A method of establishing personalized limits on a search responsive to a key word query in an enterprise search system is described that includes receiving an object types access history for a particular user. Applying this method, the object types access history includes records of object types selected from search results returning multiple object types and records of object types selected via interfaces other than search results. The method continues with determining and storing in computer readable memory a personalized scope of object types. The personalized scope of object types sets a limit on object types initially returned by an enterprise search system for the particular user in response to key word queries by the particular user that do not specify object types to search.
|
1. A method of initializing personalized limits for a new user on a key word based search responsive to a key word query in an enterprise search system, including:
receiving a relationship-interest graph for users in an enterprise search system that searches a database of object types, including multiple record instances of the object types;
identifying similar users to a new user in the relationship-interest graph; and
determining and storing in computer readable memory a personalized display priority of object types for the new user using previously established personalized display priorities of object types of the similar users, wherein said determining includes calculating scores for object types in the previously established personalized display priorities of object types of the similar users and determining object types in the personalized display priority of object types for the new user based on the calculated scores;
wherein the relationship-interest graph represents relationships between the new user and other users as relationship links connecting the new and other users, and represents interests shared by the new user and the other users as interest links connecting the new and other users to fielded records of object types;
the enterprise search system receiving a user's search request that does not specify object types to search, and returning search results with object types in an order based on the user's personalized display priorities of the object types.
13. A non-transitory computer readable medium storing computer instructions to initialize personalized limits for a new user on a key word based search responsive to a key word query in an enterprise search system, comprising actions of:
receiving a relationship-interest graph for users in an enterprise search system that searches a database of object types, including multiple record instances of the object types;
identifying similar users to a new user in the relationship-interest graph; and
determining and storing in computer readable memory a personalized display priority of object types for the new user using previously established personalized display priorities of object types of the similar users, wherein said determining includes calculating scores for object types in the previously established personalized display priorities of object types of the similar users and determining object types in the personalized display priority of object types for the new user based on the calculated scores;
wherein the relationship-interest graph represents relationships between the new user and other users as relationship links connecting the new and other users, and represents interests shared by the new user and the other users as interest links connecting the new and other users to fielded records of object types;
the enterprise search system receiving a user's search request that does not specify object types to search, and returning search results with object types in an order based on the user's personalized display priorities of the object types.
7. A computer system for initializing personalized limits for a new user on a key word based search responsive to a key word query in an enterprise search system, the computer system including one or more processors configured to perform operations including:
receiving a relationship-interest graph for users in an enterprise search system that searches a database of object types, including multiple record instances of the object types;
identifying similar users to a new user in the relationship-interest graph; and
determining and storing in computer readable memory a personalized display priority of object types for the new user using previously established personalized display priorities of object types of the similar users, wherein said determining includes calculating scores for object types in the previously established personalized display priorities of object types of the similar users and determining object types in the personalized display priority of object types for the new user based on the calculated scores;
wherein the relationship-interest graph represents relationships between the new user and other users as relationship links connecting the new and other users, and represents interests shared by the new user and the other users as interest links connecting the new and other users to fielded records of object types;
the enterprise search system receiving a user's search request that does not specify object types to search, and returning search results with object types in an order based on the user's personalized display priorities of the object types.
2. The method of
determining and storing in computer readable memory a personalized ordering of object types for the new user using the personalized orderings of object types of the similar users;
wherein the personalized ordering of object types sets an order in which to present search results from the search performed by the enterprise search system.
3. The method of
4. The method of
5. The method of
ranking object types for at least the similar users in response to key word queries that do not specify object types to search, including object types not in the personalized display priorities of object types for the similar users; and
combining the object type ranks for the object types of the similar users in the relationship-interest graph to produce an aggregate rank for each object type and using the aggregate rank to determine the personalized display priority of object types for new user.
6. The method of
re-ranking object types for the similar users in the relationship-interest graph; and
including object types whose summed ranks are above a minimum threshold in the personalized display priority of object types and the personalized ordering of object types for the new user.
8. The computer system of
determining and storing in computer readable memory a personalized ordering of object types for the new user using the personalized orderings of object types of the similar users;
wherein the personalized ordering of object types sets an order in which to present search results from the search performed by the enterprise search system.
9. The computer system of
10. The computer system of
11. The computer system of
ranking object types for at least the similar users in response to key word queries that do not specify object types to search, including object types not in the personalized display priorities of object types for the similar users; and
combining the object type ranks for the object types of the similar users in the relationship-interest graph to produce an aggregate rank for each object type and using the aggregate rank to determine the personalized display priority of object types for new user.
12. The computer system of
re-ranking object types for the similar users in the relationship-interest graph; and
including object types whose summed ranks are above a minimum threshold in the personalized display priority of object types and the personalized ordering of object types for the new user.
14. The non-transitory computer readable medium of
determining and storing in computer readable memory a personalized ordering of object types for the new user using the personalized orderings of object types of the similar users;
wherein the personalized ordering of object types sets an order in which to present search results from the search performed by the enterprise search system.
15. The non-transitory computer readable medium of
16. The non-transitory computer readable medium of
17. The non-transitory computer readable medium of
ranking object types for at least the similar users in response to key word queries that do not specify object types to search, including object types not in the personalized display priorities of object types for the similar users; and
combining the object type ranks for the object types of the similar users in the relationship-interest graph to produce an aggregate rank for each object type and using the aggregate rank to determine the personalized display priority of object types for new user.
18. The non-transitory computer readable medium of
re-ranking object types for the similar users in the relationship-interest graph; and
including object types whose summed ranks are above a minimum threshold in the personalized display priority of object types and the personalized ordering of object types for the new user.
|
This application is a Divisional Application of U.S. patent application Ser. No. 13/465,851, entitled, “PERSONALIZING SCOPING AND ORDERING OF OBJECT TYPES FOR SEARCH,” filed on 7 May 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/527,509, entitled, “System for Personalized Scoping and Ordering of Entities for Search,” filed on 25 Aug. 2011. The provisional application is hereby incorporated by reference for all purposes.
The technology disclosed relates to establishing limits on object types initially returned in response a key word search in an enterprise search system that includes multiple object types. In particular, it establishes object type scope limits for either new or experienced users and applies the scope limits to searches that do not specify the object types to return.
Enterprise search systems often return results in response to key word queries that include multiple object types in the results. Current systems search all available object types to produce multiple results that match the key word query, unless the user specifies object types to search. This degrades search performance, returns irrelevant results and requires extra resources. Furthermore, search systems may return multiple object types in an order that has an arbitrary relationship to user interest, such as alphabetical by object type name.
An opportunity arises to improve search result presentation according to user preferences and user interest. An opportunity also arises to reduce the cost of searching object types of interest. More relevant results may be presented before less relevant results at less cost.
In one implementation, a method of establishing personalized limits on a search responsive to a key word query in an enterprise search system is described that includes receiving an object types access history for a particular user. Applying this method, the object types access history includes records of object types selected from search results returning multiple object types and records of object types selected via interfaces other than search results. The method continues with determining and storing in computer readable memory a personalized scope of object types. The personalized scope of object types sets a limit on object types initially returned by an enterprise search system for the particular user in response to key word queries by the particular user that do not specify object types to search.
Particular aspects of one or more implementations of the subject matter described in this specification are set forth in the drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
The following detailed description is made with reference to the figures. Preferred implementations are described to illustrate the present technology, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows.
Technology is described herein for establishing personalized object type scope limits on a key word query in an enterprise search system that includes multiple data object types, where the search does not specify the object types to return. Both a personalized scope of object types and personalized ordering of object types returned are described. The technology is described within an environment (
In one implementation, the personalization engine (
The scope and ordering determining module determines the scope of object types and the ordering of object types for the particular user using the information in the object types access history. The scope of object type components decides which object types to return in response to a search query for the particular user, when the search query does not specify the object types to return. The ordering of object type components decides the order in which search results are presented. The scope of object types and the ordering of object types for the particular user are stored in scope files.
A new user does not have an object types access history from which to create a personalized scope of object types and a personalized ordering of object types. In some implementations, an initializing method uses a relationship-interest graph to identify similar users. The relationship-interest graph represents relationships among users in the organization and interests of the users. The initializing method initializes the personalized scope of object types and the personalized ordering of object types for the new user using the personalized scopes of object types and the personalized ordering of object types of the similar users.
During operation, users interact with their computing devices 120, such as smartphones, tablets, laptops or desktop computers to enter search queries, receive search results via the search interface 122 or to access information other than search results via the non-search interface 124. The user computing device 120 and the personalization engine 140 each include memory for storage of data and software applications, a processor for accessing data and executing applications, and components that facilitate communication over the communication network 110. The personalization engine 140 defines the personalized scope of object types to return, at least initially, in response to searching in a multi-tenant database 130. A user optionally can request a further search or specify a search of all available object types, to override the personalized scope of objection types.
The personalization engine 140 writes and reads log files 150, aggregation files 160 and scope files 170. The log files 150 may correspond to one log file per user, one log file for multiple users, or multiple log files for one user. The aggregation files 160 may correspond to one aggregation file per user, one aggregation file for multiple users, or multiple aggregation files for one user. The scope files 170 may correspond to one scope file per user, one scope file for multiple users, or separate scope and ordering files for one user.
The user click logging module 210 logs user clicks made via the search interface 122 within the example environment 100. The user clicks may be made on search results returned in response to a key word query in the multi-tenant database 130. The user clicks may also be made on objects other than search results. When a user clicks on a search result, the click is logged as a search result click. In some implementations, only the object type selected as a result of the user click is logged. When a user clicks on an object other than a search result, the click is logged as a non-search result click, in some instances logging only the object type selected. The user click logging module 210 saves records of clicks in the log files 150. A record for a user click includes at least the object type selected from search results. It may further include identification of the user, identification of the organization associated with the user and/or identification of the click type. The record may also include the query. For object types accessed by the user via the non-search interface 124, the record includes at least the object type and may include a URL (uniform resource locator) for a reference to an Internet or other network resource that is associated with the user click, a timestamp and/or identification of the click type. The records in log files 150 may be organized by object types, by user, by organization associated with the user, or by time of processing.
In one implementation, a separate log file records user clicks by one user. In alternative implementations, records of user clicks by more than one user may be kept in one log file. Furthermore, different types of records for one user may be kept in different log files. For example, records of search result clicks are kept in one log file for a user while records of non-search result clicks for the same user are kept in a different log file. Thus the log files 150 may correspond to one log file per user, one log file for multiple users, or multiple log files for one user.
The user count calculating module 220 calculates counts of search result clicks and counts of non-search result clicks from the records of user clicks in the log files 150. Both counts of search result clicks and counts of non-search result clicks are calculated on an occasional or a periodic basis such as a daily, a weekly or other basis. Both counts of search result clicks and counts of non-search result clicks are calculated for each object type and for each user.
The user record aggregating module 230 updates aggregation files 160 with both counts of search result clicks and counts of non-search result clicks that are calculated on an occasional or periodic basis. The aggregation files 160 accumulate the history of both types of counts for an aggregation period longer than the period for which counts are calculated. The aggregation files 160 accumulate the history for an aggregation period. The aggregation period may be fixed or tunable. A circular buffer may be used for updating aggregation files 160. For example, if the aggregation period is 90 workdays, then counts of user clicks from the first (earliest) workday are removed or overwritten and counts of user clicks from the ninety-first workday (latest) replace them. Aggregation periods of 15-120 workdays, or 30-90 workdays or about 30, 45, 60, 75 or 90 workdays may be used. A workday may be any day in a calendar week when any user uses or is expected to use the enterprise search system.
In one implementation, a separate aggregation file keeps counts of user clicks by one user. In alternative implementations, counts of user clicks by more than one user may be kept in one aggregation file. Furthermore, different types of counts for one user may be kept in different aggregation files. For example, counts of search result clicks are kept in one aggregation file for a user while counts of non-search result clicks for the same user are kept in a different aggregation file. Thus the aggregation files 160 may correspond to one aggregation file per user, one aggregation file for multiple users, or multiple aggregation files for one user.
In an alternative implementation, records of object types in the log files 150 and records of object types in the aggregation files 160 may be merged into one new file. In that case, the user click logging module 210, the user count calculating module 220, and the user record aggregating module 230 may access the same new file.
The scope and ordering determining module 240 determines the scope of object types and the ordering of object types for a particular user using the information in the aggregation files 160. The scope of object types decides which object types to search given a search query for the particular user. The ordering of object types decides the order in which search results from the search query are presented.
In general, the scope and ordering determining module 240 saves the scope of object types and the ordering of object types for a particular user in scope files 170. In one implementation, a separate scope file keeps the scope of object types and the ordering of object types for one user. In alternative implementations, the scope and the ordering information for more than one user may be kept in one scope file. Furthermore, the scope information for one user may be kept in one scope file while the ordering information for the same user may be kept in a separate ordering file. Thus the scope files 170 may correspond to one scope file per user, one scope file for multiple users, or separate scope and ordering files for one user.
A record for a user click includes the object type selected or accessed, and may optionally include the identification of the user, the identification of the organization associated with the user, the signal type for a user click on search results or on objects other than search results, a URL (uniform resource locator) for a reference to an Internet or other network resource that is associated with the user click, and a timestamp. The record may also include one or more key words in a key word query. The records in log files 150 may be organized by object types, by user, by organization associated with the user, by time of processing or by other criteria.
The system calculates counts 320 from the object types access history, including counts from search result clicks and counts from non-search result clicks, using the records of user clicks in the log files 150. Counts of search result clicks and counts of non-search result clicks are calculated on a periodic basis such as a daily basis, at least a weekly basis or a monthly basis. These counts are calculated by object type and user.
A threshold on the count of user clicks is pre-defined for each object type, reducing noise and increasing stability of the resultant personalized scope of object types and the personalized ordering of object types for the particular user. An object type for which the count of user clicks for the particular user is below the pre-defined threshold may be excluded from the resultant personalized scope of object types and the personalized ordering of object types for the particular user.
To incorporate changing user preferences over time, a weighting function can be used that weights newer user clicks on object types by the particular user with larger weights than older user clicks by the particular user. A first weighting function is used for object types selected among the object types returned in the search results. A second weighting function is used for object types available via interfaces other than search results. The first weighting function and the second weighting function may adjust the personalized ordering of object types for the particular user.
Optionally, the system updates an object types access history 330 with both counts of search result clicks and counts of non-search result clicks on the same periodic basis as for calculating the counts. The object types access history includes records of object types selected from search results returning multiple object types via the search interface 122 and records of object types other than search results accessed by the particular user via the non-search interface 124. Counts from the object types access history are saved in aggregation files 160. As described above, the aggregation files 160 may correspond to one aggregation file per user, one aggregation file for multiple users, or multiple aggregation files for one user.
The system receives object types access history 340, either from log files or aggregated counts, and determines a personalized object types scope for a particular user 350. It optionally includes determining a personalized object type ordering. The object types access history includes records of object types selected from search results returning multiple object types via the search interface 122 and records of object types accessed by the particular user via the non-search interface 124. These records are used to determine the scope and/or ordering of object types returned. The personalized scope of object types sets a limit on initial searching performed by an enterprise search system for the particular user in response to key word queries by the particular user. The personalized ordering of object types sets an order in which to present search results.
There are many ways in which scores can be calculated for determining the personalized scope and ordering of object types for a user that has their own object types access history. For instance, a simple count of object type selections within a predetermined time period could be used. Weighted counts could be calculated, with the same or different weights applied to selection among search results and to selection among object types via different interface that does not present search results. Time weighted counts could be used, either applying predetermined weights to a circular buffer of periodic counts, or using a form of moving average, such as a simple moving average, cumulative moving average, weighted moving average or exponential moving average.
Other implementations may differentiate between and separately code a wider variety of user actions. For instance, selections of object types not initially visible on the screen (sometimes called below the fold) may be considered different signals than selections of object types that were initially visible (above the fold.) Call these signals S1 and S2, for instance. Similarly, object types selected from a work queue or work flow may be considered different signals than object types selected by browsing a more general population. Say, signals S3 and S4. The different signals, such as S1-S4, can be combined by summing weighted signal counts using any of the counting approaches identified. If the corresponding weights are C1-C4, the signal weight for a first object type O1 may be calculated as:
O1=C1*S1+C2*S2+C3*S3+C4*S4, and so on.
The weights may be tunable constants. In some implementations, signals may be divided into tiers, with the first tier being the primary determinant and second or subsequent tiers used as tie breakers. For instance:
Tier 1 score=C1*S1+C2*S2+C3*S3
Tier 2 score=C4*S4
Among the access to object types that might be separately weighted are the most recently selected object types, the most frequently selected object types, interest in records created by the particular user, and records assigned for action by the particular user.
Automatically assigned object types may optionally be combined with one or more object types that the particular user configures to be within the user's personalized scope of object types.
From a corporate social network, the personalized scope of object types may further take into accounts object types within the personalized scopes of similar users, object types that the particular user follows, and object types to which the particular user has posted. Similar users are further discussed below, in connection with
In some implementations, the results of an initial search within the personalized scope of object types can automatically trigger an expanded search. For instance, when a search within the personalized scope of a particular user does not find any results, the search can be automatically expanded to additional object types or all object types available in the multi-tenant database. Or, the user interface can indicate that no results were found and invite the user to select an expanded search scope that includes either additional object types or all object types available.
With Step 360, the system stores the personalized scope of object types and the personalized ordering of object types in scope files 170. As described above, the scope files 170 may correspond to one scope file per user, one scope file for multiple users, or separate scope and ordering files for one user. The scope files 170 may reside in the multi-tenant database 130, in the memory of the user computing device 120 or another convenient location.
In addition to determining personalized scopes and ordering of object types for established users, the technology described can be used to determine a personalized scope and ordering of object types for a new user. A new user is one who has too little object types access history to effectively create a personalized scope of object types and a personalized ordering of object types based on the user's experience. A user can be considered a new user based on the volume of object types access history available, the number of days or workdays since they enrolled in the system or since they completed training, a supervisor's determination or a user's self selection of whether the system should treat them as a new user.
Some implementations of establishing a personalized scope and ordering of object types for a new user include identifying similar users to the new user based on a relationship-interest graph. The relationship-interest graph represents the relationships between users in the organization and also the interests that users have in multiple types of records or particular records. Types of records may, for example, be accounts, business deals, work items, contacts, opportunities, leads etc.
The system identifies similar users to the new user in the relationship-interest graph 520. Some implementations of identifying similar users are illustrated in
A relationship in the relationship-interest graph is established by the action of one user following another user. In the profile page of a user on a corporate social network, there may be a follow button. A user on the corporate social network may select another user on the network. Once the user has selected the other user, the user may click the follow button in his profile page to follow the other user and thereby establish a relationship to the other user. The relationship is unidirectional when one user follows the other user but not vice versa. The relationship is bidirectional when each user follows the other. An interest in the relationship-interest graph is established by the action of one user following a record. In a record page in the enterprise search system, there may be a follow button. When viewing the record, a user may click the follow button and thereby establish an interest to the record. Typically, a user may follow a record only if he has been authorized to access it. An interest is unidirectional from the user to the record. One or more users may have an interest in the same records.
By traversing the relationship-interest graph, the system can identify similar users as users who have a relationship with the new user, as users who are part of a clique with the new user, as users who share an interest in a certain number of records with the new user, and as users who share a relationship with a certain number of other users with the given user. In the relationship-interest graph, a clique is a group of users who are linked to each other. Optionally, a maximum number of users may be set for the number of users in a clique, to avoid interpreting company or division roster as a clique. In a rare case where a clique includes all users in a corporation, the system ignores the clique for finding similar users instead of applying the maximum number of users.
Graph 601 in
Graph 602 in
Graph 603 in
Graph 604 in
Once the similar users to the new user are identified using one or more of the criteria illustrated in
In one implementation, each object type is scored and/or ranked for each of the similar users, including object types not within the personalized scopes of object types of the similar users. Alternatively, an arbitrary score such as zero or rank such as last can be applied to object types not within the personalized scopes. Scores or ranks for the object types are combined to produce aggregate scores for the object types across the similar users. For example, three similar users A, B and C are identified in the relationship-interest graph. If the precalculated score of object type O1 is 300 for similar user A, 400 for similar user B, and 500 for similar user C, then the aggregate score for object type O1 is 300+400+500=1200. Alternatively, ranks in the similar user lists could be aggregated, such as 3+2+1=6.
The system can sort the object types in order of their aggregate scores to produce a sorted list of object types. For example, if object type O1 has a summed score of 1200, object type O2 has a summed score of 500, and object type O3 has a summed score of 2500, then the sorted list orders the three object types as O3, O1, and O2 corresponding to the numerical values of 2500, 1200, and 500. Or, with ranks, the aggregate rank scores might be 4, 6, and 12. Aggregate scores can be averaged or normalized.
Optionally, a scoring threshold is applied to discard object types whose summed scores are at or below the scoring threshold and to include object types whose summed scores are above the scoring threshold in the personalized scope of object types for the new user. Alternatively, a ranking threshold may be used to discard object types whose rank in the sorted list of object types are at or below the ranking threshold and to include object types whose rank in the sorted list of object types are above the ranking threshold in the personalized scope of object types for the new user. The scoring threshold or the ranking threshold may vary with different object types. The scoring threshold or the ranking threshold may be constant or tunable. If a threshold is applied, it may be unnecessary to sort object types in order to determine the personalized scope of object types. The scoring and the ranking thresholds and the number of similar users may be tuned empirically in conjunction. After sorting, the sorted list of object types may include a large number of similar users. The system then applies the scoring threshold and the ranking threshold to limit the scope.
Applying a sorting approach, the personalized ordering of object types for the new user can be taken from the same list used to determine the personalized scope of object types. The sorted list can be used for both personalization tasks.
The system stores the personalized scope of object types and the personalized ordering of object types 530 for use and reuse.
User interface input devices 722 may include a keyboard; pointing devices such as a mouse, trackball, touchpad, or graphics tablet; a scanner; a touchscreen incorporated into the display; audio input devices such as voice recognition systems and microphones; and other types of input devices. In general, use of the term “input device” is intended to include all possible types of devices and ways to input information into computer system 710 or onto communication network 110.
User interface output devices 720 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may include a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image. The display subsystem may also provide a non-visual display such as via audio output devices. In general, use of the term “output device” is intended to include all possible types of devices and ways to output information from computer system 710 to the user or to another machine or computer system.
Storage subsystem 724 stores programming and data constructs that provide the functionality of some or all of the modules described herein. These software modules are generally executed by processor 714 alone or in combination with other processors.
Memory 726 used in the storage subsystem can include a number of memories including a main random access memory (RAM) 730 for storage of instructions and data during program execution and a read only memory (ROM) 732 in which fixed instructions are stored. A file storage subsystem 728 can provide persistent storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a CD-ROM drive, an optical drive, or removable media cartridges. The modules implementing the functionality of certain implementations may be stored by file storage subsystem 728 in the storage subsystem 724, or in other machines accessible by the processor.
Bus subsystem 712 provides a mechanism for letting the various components and subsystems of computer system 710 communicate with each other as intended. Although bus subsystem 712 is shown schematically as a single bus, alternative implementations of the bus subsystem may use multiple busses.
Computer system 710 can be of varying types including a workstation, server, computing cluster, blade server, server farm, or any other data processing system or computing device. Due to the ever-changing nature of computers and networks, the description of computer system 710 depicted in
Particular Implementations
One implementation of the technology disclosed is a method of establishing personalized limits on a search responsive to a key word query to an enterprise search system is described. The method includes receiving an object types access history for a particular user. Applying this method, the object types access history includes records of object types selected from search results returning multiple object types and records of object types selected via interfaces other than search results. The method also includes determining and storing in computer readable memory a personalized scope of object types. The personalized scope of object types sets a limit on object types initially returned by an enterprise search system for the particular user in response to key word queries by the particular user that do not specify object types to search. Additional implementations of the technology disclosed include corresponding systems, apparatus, and computer program products.
These and additional implementations can include one or more of the following features. In some implementations, the method further includes determining and storing in computer readable memory a personalized ordering of object types for the particular user using the object types access history. The personalized ordering of object types sets an order in which to present search results from the search performed by the enterprise search system.
A further implementation may include creating the object types access history by logging to computer readable memory at least a summary of user clicks by the particular user that select among the object types returned in the search results and/or available via interfaces other than search results, and by calculating counts of the user clicks among search results and of the user clicks via interfaces other than search results. This implementation may further include periodically updating the object types access history with the counts. The periodically updating may be performed on at least a weekly basis.
Another implementation determines the personalized scope of object types by applying a first weighting function to user clicks that select among the object types returned in the search results, wherein the first weighting function weights newer user clicks more heavily than older clicks, and by applying a second weighting function to user clicks that select among the object types available via interfaces other than search results, wherein the second weighting function weights newer user clicks more heavily than older clicks.
Implementations may determine the personalized scope of object types by applying at least a first threshold on number of user clicks on an object type to limit the personalized scope of object types.
Another method initializes personalized limits for a new user on a key word based search responsive to a key word query in an enterprise search system. The method includes receiving a relationship-interest graph for users in an enterprise search system, identifying similar users to a new user in the relationship-interest graph, and determining and storing in computer readable memory a personalized scope of object types for the new user using previously established personalized scopes of object types of the similar users.
In some implementations, the relationship-interest graph represents relationships between the new user and other users as relationship links connecting the new and other users, and represents interests shared by the new user and the other users as interest links connecting the new and other users to records. The personalized scopes of object types for the users set limits on initial results returned by an enterprise search system in response to key word queries that do not specify object types to search.
Implementations may further include determining and storing in computer readable memory a personalized ordering of object types for the new user using the personalized orderings of object types of the similar users. The personalized ordering of object types sets an order in which to present search results from the search performed by the enterprise search system.
Some implementations further identify similar users by identifying users who are connected to at least a minimum number of records to which the new user is also connected via the interest links in the relationship-interest graph. The method also may identify similar users by identifying other users who are connected to at least a minimum number of users to whom the new user is also connected via the relationship links in the relationship-interest graph.
Some implementations further determine a personalized scope of object types for the new user by ranking object types for at least the similar users in response to key word queries that do not specify object types to search, including object types not in the personalized scopes of object types for the similar users, and by combining the object type ranks for the object types of the similar users in the relationship-interest graph to produce an aggregate rank for each object type and using the aggregate rank to determine the personalized scope of object types for new user.
The method may further include re-ranking object types for the similar users in the relationship-interest graph, and including object types whose summed ranks are above a minimum threshold in the personalized scope of object types and the personalized ordering of object types for the new user.
As mentioned above, the technology disclosed may be implemented in a computer system for establishing personalized limits on a search responsive to a key word query to an enterprise search system. The computer system includes one or more processors configured to perform operations implementing methods as described herein and any of the features and optional implementations of the methods described.
As mentioned above, the technology disclosed may be implemented in non-transitory computer readable medium storing computer instructions to establish personalized limits on a search responsive to a key word query to an enterprise search system. The non-transitory computer readable medium includes actions to implement methods as described herein and any of the features and optional implementations of the methods described.
While the present technology is disclosed by reference to the preferred implementations and examples detailed above, it is understood that these examples are intended in an illustrative rather than in a limiting sense. Computer-assisted processing is implicated in the described implementations. Accordingly, the present technology may be embodied in methods for establishing personalized limits on a search, systems including logic and resources to establish personalized limits on a search, systems that take advantage of computer-assisted methods for establishing personalized limits on a search, media impressed with logic to establish personalized limits on a search, data streams impressed with logic to establish personalized limits on a search, or computer-accessible services that carry out computer-assisted methods for establishing personalized limits on a search. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the technology and the scope of the following claims.
Chen, Jia, Macklem, Walter, Nathanson, David, Ball, Luke, Maheshwari, Kanishka, Kimberlin, Susan, Subramanya, Shankara
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5577188, | May 31 1994 | Cisco Technology, Inc | Method to provide for virtual screen overlay |
5608872, | Mar 19 1993 | RPX Corporation | System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters |
5649104, | Mar 19 1993 | RPX Corporation | System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers |
5715450, | Sep 27 1995 | Oracle America, Inc | Method of selecting and presenting data from a database using a query language to a user of a computer system |
5761419, | Mar 19 1993 | RPX Corporation | Remote collaboration system including first program means translating user inputs into annotations and running on all computers while second program means runs on one computer |
5819038, | Jun 07 1995 | RPX Corporation | Collaboration system for producing copies of image generated by first program on first computer on other computers and annotating the image by second program |
5821937, | Feb 23 1996 | Visionael Corporation | Computer method for updating a network design |
5831610, | Feb 23 1996 | Visionael Corporation | Designing networks |
5873096, | Oct 08 1997 | Oracle America, Inc | Method of maintaining a network of partially replicated database system |
5918159, | Aug 04 1997 | Enovsys LLC | Location reporting satellite paging system with optional blocking of location reporting |
5963953, | Mar 30 1998 | Oracle America, Inc | Method, and system for product configuration |
6092083, | Feb 26 1997 | Oracle America, Inc | Database management system which synchronizes an enterprise server and a workgroup user client using a docking agent |
6148294, | Dec 20 1996 | UNIFY GMBH & CO KG | System and method for computer directory updating and presentation based on frequency of access |
6161149, | Mar 13 1998 | SAMPO IP LLC | Centrifugal communication and collaboration method |
6169534, | Jun 26 1997 | Oracle America, Inc | Graphical user interface for customer information management |
6178425, | Feb 26 1997 | Oracle America, Inc | Method of determining the visibility to a remote database client of a plurality of database transactions using simplified visibility rules |
6189011, | Mar 19 1996 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
6202058, | Apr 25 1994 | Apple Inc | System for ranking the relevance of information objects accessed by computer users |
6216135, | Feb 26 1997 | Oracle America, Inc | Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths |
6233617, | Feb 26 1997 | Oracle America, Inc | Determining the visibility to a remote database client |
6266669, | Feb 27 1997 | Oracle America, Inc | Partially replicated distributed database with multiple levels of remote clients |
6295530, | May 15 1995 | Ablaise Limited | Internet service of differently formatted viewable data signals including commands for browser execution |
6324568, | Nov 30 1999 | Oracle America, Inc | Method and system for distributing objects over a network |
6324693, | Feb 27 1997 | Oracle America, Inc | Method of synchronizing independently distributed software and database schema |
6336137, | Mar 31 2000 | Oracle America, Inc | Web client-server system and method for incompatible page markup and presentation languages |
6367077, | Feb 27 1997 | Oracle America, Inc | Method of upgrading a software application in the presence of user modifications |
6393605, | Nov 18 1998 | Oracle America, Inc | Apparatus and system for efficient delivery and deployment of an application |
6405220, | Feb 27 1997 | Oracle America, Inc | Partially replicated distributed database with multiple levels of remote clients |
6434550, | Apr 14 2000 | Oracle OTC Subsidiary LLC | Temporal updates of relevancy rating of retrieved information in an information search system |
6446089, | Feb 26 1997 | Oracle America, Inc | Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions |
6535909, | Nov 18 1999 | Red Hat, Inc | System and method for record and playback of collaborative Web browsing session |
6549908, | Nov 18 1998 | Oracle America, Inc | Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations |
6553563, | Nov 30 1998 | Oracle America, Inc | Development tool, method, and system for client server applications |
6560461, | Aug 04 1997 | Enovsys LLC | Authorized location reporting paging system |
6574635, | Mar 03 1999 | Oracle America, Inc | Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components |
6577726, | Mar 31 2000 | Oracle America, Inc | Computer telephony integration hotelling method and system |
6601087, | Nov 18 1998 | Cisco Technology, Inc | Instant document sharing |
6604117, | Mar 19 1996 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
6604128, | Nov 30 1999 | Oracle America, Inc | Method and system for distributing objects over a network |
6609150, | Mar 31 2000 | Siebel Systems, Inc. | Web client-server system and method for incompatible page markup and presentation languages |
6621834, | Nov 05 1999 | Open Invention Network, LLC | System and method for voice transmission over network protocols |
6654032, | Dec 23 1999 | Cisco Technology, Inc | Instant sharing of documents on a remote server |
6665648, | Nov 30 1998 | Oracle America, Inc | State models for monitoring process |
6665655, | Apr 14 2000 | Oracle OTC Subsidiary LLC | Implicit rating of retrieved information in an information search system |
6684438, | Feb 26 1997 | Siebel Systems, Inc. | Method of using cache to determine the visibility to a remote database client of a plurality of database transactions |
6711565, | Jun 18 2001 | Oracle America, Inc | Method, apparatus, and system for previewing search results |
6724399, | Sep 28 2001 | Oracle America, Inc | Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser |
6728702, | Jun 18 2001 | Oracle America, Inc | System and method to implement an integrated search center supporting a full-text search and query on a database |
6728960, | Nov 18 1998 | Oracle America, Inc | Techniques for managing multiple threads in a browser environment |
6732095, | Apr 13 2001 | Oracle America, Inc | Method and apparatus for mapping between XML and relational representations |
6732100, | Mar 31 2000 | Oracle America, Inc | Database access method and system for user role defined access |
6732111, | Mar 03 1998 | Siebel Systems, Inc. | Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database |
6754681, | Feb 27 1997 | Siebel Systems, Inc. | Partially replicated distributed database with multiple levels of remote clients |
6763351, | Jun 18 2001 | Oracle America, Inc | Method, apparatus, and system for attaching search results |
6763501, | Jun 09 2000 | Cisco Technology, Inc | Remote document serving |
6768904, | Oct 11 2000 | Siebel Systems, Inc | Data communication method using mobile terminal |
6772229, | Nov 13 2000 | SAMPO IP LLC | Centrifugal communication and collaboration method |
6782383, | Jun 18 2001 | Oracle America, Inc | System and method to implement a persistent and dismissible search center frame |
6804330, | Jan 04 2002 | Oracle America, Inc | Method and system for accessing CRM data via voice |
6826565, | May 15 1995 | Ablaise Limited | Method and apparatus for serving files to browsing clients |
6826582, | Sep 28 2001 | EMC IP HOLDING COMPANY LLC | Method and system for using file systems for content management |
6826745, | Nov 30 1998 | Oracle America, Inc | System and method for smart scripting call centers and configuration thereof |
6829655, | Mar 28 2001 | Siebel Systems, Inc. | Method and system for server synchronization with a computing device via a companion device |
6842748, | Apr 14 2000 | Oracle OTC Subsidiary LLC | Usage based strength between related information in an information retrieval system |
6850895, | Nov 30 1998 | Oracle America, Inc | Assignment manager |
6850949, | Jun 03 2002 | Oracle OTC Subsidiary LLC | System and method for generating a dynamic interface via a communications network |
7062502, | Dec 28 2001 | ADVANCED DYNAMIC INTERFACES, LLC | Automated generation of dynamic data entry user interface for relational database management systems |
7069231, | Jul 20 2000 | ORACLE INTERNATIONAL CORPORATION, A CORPORATION, ORGANIZED UNDER THE LAWS OF THE STATE OF DELAWARE; ORACLE INTERNATIONAL CORPORATION A CORPORATION ORGANIZED UNDER THE LAWS OF THE STATE OF CALIFORNIA | Methods and systems for defining, applying and executing customer care relationship plans |
7069497, | Sep 10 2002 | Oracle International Corporation | System and method for applying a partial page change |
7181758, | Jul 25 1994 | Online News Link LLC | Information distribution and processing system |
7289976, | Dec 23 2004 | Microsoft Technology Licensing, LLC | Easy-to-use data report specification |
7340411, | Feb 26 1998 | CXT SYSTEMS, INC | System and method for generating, capturing, and managing customer lead information over a computer network |
7356482, | Mar 01 2001 | Applications in Internet Time, LLC | Integrated change management unit |
7401094, | Dec 28 2001 | ADVANCED DYNAMIC INTERFACES, LLC | Automated generation of dynamic data entry user interface for relational database management systems |
7412455, | Apr 30 2003 | RPX Corporation | Software framework that facilitates design and implementation of database applications |
7508789, | Apr 07 1994 | Online News Link LLC | Information distribution and processing system |
7603483, | Mar 23 2001 | Cisco Technology, Inc. | Method and system for class-based management of dynamic content in a networked environment |
7620655, | May 06 2004 | DEMANDBASE INC | Method, device and computer program product for identifying visitors of websites |
7698160, | May 07 1999 | VIRTUALAGILITY INC | System for performing collaborative tasks |
7779475, | Jul 31 2006 | PetNote LLC | Software-based method for gaining privacy by affecting the screen of a computing device |
7851004, | Jul 19 2001 | SAN-EI GEN F F I , INC | Taste-improving composition and application of the same |
8014943, | May 08 2008 | NORTHSTAR SYSTEMS LLC | Method and system for displaying social networking navigation information |
8015495, | Mar 13 1998 | SAMPO IP LLC | Centrifugal communication and collaboration method |
8032297, | May 08 2008 | NORTHSTAR SYSTEMS LLC | Method and system for displaying navigation information on an electronic map |
8073850, | Jan 19 2007 | TAMIRAS PER PTE LTD , LLC | Selecting key phrases for serving contextually relevant content |
8082301, | Nov 10 2006 | VirtualAgility, Inc | System for supporting collaborative activity |
8095413, | May 07 1999 | VIRTUALAGILITY INC | Processing management information |
8095594, | May 07 1999 | Virtualagility, Inc. | System for performing collaborative tasks |
8209308, | May 01 2006 | DOMO, INC | Method for presentation of revisions of an electronic document |
8209333, | Jan 19 2007 | TAMIRAS PER PTE LTD , LLC | System for using keyword phrases on a page to provide contextually relevant content to users |
8275836, | May 07 1999 | VirtualAgility Inc. | System and method for supporting collaborative activity |
8457545, | Apr 07 1994 | Online News Link LLC | Information distribution and processing system |
8484111, | Dec 18 1998 | Applications in Internet Time, LLC | Integrated change management unit |
8490025, | Feb 01 2008 | Displaying content associated with electronic mapping systems | |
8504945, | Feb 01 2008 | Method and system for associating content with map zoom function | |
8510045, | Dec 22 2009 | CORTLAND CAPITAL MARKET SERVICES LLC, AS ADMINISTRATIVE AGENT | Digital maps displaying search-resulting points-of-interest in user delimited regions |
8510664, | Sep 06 2008 | Method and system for displaying email thread information | |
8566301, | May 01 2006 | DOMO, INC | Document revisions in a collaborative computing environment |
8646103, | Jun 30 2008 | Method and system for securing online identities | |
8725721, | Aug 25 2011 | Salesforce.com, Inc. | Personalizing scoping and ordering of object types for search |
8756275, | Feb 17 2012 | Zebedo | Variable speed collaborative web browsing system |
8769004, | Feb 17 2012 | Zebedo | Collaborative web browsing system integrated with social networks |
8769017, | Feb 17 2012 | Zebedo | Collaborative web browsing system having document object model element interaction detection |
9460193, | Aug 12 2011 | Accenture Global Services Limited | Context and process based search ranking |
20010044791, | |||
20020072951, | |||
20020082892, | |||
20020129352, | |||
20020140731, | |||
20020143997, | |||
20020162090, | |||
20020165742, | |||
20030004971, | |||
20030018705, | |||
20030018830, | |||
20030066031, | |||
20030066032, | |||
20030069936, | |||
20030070000, | |||
20030070004, | |||
20030070005, | |||
20030074418, | |||
20030120675, | |||
20030151633, | |||
20030159136, | |||
20030187921, | |||
20030189600, | |||
20030204427, | |||
20030206192, | |||
20030225730, | |||
20040001092, | |||
20040010489, | |||
20040015981, | |||
20040027388, | |||
20040128001, | |||
20040186860, | |||
20040193510, | |||
20040193639, | |||
20040199489, | |||
20040199536, | |||
20040199543, | |||
20040249854, | |||
20040260534, | |||
20040260659, | |||
20040268299, | |||
20050050555, | |||
20050091098, | |||
20050102282, | |||
20060021019, | |||
20060149712, | |||
20080005685, | |||
20080249972, | |||
20090063415, | |||
20090100342, | |||
20090177744, | |||
20110218958, | |||
20110247051, | |||
20110264681, | |||
20110282855, | |||
20120042218, | |||
20120158516, | |||
20120215684, | |||
20120233137, | |||
20120259849, | |||
20120271722, | |||
20120290407, | |||
20130212497, | |||
20130247216, | |||
D454139, | Feb 20 2001 | Oracle OTC Subsidiary LLC | Display screen for a computer |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 12 2014 | Salesforce.com, Inc. | (assignment on the face of the patent) | / | |||
Jul 02 2014 | SUBRAMANYA, SHANKARA B | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 02 2014 | KIMBERLIN, SUSAN | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 03 2014 | MACKLEM, WALTER | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 03 2014 | MAHESHWARI, KANISHKA | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 04 2014 | CHEN, JIA | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 08 2014 | NATHANSON, DAVID | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 | |
Jul 21 2014 | BALL, LUKE | SALESFORCE COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033355 | /0268 |
Date | Maintenance Fee Events |
Mar 08 2017 | ASPN: Payor Number Assigned. |
Sep 23 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 25 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 11 2020 | 4 years fee payment window open |
Oct 11 2020 | 6 months grace period start (w surcharge) |
Apr 11 2021 | patent expiry (for year 4) |
Apr 11 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 11 2024 | 8 years fee payment window open |
Oct 11 2024 | 6 months grace period start (w surcharge) |
Apr 11 2025 | patent expiry (for year 8) |
Apr 11 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 11 2028 | 12 years fee payment window open |
Oct 11 2028 | 6 months grace period start (w surcharge) |
Apr 11 2029 | patent expiry (for year 12) |
Apr 11 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |