An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixel units electrically connected to a plurality of data lines and a plurality of gate lines. The pixel units are arranged in a matrix of a plurality of rows and a plurality of columns, the pixel units in the same column are connected to the same data line, and the pixel units in the same diagonal line of the matrix are connected to the same gate line. The display also includes a data driver located at a first side of the display panel, the data driver being configured to drive the data lines, and a gate driver located at the first side of the display panel and configured to drive the gate lines.
|
15. A method of driving an electroluminescent display device comprising a plurality of pixel units connected to a plurality of data lines and a plurality of gate lines and arranged in a matrix form of a plurality of rows and the columns, the method comprising:
electrically connecting the pixel units in the same column to the same data line;
electrically connecting the pixel units in the same diagonal line of the matrix to the same gate line;
driving the data lines with a data driver located at a first side of a display panel of the electroluminescent display; and
driving the gate lines with a gate driver located at the first side of the display panel;
wherein the rows include m rows, wherein the columns include n columns where m is a positive integer and n is a positive integer greater than m, and
wherein the electrical connecting of the pixel units in the same diagonal line includes: electrically connecting the pixel units in a (i)-th row and in a (j)-th column to a (i+j−1)-th gate line where i is a positive integer equal to or less than m and j is a positive integer equal to or less than n;
wherein the gate lines include an (n)-th gate line and an (m+n−1)-th gate line, wherein each of the first through (n)-th gate lines respectively includes a plurality of portions of a first diagonal gate line, wherein the first diagonal gate line is connected to the gate driver at the first side of the display panel and extends in a diagonal direction, and
wherein each of the (n+1)-th gate line and the (m+n−1)-th gate line respectively includes i) a plurality of portions of a vertical gate line, wherein the vertical gate line is connected to the gate driver at the first side of the display panel and extends in a column direction and ii) a plurality of portions of a second diagonal line, wherein the second diagonal line is connected to the vertical gate line at a second side of the display panel and extends in the diagonal direction.
1. An electroluminescent display comprising: a display panel including a plurality of pixel units electrically connected to a plurality of data lines and a plurality of gate lines, wherein the pixel units are arranged in a matrix of a plurality of rows and a plurality of columns, wherein the pixel units in the same column are connected to the same data line, and wherein the pixel units in the same diagonal line of the matrix are connected to the same gate line;
a data driver located at a first side of the display panel, wherein the data driver is configured to drive the data lines; and a gate driver located at the first side of the display panel and configured to drive the gate lines;
wherein the rows include m rows, wherein the columns include n columns where m is a positive integer and n is a positive integer greater than m, and wherein the pixel units in the (i)-th row and in the (j)-th column are electrically connected to the (i+j−1)-th gate line where i is a positive integer equal to or less than m, and j is a positive integer equal to or less than n;
wherein the gate lines include an (n)-th gate line and an (m+n−1)-th gate line, wherein each of the first through (n)-th gate lines respectively includes a plurality of portions of a first diagonal gate line, wherein the first diagonal gate line is connected to the gate driver at the first side of the display panel and extends in a diagonal direction, and wherein each of the (n+1)-th gate line through the (m+n−1)-th gate line respectively includes i) a plurality of portions of a vertical gate line, wherein the vertical gate line is connected to the gate driver at the first side of the display panel and extends in a column direction and ii) a plurality of portions of a second diagonal line, wherein the second diagonal line is connected to the vertical gate line at a second side of the display panel and extends in the diagonal direction, and wherein the second side opposes the first side.
2. The electroluminescent display of
3. The electroluminescent display of
a first gate driver configured to drive the gate lines of the first group; and
a second gate driver configured to drive the gate lines of the second and third groups.
4. The electroluminescent display of
5. The electroluminescent display of
6. The electroluminescent display of
7. The electroluminescent display of
8. The electroluminescent display of
9. The electroluminescent display of
10. The electroluminescent display of
11. The electroluminescent display of
12. The electroluminescent display of
13. The electroluminescent display of
14. The electroluminescent display of
wherein each pixel unit includes red, green and blue sub pixels respectively connected to the red, green and blue data lines, and
wherein the red, green and blue sub pixels in the same unit pixel are connected to the same gate line.
16. The method of
|
This application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2015-0013441 filed on Jan. 28, 2015, in the Korean Intellectual Property Office (KIPO), the disclosure of which is hereby incorporated by reference in its entirety.
Field
The described technology generally relates to an electroluminescent display and a method of driving the same.
Description of the Related Technology
Recently, various display devices such as liquid crystal displays, plasma display devices, and electroluminescent displays have gained popularity. An electroluminescent display can be driven with quick response speed and reduced power consumption, using light-emitting diodes (LEDs) or organic light-emitting diodes (OLEDs) that emit light through recombination of electrons and holes.
This type of display can be driven with an analog driving method or a digital driving method. While the analog driving method produces grayscale using variable voltage levels corresponding to input data, the digital driving method produces grayscale using variable time duration in which the LED emits light. The analog driving method is difficult to implement because it requires a driving integrated circuit (IC) that is complicated to manufacture if the display has a sufficiently large size and high resolution. The digital driving method, on the other hand, can readily accomplish the required high resolution through a simpler IC structure. As the size and the resolution of an electroluminescent display increases, the digital driving method becomes more desirable than the analog driving method.
One inventive aspect relates to an electroluminescent display that can perform a single-side driving efficiently and a method of single-side driving for an electroluminescent display.
Another aspect is an electroluminescent display that includes a display panel, a data driver and a gate driver. The display panel includes a plurality of pixel units connected to a plurality of data lines and a plurality of gate lines and the plurality of pixel units are arranged in a matrix form of a plurality of rows and a plurality of columns. The pixel units in the same column are connected commonly to the same data line, and the pixel units in the same diagonal line are connected commonly to the same gate line. The data driver is formed at one side of the display panel, and the data driver is configured to drive the data lines. The gate driver is formed at the one side of the display panel together with the data driver, and the gate driver is configured to drive the gate lines.
The pixel units can be arranged in the matrix form of the m rows and the n columns where m is a positive integer and n is a positive integer greater than m, and the pixel units in the (i)-th row and in the (j)-th column can be connected commonly to the (i+j−1)-th gate line where i is a positive integer equal to or smaller than m and j is a positive integer equal to or smaller than n.
Each of the first gate line through (n)-th gate line can include a first diagonal gate line that is connected to the gate driver at a top side of the display panel and extended in a diagonal direction, and each of the (n+1)-th gate line through the (m+n−1)-th gate line can include a vertical gate line that is connected to the gate driver at the top side of the display panel and extended in a column direction and a second diagonal line that is connected to the vertical gate line at a bottom side of the display panel and extended in the diagonal direction.
The first gate line through the (m+n−1)-th gate line can be grouped into a first group including the first gate line through the (n−m)-th gate line, a second group including the (n−m+1)-th gate line through the (n)-th gate line and a third group including the (n+1)-th gate line through the (n+m−1)-th gate line.
The gate driver can include a first gate driver configured to drive the gate lines of the first group and a second gate driver configured to drive the gate lines of the second and third groups.
The first and second gate drivers can commonly receive a scan address signal and a latch clock signal to drive and activate one gate line of the first, second and third groups for each scan period.
The first and second gate drivers can drive the gate lines of the first, second and third groups in progressive emission with simultaneous scan (PESS) scheme.
Activation times of the first gate line through the (m+n−1)-th gate line can be equal to each other.
Activation times of the first gate line through the (m+n−1)-th gate line can be varied depending on loads of the gate lines.
Valid data signals can be applied to a portion of the data lines and dummy data signals can be applied to the other data lines for each scan period.
The first gate driver can receive a first scan address signal and a first latch clock signal to drive and activate one gate line of the first group for each scan period, and the second gate driver can receive a second scan address signal and a second latch clock signal to drive and activate one gate line of the second and third groups for each scan period.
The first gate driver can drive the gate lines of the first group in PESS scheme, and the second driver can drive the gate lines of the second group in PESS scheme and simultaneously drive the gate lines of the third group in PESS scheme.
The second driver can divide each scan period into a first half scan period and a second half scan period to drive and activate one gate line of the second group during the first half scan period and to drive and activate one gate line of the third group during the second half scan period.
The second gate driver can overlap at least a portion of an activation time of the gate line of the second group and at least a portion of an activation time of the gate line of the third group for each scan period.
Valid data signals can be applied to all of the data lines for each scan period.
Each data line can include a red data line, a green data line and a blue data line. Each pixel unit can include a red sub pixel connected to the red data line, a green sub pixel connected to the green data line and a blue sub pixel connected to the blue data line. The red sub pixel, the green sub pixel and the blue sub pixel in the same unit pixel can be connected commonly to the same gate line.
Another aspect is a method of single-side driving for an electroluminescent display is provided. The electroluminescent display device includes a display panel, and the display panel includes a plurality of pixel units that are connected to a plurality of data lines and a plurality of gate lines and arranged in a matrix form of a plurality of rows and a plurality of columns. The method includes connecting the pixel units in the same column commonly to the same data line, connecting the pixel units in the same diagonal line commonly to the same gate line, driving the data lines with a data driver formed at one side of the display panel and driving the gate lines with a gate driver formed at the one side of the display panel together with the data driver.
The pixel units can be arranged in the matrix form of the m rows and the n columns where m is a positive integer and n is a positive integer greater than m. Connecting the pixel units in the same diagonal line commonly to the same gate line can include connecting the pixel units in the (i)-th row and in the (j)-th column commonly to the (i+j−1)-th gate line where i is a positive integer equal to or smaller than m and j is a positive integer equal to or smaller than n.
Each of the first gate line through (n)-th gate line can include a first diagonal gate line that is connected to the gate driver at a top side of the display panel and extended in a diagonal direction, and each of the (n+1)-th gate line and the (m+n−1)-th gate line can include a vertical gate line that is connected to the gate driver at the top side of the display panel and extended in a column direction and a second diagonal line that is connected to the vertical gate line at a bottom side of the display panel and extended in the diagonal direction.
The first gate line through the (m+n−1)-th gate line can be grouped into a first group including the first gate line through the (n−m)-th gate line, a second group including the (n−m+1)-th gate line through the (n)-th gate line and a third group including the (n+1)-th gate line through the (n+m−1)-th gate line. Driving the gate lines can include connecting the first group to a first gate driver to drive the gate lines of the first group and connecting the second and third groups to a second gate driver to drive the gate lines of the second and third groups.
Another aspect is an electroluminescent display comprising: a display panel including a plurality of pixel units electrically connected to a plurality of data lines and a plurality of gate lines, wherein the pixel units are arranged in a matrix of a plurality of rows and a plurality of columns, wherein the pixel units in the same column are connected to the same data line, and wherein the pixel units in the same diagonal line of the matrix are connected to the same gate line; a data driver located at a first side of the display panel, wherein the data driver is configured to drive the data lines; and a gate driver located at the first side of the display panel and configured to drive the gate lines.
In the above electroluminescent display, the rows include m rows, wherein the columns include n columns where m is a positive integer and n is a positive integer greater than m, and wherein the pixel units in the (i)-th row and in the (j)-th column are electrically connected to the (i+j−1)-th gate line where i is a positive integer equal to or less than m, and j is a positive integer equal to or less than n.
In the above electroluminescent display, the gate lines include an (n)-th gate line and an (m+n−1)-th gate line, wherein each of the first through (n)-th gate lines respectively includes a plurality of portions of a first diagonal gate line, wherein the first diagonal gate line is connected to the gate driver at the first side of the display panel and extends in a diagonal direction, wherein each of the (n+1)-th gate line through the (m+n−1)-th gate line respectively includes i) a plurality of portions of a vertical gate line, wherein the vertical gate line is connected to the gate driver at the first side of the display panel and extends in a column direction and ii) a plurality of portions of a second diagonal line, wherein the second diagonal line is connected to the vertical gate line at a second side of the display panel and extends in the diagonal direction, and wherein the second side opposes the first side.
In the above electroluminescent display, the first gate line through the (m+n−1)-th gate line are grouped into a first group including the first gate line through the (n−m)-th gate line, a second group including the (n−m+1)-th gate line through the (n)-th gate line, and a third group including the (n+1)-th gate line through the (n+m−1)-th gate line.
In the above electroluminescent display, the gate driver includes: a first gate driver configured to drive the gate lines of the first group; and a second gate driver configured to drive the gate lines of the second and third groups.
In the above electroluminescent display, the first and second gate drivers are configured to receive the same scan address signal and latch clock signal to drive and activate a selected gate line of the first, second and third groups during a scan period.
In the above electroluminescent display, the first and second gate drivers are configured to drive the gate lines of the first, second and third groups in progressive emission with simultaneous scan (PESS) scheme.
In the above electroluminescent display, activation times of the first gate line through the (m+n−1)-th gate line are substantially equal to each other.
In the above electroluminescent display, activation times of the first gate line through the (m+n−1)-th gate line vary based on loads on the gate lines.
In the above electroluminescent display, the data driver is further configured to i) provide one or more valid data signals to one or more of the data lines and ii) provide one or more dummy data signals to the other data lines during a scan period.
In the above electroluminescent display, the first gate driver is further configured to receive a first scan address signal and a first latch clock signal to drive and activate a selected gate line of the first group during a scan period, wherein the second gate driver is further configured to receive a second scan address signal and a second latch clock signal to drive and activate a selected gate line of the second and third groups during the scan period.
In the above electroluminescent display, the first gate driver is further configured to drive the gate lines of the first group in the progressive emission with simultaneous scan (PESS) scheme, wherein the second driver is configured to concurrently drive the gate lines of the second and third groups in the PESS scheme.
In the above electroluminescent display, the second driver is further configured to divide the scan period into first and second half scan periods, wherein the second driver is further configured to i) drive and activate a selected gate line of the second group during the first half scan period and ii) drive and activate a selected gate line of the third group during the second half scan period.
In the above electroluminescent display, at least a portion of an activation time of the gate line of the second group and at least a portion of an activation time of the gate line of the third group overlap during a scan period.
In the above electroluminescent display, the data driver is further configured to provide a plurality of valid data signals to all of the data lines during a scan period.
In the above electroluminescent display, each data line includes red, green and blue data lines, wherein each pixel unit includes red, green and blue sub pixels respectively connected to the red, green and blue data lines, and wherein the red, green and blue sub pixels in the same unit pixel are connected to the same gate line.
Another aspect is a method of driving an electroluminescent display device comprising a plurality of pixel units connected to a plurality of data lines and a plurality of gate lines and arranged in a matrix form of a plurality of rows and the columns, the method comprising: electrically connecting the pixel units in the same column to the same data line; electrically connecting the pixel units in the same diagonal line of the matrix to the same gate line; driving the data lines with a data driver located at a first side of a display panel of the electroluminescent display; and driving the gate lines with a gate driver located at the first side of the display panel.
In the above method, the rows include m rows, wherein the columns include n columns where m is a positive integer and n is a positive integer greater than m, and wherein the electrical connecting of the pixel units in the same diagonal line includes: electrically connecting the pixel units in a (i)-th row and in a (j)-th column to a (i+j−1)-th gate line where i is a positive integer equal to or less than m and j is a positive integer equal to or less than n.
In the above method, the gate lines include an (n)-th gate line and an (m+n−1)-th gate line, wherein each of the first through (n)-th gate lines respectively includes a plurality of portions of a first diagonal gate line, wherein the first diagonal gate line is connected to the gate driver at the first side of the display panel and extends in a diagonal direction, and wherein each of the (n+1)-th gate line and the (m+n−1)-th gate line respectively includes i) a plurality of portions of a vertical gate line, wherein the vertical gate line is connected to the gate driver at the first side of the display panel and extends in a column direction and ii) a plurality of portions of a second diagonal line, wherein the second diagonal line is connected to the vertical gate line at a second side of the display panel and extends in the diagonal direction.
In the above method, the first gate line through the (m+n−1)-th gate line are grouped into a first group including the first gate line through the (n−m)-th gate line, a second group including the (n−m+1)-th gate line through the (n)-th gate line, and a third group including the (n+1)-th gate line through the (n+m−1)-th gate line, and wherein the driving of the gate lines includes: electrically connecting the first group to a first gate driver to drive the gate lines of the first group; and electrically connecting the second and third groups to a second gate driver to drive the gate lines of the second and third groups.
According to at least one of the disclosed embodiments, the electroluminescent display and the single-side driving method reduce the bezel width by disposing the data driver and the gate driver together at the same side of the display panel.
The electroluminescent display and the single-side driving method can improve degradation of image quality at a right-bottom portion of the display panel by adopting the digital driving method that represents grayscale through light emission time instead of magnitude of a driving voltage.
The electroluminescent display and the single-side driving method can reduce data rate and secure charging time by grouping the pixel units in the display panel that is driven by the single-side driving method.
New structures and new digital driving schemes are being investigated to reduce the bezel width in electroluminescent displays, but there are challenges such as increasing the data rate. In digital driving methods, the quality of a displayed image can degrade due to a deviation of threshold voltages of transistors included in pixels, lack of charging time, etc.
The example embodiments are described more fully hereinafter with reference to the accompanying drawings. Like or similar reference numerals refer to like or similar elements throughout. In this disclosure, the term “substantially” includes the meanings of completely, almost completely or to any significant degree under some applications and in accordance with those skilled in the art. Moreover, “formed on” can also mean “formed over.” The term “connected” can include an electrical connection.
Referring to
The data lines are driven using a data driver formed at one side of the display panel (S300). In addition, the gate lines are driven using a gate driver formed at the one side of the display panel together with the data driver (S400). The bezel width can be reduced by forming the data driver and the gate driver together at the same side of the display panel.
The display device 100 or a display module illustrated in
Referring to
As will described below with reference to
The data driver 130 can be formed at one side of the display panel 110 to drive the data lines D1˜Dn. In addition, the gate driver 120 can be formed at the one side of the display panel 110 together with the data driver 130, to drive the gate lines G1˜Gm+n−1. In some embodiments, the data driver 130 and the gate driver 120 are formed at the top side of the display panel 100 together as illustrated in
The timing controller 150 can receive and convert image signals from an external device and provide converted image data to the data driver 130. Also the timing controller 150 can receive a vertical synchronization signal, a horizontal synchronization signal, and a clock signal from the external device and generate control signals for the gate driver 120 and the data driver 130. The timing controller 150 can provide scan driving control signals SCS to the scan driver 120 and data driving control signals DCS to the data driver 130, respectively. In some embodiments, the gate driver 120 and the data driver 130 are integrated together with the display panel 110. In some embodiments, the gate driver 120 and the data driver 130 are integrated as a chip independently from the display panel 110.
As such, the bezel width or the bezel area can be reduced and a display device of a three-side-no-bezel structure can be implemented by forming the gate driver 120 and the data driver 130 at the same side of the display panel 110.
Referring to
The m pixel units P1j˜Pmj in the (j)-th column can be connected commonly to the (j)-th data line Dj where j is a positive integer equal to or less than n. The m pixel units P11˜Pm1 in the first column can be connected commonly to the first data line D1, the m pixel units P12˜Pm2 in the second column can be connected commonly to the second data line D2, and likewise the m pixel units P1n˜Pmn in the last column, that is, the (n)-th column, can be connected commonly to the (n)-th data line Dn.
The pixel units in the (i)-th row and in the (j)-th column can be connected commonly to the (i+j−1)-th gate line where i is a positive integer equal to or less than m.
With respect to a left-top portion of the display panel 110, the number of the pixel units connected commonly to one gate line can be increased one by one. The one pixel unit P11 can be connected commonly to the first gate line G1, the two pixel units P21 and P12 can be connected commonly to the second gate line G2 and the three pixel units P31, P22 and P13 can be connected commonly to the third gate line G3. As such, the m−1 pixel units P(m−1)1˜P1(m−1) can be connected commonly to the (m−1)-th gate line Gm−1 and the m pixel units Pm1˜P1m can be connected commonly to the (m)-th gate line Gm.
With respect to a center portion of the display panel 110, the number of the pixel units connected commonly to one gate line can be maintained. As illustrated in
With respect to a right-bottom portion of the display panel 110, the number of the pixel units connected commonly to one gate line can be decreased one by one. The m−1 pixel units Pm(n−m+2)˜P2n can be connected commonly to the (n+1)-th gate line Gn+1, and the m−2 pixel units Pm(n−m+3)˜P3n can be connected commonly to the (n+2)-th gate line Gn+2. As such, the three pixel units Pm(n−2), P(m−1)(n−1) and P(m−2)n can be connected commonly to the (m+n−3)-th gate line Gm+n−3, the two pixel units Pm(n−1) and P(m−1)n can be connected commonly to the (m+n−2)-th gate line Gm+n−2 and the one pixel unit Pmn can be connected to the last gate line Gm+n−1.
Each of the first gate line G1 through (n)-th gate line Gn can include a diagonal gate line that is extended in a diagonal direction. The gate driver 120 can be formed at the top side of the display panel 110 as illustrated in
Each of the (n+1)-th gate line Gn+1 and the (m+n−1)-th gate line Gm+n−1 can include a vertical gate line that is connected to the gate driver 110 at the top side of the display panel 110 and extended in a column direction and a diagonal line that is connected to the vertical gate line at a bottom side of the display panel 110 and extended in the diagonal direction.
Referring to
The switching transistor ST has a first source/drain terminal connected to a data line, a second source/drain terminal connected to the storage capacitor CST, and a gate terminal connected to the scan line. The switching transistor ST transfers a data signal DATA received from the data driver to the storage capacitor CST in response to a scan signal SCAN received from the gate driver.
The storage capacitor CST has a first electrode connected to a high power supply voltage ELVDD and a second electrode connected to a gate terminal of the driving transistor DT. The storage capacitor CST stores the data signal DATA transferred through the switching transistor ST.
The driving transistor DT has a first source/drain terminal connected to the high power supply voltage ELVDD, a second source/drain terminal connected to the OLED, and the gate terminal connected to the storage capacitor CST. The driving transistor DT is turned on or off according to the data signal DATA stored in the storage capacitor CST.
The OLED has an anode electrode connected to the driving transistor DT and a cathode electrode connected to a low power supply voltage ELVSS. The OLED emits light based on a current flowing from the high power supply voltage ELVDD to the low power supply voltage ELVSS while the driving transistor DT is turned on.
This structure of each sub pixel PX, or a 2T1C structure including two transistors ST and DT and one capacitor CST is one example of a pixel structure that is suitable for single-side driving due to the simplified control signals of the sub pixel SPX.
The buffer layer 305 is formed on the substrate 301 and the active pattern 310 can be formed on the buffer layer 305, where the substrate 301 can be formed of an insulation material such as glass, transparent plastic, ceramic, etc. The active pattern 310 can be formed by a sputtering process, a CVD process, a printing process, a spray process, a vacuum deposition process, an ALD process, a sol-gel process, PECVD process, etc. The active pattern 310 can include source and drain regions 315 and 320 and channel region 325 located below the gate electrode 335.
The gate insulation layer 330 can be formed to cover the active pattern 310. The gate insulation layer 330 can be formed by a CVD process, a thermal oxidation process, a plasma enhanced chemical vapor deposition (PECVD) process, a high density plasma-chemical vapor deposition (HDP-CVD) process, etc. The gate insulation layer 330 can be a relatively thick to sufficiently cover the active pattern 310.
The gate electrode 335 can be formed on the gate insulation layer 330. The gate electrode 335 can be formed by a sputtering process, a CVD process, a printing process, a spray process, a vacuum deposition process, an ALD process, etc.
The active pattern 310 can be doped by the impurity after the gate electrode 335 is formed. The source and drain regions 315 and 320 can be doped by the impurity, and the channel region 325 located below the gate electrode 335 can be not doped. As a result, the source and drain regions 315 and 320 can act as the conductor and the channel region 325 can act as the channel of the driving transistor DT.
The first insulation interlayer 340 can be formed on the gate insulation layer 330 to cover the gate electrode 335. The first insulation interlayer 340 can be a relatively thick to sufficiently cover the sixth gate electrode 335. The first insulation interlayer 340 can have a substantially flat upper surface. In some embodiments, a planarization process is performed on the first insulation interlayer 340 to enhance the flatness of the first insulation interlayer 340.
The first insulation interlayer 340 can be partially etched to form contact holes partially exposing the source and drain regions 315 and 320 of the active pattern 310. The connection patterns 351 and 352 can be formed in the metal layer 350 by filling the contact holes.
The second insulation interlayer 355 can be formed on the first insulation interlayer 340 to cover the connection patterns 351 and 352. The second insulation interlayer 355 can be relatively thick to sufficiently cover the connection patterns 351 and 352. The second insulation interlayer 355 can have a substantially flat upper surface. In some embodiments, a planarization process is performed on the second insulation interlayer 355 to enhance the flatness of the second insulation interlayer 355.
The second insulation interlayer 355 can be partially etched to form a contact hole partially exposing a portion of the connection pattern 351. The anode electrode 360 can be formed on the second insulation interlayer 355 by filling the contact hole.
The pixel definition layer 365 can be formed on the second insulation interlayer 355 to cover the anode electrode 360. The pixel definition layer 365 can be a relatively thick to sufficiently cover the anode electrode 360.
The pixel definition layer 365 can be partially etched to form an opening that exposes the anode electrode 360. The organic light emitting layer 370 can be formed in the opening. The organic light emitting layer 370 can be formed on the anode electrode 360 exposed by the opening.
The cathode electrode 375 can be formed on the pixel definition layer 365 and organic light emitting layer 370. The cathode electrode is formed as a whole to cover the entire active region in which the pixel units are formed.
The structure of the sub pixel described with reference to
Referring to
Each of the (n+1)-th gate line Gn+1 through the (m+n−1)-th gate line Gm+n−1 includes a vertical gate line that is connected to the gate driver 120 at the top side of the display panel 110 and extended in a column direction and a diagonal line that is connected to the vertical gate line at a bottom side of the display panel 110 and extended in the diagonal direction. For example, the (n+1)-th gate line Gn+1 includes the one vertical gate line VGn+1 and the one diagonal gate line DGn+1. The pixel units are connected to the diagonal gate lines as described with reference to
The first gate line through the (m+n−1)-th gate line are grouped into a first group GRA, a second group GRB and a third group GRC. The first group GRA includes the first gate G1 line through the (n−m)-th gate line Gn−m, the second group GRB includes the (n−m+1)-th gate line Gn−m+1 through the (n)-th gate line Gn and the third group GRC includes the (n+1)-th gate line Gn+1 through the (n+m−1)-th gate line Gn+m−1. According to grouping of the gate lines, the pixel units in the display panel 110 can be grouped into the first group GRA, the second group GRB and the third group GRC as illustrated in
Referring to
The first and second gate drivers 121a and 122a can commonly receive the scan driving control signal SCS that is illustrated in
The first and second gate drivers 121a and 122a can commonly receive the scan address signal SCIN and the latch clock signal LATCK to drive and activate one gate line of the first, second and third groups GRA, GRB and GRC for each scan period as will be described with reference to
In
The gate driver 120a of
For example, in case of the full high definition (FHD), the number m of the rows is 1080, the number n of the columns is 1920 and the number m+n−1 of the gate lines is 2999. If the frame rate is 75 Hz, the number of sub frames for digital driving is 8 and the progressive scan with simultaneous scan (PESS) scheme is applied, the time TC of the one scan period corresponds to about 0.5557 μs (microsecond). If the duty ratio of the gate signal is about 90%, the activation time TON of the gate lines is about 0.5001 μs. Here, the activation time corresponds to a turn-on time of the switching transistor ST in the sub pixel SPX of
Referring to
In
In case of the example embodiment described with reference to
For example, when the (i)-th gate line Gi (where i is a positive integer less than m) is selected and activated, the valid data are applied to the first through (i)-th data lines D1˜Di and the dummy data are applied to the other gate lines Di+1˜Dn. For another example, when the (j)-th gate line Gj (where j is a positive integer greater than m and less than n) is selected and activated, the valid data are applied to the (j−m+1)-th through (j)-th data lines Dj−m+1˜Dj and the dummy data are applied to the other gate lines D1˜Dj−m and Dj+1˜Dn.
Referring to
The first and second gate drivers 121b and 122b receive the respective scan driving control signal SCS that is illustrated in
The first gate driver 121b can receive the first scan address signal SCIN1 and the first latch clock signal LATCK1 to drive and activate one gate line among the gate lines G1˜Gn−m of the first group GRA for each scan period. The second gate driver 122b can receive the second scan address signal SCIN2 and the second latch clock signal LATCK2 to drive and activate one gate line among the gate lines Gn−m+1˜Gn of the second group GRB and one gate line among the gate lines Gn+1˜Gm+n−1 of the third group GRC for each scan period.
In
The first gate driver 121b in
The second gate driver 122b can divide each scan period into a first half scan period and a second half scan period to drive and activate one gate line G(B1) or G(B2) of the second group GRB during the first half scan period and to drive and activate one gate line G(C1) or G(C2) of the third group GRC during the second half scan period.
The activation times TONB and TONC of the gate lines of the second and third groups GRB and GRC can be equal to each other, and the activation times TONB and TONC can be less than the activation time TONA of the gate lines of the first group GRA.
For example, in case of the full high definition (FHD), the number m of the rows is 1080, the number n of the columns is 1920 and the number m+n−1 of the gate lines is 2999. The number of the gate lines G1˜Gn−m of the first group is 840, the number of the gate lines Gn−m+1˜Gn is 1080 and the number of the gate lines Gn+1˜Gm+n−1 is 1079. If the frame rate is about 75 Hz, the number of sub frames for digital driving is 8 and the PESS scheme as described with reference to
Referring to
In
In case of the example embodiment described with reference to
For example, when the (m+i)-th gate line Gm+i (where i is zero or a positive integer less than m) of the second group GRB is selected and activated, the (i)-th gate line Gi of the first group GRA and the (2m+i)-th gate line of the third group GRC are selected and activated together. In this case, the valid data on the first through (i)-th data lines D1˜Di are transferred to the pixel units of the first group GRA, the valid data on the (i+1)-th through (m+i)-th data lines Di+1˜Dm+i are transferred to the pixel units of the second group GRB and the valid data on the (m+i+1)-th through (n)-th data lines Dm+i+1˜Dn are transferred to the pixel units of the third group GRC.
As such, the data rate can be reduced and the charging time can be secured by grouping the gate lines and the pixel units into a plurality of groups to activate two or more gate lines simultaneously or concurrently in each scan period.
In
The first gate driver 121b in
In this case, the activation times TONA, TONB and TONC of the gate lines of the first, second and third groups GRA, GRB and GRC can be equal to each other. For example, in case of the full high definition (FHD), the number m of the rows is 1080, the number n of the columns is 1920 and the number m+n−1 of the gate lines is 2999. The number of the gate lines G1˜Gn−m of the first group is 840, the number of the gate lines Gn−m+1˜Gn is 1080 and the number of the gate lines Gn+1˜Gm+n−1 is 1079. If the frame rate is about 75 Hz, the number of sub frames for digital driving is 8 and the PESS scheme as described with reference to
Referring to
With respect to the gate lines Gn+1˜Gm+n−1 of the third group GRC, as described with reference to
In
For each scan period, one gate line among the gate lines G1˜Gm+n−1 of the first, second and third groups GRA, GRB and GRB can be driven and activated as illustrated in
Referring to
The processor 1010 can perform various computing functions. The processor 1010 can be a microprocessor, a central processing unit (CPU), etc. The processor 1010 can be coupled to other components via an address bus, a control bus, a data bus, etc. Further, the processor 1010 can be coupled to an extended bus, such as a peripheral component interconnection (PCI) bus.
The memory device 1020 can store data for operations of the electronic device 1000. For example, the memory device 1020 includes at least one non-volatile memory device, such as an erasable programmable read-only memory (EPROM) device, an electrically erasable programmable read-only memory (EEPROM) device, a flash memory device, a phase change random access memory (PRAM) device, a resistance random access memory (RRAM) device, a nano floating gate memory (NFGM) device, a polymer random access memory (PoRAM) device, a magnetic random access memory (MRAM) device, a ferroelectric random access memory (FRAM) device, etc., and/or at least one volatile memory device, such as a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, a mobile dynamic random access memory (mobile DRAM) device, etc. The storage device 1030 can be a solid state drive (SSD) device, a hard disk drive (HDD) device, a CD-ROM device, etc.
The I/O device 1040 can be an input device such as a keyboard, a keypad, a mouse, a touchpad, a touch-screen, a remote controller, etc., and an output device such as a printer, a speaker, etc. In some embodiments, the display device 1060 is included in the I/O device 1040. The power supply 1050 can provide a power for operations of the electronic device 1000. The display device 1060 can communicate with other components via the buses or other communication links.
As described above with reference to
The electronic device 1000 can be any device including a display device. For example, the electronic device 1000 is a television, a computer monitor, a laptop, a digital camera, a cellular phone, a smart phone, a personal digital assistant (PDA), a portable multimedia player (PMP), an MP3 player, a navigation system, or a video phone.
Referring to
The image processing block 1100 includes a lens 1110, an image sensor 1120, an image processor 1130, and a display module 1140. The wireless transceiving block 1200 includes an antenna 1210, a transceiver 1220 and a modem 1230. The audio processing block 1300 includes an audio processor 1310, a microphone 1320 and a speaker 1330.
As described above with reference to
The portable terminal 2000 can include various kinds of semiconductor devices. For example, the application processor 1700 has low power consumption and high performance. The application processor 1700 can have multiple cores. In some embodiments, the application processor 1700 includes a CPU core 1702 and a power management (PM) system 1704.
The PMIC 1800 can provide driving voltages to the image processing block 1100, the wireless transceiving block 1200, the audio processing block 1300, the image file generation unit 1400, the memory device 1500, the user interface 1600 and the application processor 1700, respectively.
As described above, according to at least one of the disclosed embodiments, the electroluminescent display and the single-side driving method can reduce the bezel width by disposing the data driver and the gate driver together at the same side of the display panel. In addition, the electroluminescent display device and the single-side driving method can improve degradation of image quality at a right-bottom portion of the display panel by adopting the digital driving method that represents grayscale through light emission time instead of magnitude of a driving voltage. Further the electroluminescent display and the single-side driving method can reduce data rate and secure charging time by grouping the pixel units in the display panel that is driven by the single-side driving method.
The above described embodiments can be applied to various kinds of devices and systems such as mobile phones, smartphones, tablet computers, laptop computers, personal digital assistants (PDAs), portable multimedia players (PMPs), digital televisions, digital cameras, portable game consoles, music players, camcorders, video players, navigation systems, etc.
The foregoing is illustrative of example embodiments and is not to be construed as limiting thereof. Although a few example embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from the novel teachings and advantages of the inventive technology. Accordingly, all such modifications are intended to be included within the scope of the present inventive concept as defined in the claims. Therefore, it is to be understood that the foregoing is illustrative of various example embodiments and is not to be construed as limited to the specific example embodiments disclosed, and that modifications to the disclosed example embodiments, as well as other example embodiments, are intended to be included within the scope of the appended claims.
Goh, Joon-Chul, Kim, Jung-Taek, Lee, Soo-Yeon, Lim, Kyoung-Ho, Choi, Young-Woo
Patent | Priority | Assignee | Title |
11302236, | Sep 14 2020 | Samsung Display Co., Ltd. | Display device and method for driving the same |
11514860, | Sep 16 2020 | Samsung Display Co., Ltd. | Display device having scan signals with adjustable pulse widths |
11615732, | Aug 14 2020 | Samsung Display Co., Ltd. | Display device with adjustable slew rate and output timing of a data signal according to a position of a signal line |
11636798, | Sep 14 2020 | Samsung Display Co., Ltd. | Display device and method for driving the same |
Patent | Priority | Assignee | Title |
8487843, | Nov 17 2008 | SAMSUNG DISPLAY CO , LTD | Display device and driving method thereof |
8872737, | Oct 27 2008 | SAMSUNG DISPLAY CO , LTD | Organic light emitting device, and apparatus and method of generating modification information therefor |
8933867, | Apr 17 2008 | SAMSUNG DISPLAY CO , LTD | Organic light-emitting substrate, method of manufacturing the same, and organic light-emitting display device having the same |
9268428, | Jul 28 2011 | Samsung Electronics Co., Ltd. | Light-sensing apparatuses, methods of driving the light-sensing apparatuses, and optical touch screen apparatuses including the light-sensing apparatuses |
9478169, | Oct 14 2014 | Samsung Display Co., Ltd. | Pixel, display device having the same, and thin film transistor (TFT) substrate for display device |
KR1020060078675, | |||
KR1020120028426, | |||
KR1020130136688, | |||
KR1020140001607, | |||
KR1020150133934, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 02 2015 | KIM, JUNG-TAEK | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036178 | /0604 | |
Jun 02 2015 | GOH, JOON-CHUL | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036178 | /0604 | |
Jun 02 2015 | LEE, SOO-YEON | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036178 | /0604 | |
Jun 02 2015 | LIM, KYOUNG-HO | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036178 | /0604 | |
Jun 02 2015 | CHOI, YOUNG-WOO | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036178 | /0604 | |
Jun 30 2015 | Samsung Display Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 09 2017 | ASPN: Payor Number Assigned. |
Sep 28 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 23 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 18 2020 | 4 years fee payment window open |
Oct 18 2020 | 6 months grace period start (w surcharge) |
Apr 18 2021 | patent expiry (for year 4) |
Apr 18 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 18 2024 | 8 years fee payment window open |
Oct 18 2024 | 6 months grace period start (w surcharge) |
Apr 18 2025 | patent expiry (for year 8) |
Apr 18 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 18 2028 | 12 years fee payment window open |
Oct 18 2028 | 6 months grace period start (w surcharge) |
Apr 18 2029 | patent expiry (for year 12) |
Apr 18 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |