Synthesis of authenticable halftone images with non-luminescent halftones illuminated by an adjustable luminescent emissive layer |
9088736, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9100592, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9106847, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9118870, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9148546, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9193201, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9237253, | Sep 18 2013 | Xerox Corporation | System and method for producing color shifting or gloss effect and recording medium with color shifting or gloss effect |
9264575, | May 20 2015 | Xerox Corporation | Real time correlation mark images for low memory devices |
9282215, | Feb 25 2014 | Xerox Corporation | Security mark with copyable and non-copyable elements |
20020160194, | |||
20030170471, | |||
20030184613, | |||
20040071365, | |||
20050067497, | |||
20050109850, | |||
20070017990, | |||
20070139680, | |||
20070139681, | |||
20070200002, | |||
20070201116, | |||
20070201720, | |||
20070262579, | |||
20070281140, | |||
20080080000, | |||
20080122217, | |||
20080122218, | |||
20080134920, | |||
20080299333, | |||
20080301767, | |||
20080302263, | |||
20090072185, | |||
20090207433, | |||
20090262400, | |||
20100128321, | |||
20100214595, | |||
20100238513, | |||
20110127331, | |||
20110191670, | |||
20110205569, | |||
20120140290, | |||
20120311905, | |||
20130113200, | |||
20130128319, | |||
20130161939, | |||
20140085392, | |||
20150077803, | |||
20150077804, | |||
20150077805, | |||
20150077806, | |||
20150077807, | |||
20150077810, | |||
20150079357, | |||
20150116321, | |||
20150224791, | |||
20150224803, | |||
20150229803, | |||
CA2788413, | |||
EP258716, | |||
WO2011091969, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 02 2016 | Xerox Corporation | (assignment on the face of the patent) | / | |||
May 02 2016 | CHAPMAN, EDWARD N | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038436 | /0573 | |
Nov 07 2022 | Xerox Corporation | CITIBANK, N A , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062740 | /0214 | |
May 17 2023 | CITIBANK, N A , AS AGENT | Xerox Corporation | RELEASE OF SECURITY INTEREST IN PATENTS AT R F 062740 0214 | 063694 | /0122 | |
Jun 21 2023 | Xerox Corporation | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 064760 | /0389 | |
Nov 17 2023 | Xerox Corporation | JEFFERIES FINANCE LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 065628 | /0019 | |
Feb 06 2024 | Xerox Corporation | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 066741 | /0001 | |
Feb 06 2024 | CITIBANK, N A , AS COLLATERAL AGENT | Xerox Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760 0389 | 068261 | /0001 |
Date | Maintenance Fee Events |
Feb 23 2017 | ASPN: Payor Number Assigned. |
Sep 30 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 24 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 04 2020 | 4 years fee payment window open |
Oct 04 2020 | 6 months grace period start (w surcharge) |
Apr 04 2021 | patent expiry (for year 4) |
Apr 04 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 04 2024 | 8 years fee payment window open |
Oct 04 2024 | 6 months grace period start (w surcharge) |
Apr 04 2025 | patent expiry (for year 8) |
Apr 04 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 04 2028 | 12 years fee payment window open |
Oct 04 2028 | 6 months grace period start (w surcharge) |
Apr 04 2029 | patent expiry (for year 12) |
Apr 04 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |