A collector 3 that collects particles P contained in a fluid includes: a bent pipe 31 that guides the fluid flowing from a first direction X in a second direction Z; a branch pipe 32 that causes the fluid guided in the second direction Z to branch into the second direction Z and a third direction Y; a collection pipe 34 in which the particles P in the fluid guided in the second direction Z by the branch pipe 32 are collected; and a reduction-expansion pipe 33 which is arranged between the bent pipe 31 and the branch pipe 32 and of which the flow path is narrowed while being biased to an inlet side of the bent pipe 31.
|
4. A gas turbine plant comprising:
a gas turbine having a compressor, a turbine, and a combustor;
a gas line that supplies gas fuel as a fluid to the combustor; and
a collector that collects particles contained in the fluid, the collector being arranged in the gas line and comprising:
a bent pipe that turns the direction of the fluid flowing in a first direction to a second direction that is directed to a vertically lower side than the first direction;
a reduction-expansion pipe that is connected to an outlet of the bent pipe and expands a flow path of the fluid flowing in the second direction after reducing the flow path of the fluid;
a branch pipe that is connected to an outlet of the reduction-expansion pipe and causes the fluid flowing in the second direction to branch into the second direction and a third direction that is a direction different from the second direction; and
a collection part that is connected to an outlet of the branch pipe on the second direction side and collects the particles in the fluid,
wherein, when viewed in the second direction, a flow path reduction part in the reduction-expansion pipe is eccentric toward a side in a radial direction from a center of an inlet opening of the reduction-expansion pipe, the inlet opening of the reduction-expansion pipe being an outlet side of the bent pipe, with the center of the inlet opening as a reference.
1. A gas turbine plant comprising:
a gas turbine having a compressor, a turbine, and a combustor;
a gas line that supplies gas fuel as a fluid to the combustor; and
a collector that collects particles contained in the fluid, the collector being arranged in the gas line and comprising:
a bent pipe that turns the direction of the fluid flowing in a first direction to a second direction that is directed to a vertically lower side than the first direction;
a reduction-expansion pipe that is connected to an outlet of the bent pipe and expands a flow path of the fluid flowing in the second direction after reducing the flow path of the fluid;
a branch pipe that is connected to an outlet of the reduction-expansion pipe and causes the fluid flowing in the second direction to branch into the second direction and a third direction that is a direction different from the second direction; and
a collection part that is connected to an outlet of the branch pipe on the second direction side and collects the particles in the fluid,
wherein a flow path reduction part in the reduction-expansion pipe is eccentric with respect to a center of an inlet opening of the reduction-expansion pipe, and when viewed in the second direction, an eccentric position of the flow path reduction part is within a range of 90° to 270° from the first direction, with the center of the inlet opening as a reference.
2. The collector according to
wherein, when viewed in the second direction, the third direction is within a range of 90° to 270° from the eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
3. The collector according to
wherein, when viewed in the second direction, an outlet of the branch pipe on the third direction side is opposite to the eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
5. The collector according to
wherein, when viewed in the second direction, the third direction is within a range of 90° to 270° from an eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
6. The collector according to
wherein, when viewed in the second direction, an outlet of the branch pipe on the third direction side is opposite to an eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
|
The present invention relates to a collector that collects particles contained in a fluid and a gas turbine plant provided with the same. Priority is claimed on Japanese Patent Application No. 2012-200634, filed Sep. 12, 2012, the content of which is incorporated herein by reference.
Techniques of collecting particles contained in a fluid that flows through piping or the like include, for example, those described in PTLs 1 and 2.
PTL 1 describes a method of separating and removing particles contained in a steam current.
In this method, a main steam pipe is bent in a vertical direction from a horizontal direction. Moreover, in this method, after bending, the main steam pipe is branched into the vertical direction and the horizontal direction to create flow paths in the vertical direction and the horizontal direction.
Accordingly, steam and particles in the main steam pipe are changed in flow direction from the horizontal direction to the vertical direction by a bent part, and flow straight in a vertically downward direction under the influence of an inertia force and gravity generated in the vertical direction. Thereafter, most of the particles in the steam continue flowing straight in the vertically downward direction within a branch part. Meanwhile, since the steam is not influenced by the inertia force and gravity as much as the particles, the steam flows to the main steam pipe, which is branched in the horizontal direction, while containing some of the particles at the branch part. Accordingly, the particles in the steam that flows in the horizontal direction after the branching can be reduced.
Additionally, PTL 2 describes a method of separating and collecting fine metal powder that is mixed in air during noble metal polishing work, such as ring processing or dental technical work.
In this method, mainly the fine metal powder is separated and collected by changing the wind speed or wind direction of the air that has collected and suctioned dust. That is, after the air that contains the fine metal powder flows straight into a separation and collection device from an air inflow part thereof, the air is increased in wind speed by passing through a hole of which the diameter is reduced. Thereafter, the air is changed in wind direction to a direction intersecting a straight-ahead direction and is discharged by a dust suction machine. On the other hand, since the fine metal powder with high density cannot follow such rapid changes in wind speed and wind direction and flows straight due to its inertia force without changing its direction to the same direction as the air, the fine metal powder can be collected in a metal powder recovery part arranged at an end in the straight-ahead direction.
[PTL 1] Japanese Unexamined Patent Application, First Publication No. H8-28208
[PTL 2] Japanese Unexamined Patent Application, First Publication No. S57-113820
However, since neither of the methods of PTLs 1 and 2 has high collection efficiency, collectors having a high collection rate are desired.
The present invention has been made in order to meet the above desire, and an object thereof is to provide a collector that can improve collection efficiency and a gas turbine plant provided with the same.
A collector related to one aspect of the invention for responding to the above desire is a collector that collects particles contained in a fluid. The collector includes: a bent pipe that turns the direction of the fluid flowing in a first direction to a second direction that is directed to a vertically lower side than the first direction; a reduction-expansion pipe that is connected to an outlet of the bent pipe and expands a flow path of the fluid flowing in the second direction after reducing the flow path of the fluid; a branch pipe that is connected to an outlet of the reduction-expansion pipe and causes the fluid flowing in the second direction to branch into the second direction and a third direction that is a direction different from the second direction; and a collection part that is connected to an outlet of the branch pipe on the second direction side and collects the particles in the fluid. Here, a flow path reduction part in the reduction-expansion pipe is eccentric with respect to a center of an inlet opening of the reduction-expansion pipe, and when viewed in the second direction, an eccentric position of the flow path reduction part is within a range of 90° to 270° from the first direction, with the center of the inlet opening as a reference.
Additionally, a collector related to another aspect of the invention for responding to the above desire is a collector that collects particles contained in a fluid. The collector includes: a bent pipe that turns the direction of the fluid flowing in a first direction to a second direction that is directed to a vertically lower side than the first direction; a reduction-expansion pipe that is connected to an outlet of the bent pipe and expands a flow path of the fluid flowing in the second direction after reducing the flow path of the fluid; a branch pipe that is connected to an outlet of the reduction-expansion pipe and causes the fluid flowing in the second direction to branch into the second direction and a third direction that is a direction different from the second direction; and a collection part that is connected to an outlet of the branch pipe on the second direction side and collects the particles in the fluid. Here, when viewed in the second direction, a flow path reduction part in the reduction-expansion pipe is eccentric toward a side in a radial direction from a center of an inlet opening of the reduction-expansion pipe which is an inlet side of the bent pipe with the center as a reference.
The expression “a radial direction from a center of an inlet opening of the reduction-expansion pipe” means a radial direction that is a direction away from the center of the inlet opening, in a plane parallel to a virtual plane including the inlet opening of the reduction-expansion pipe.
According to the one aspect or the other aspect, as a first stage, the particles contained in the fluid flowing in the first direction are turned in flow direction to the second direction when passing through the bent pipe. For this reason, the particles flow in the second direction in a state where the particles are biased and collected to a side opposite to the inlet side of the bent pipe due to a centrifugal force. Thereafter, as a second stage, the particles are biased and collected to the inlet side of the bent pipe, which is a side opposite to the side on which the particles has flowed through the bent pipe, while the centrifugal force is applied again thereto, in the process of flowing through the flow path reduction part of the reduction-expansion pipe while flowing in the second direction.
After passing through the flow path reduction part of the reduction-expansion pipe, the particles flow in the second direction while being influenced by gravity, in a state where the particles are biased to the inlet side of the bent pipe while the flow path thereof remains substantially narrowed. For this reason, the particles hardly flow in the third direction. Meanwhile, since the fluid is not influenced by gravity or the centrifugal force as much as the particles and flows while being diffused after passing through the flow path reduction part of the reduction-expansion pipe, the fluid flows in the third direction while passing through the branch pipe. Accordingly, since most of the particles are collected in the collection part connected to the outlet of the branch pipe on the second direction side, the collection efficiency of particles can be improved.
The “first direction” and the “third direction” herein are directions including more horizontal direction components than the “second direction”.
Here, in the collector of the one aspect or the other aspect, when viewed in the second direction, the third direction is preferably within a range of 90° to 270° from an eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
Here, in the collector of the one aspect or the other aspect, when viewed in the second direction, an outlet of the branch pipe on the third direction side is preferably opposite to an eccentric position of the flow path reduction part, with a center of an outlet opening of the reduction-expansion pipe as a reference.
According to these collectors, the particles that are biased and collected when passing through the flow path reduction part of the reduction-expansion pipe flow in the second direction at a distance from the outlet of the branch pipe on the third direction side when passing through the branch pipe. Hence, in these collectors, since the particles are hardly mixed in the branch flow path of the branch pipe on the third direction side, and the particles mostly flow to the branch flow path of the branch pipe on the second direction side, the collection efficiency can be further improved.
Moreover, a gas turbine plant related to still another aspect of the invention for meeting the above desire includes: a gas turbine having a compressor, a turbine, and a combustor; a gas line that supplies gas fuel as the fluid to the combustor; and any one collector of the above collectors arranged in the gas line.
According to this aspect, since any one of the above collectors is arranged in the gas line, the particles in the gas fuel can be removed, and the gas fuel from which the particles are removed can be supplied to the combustor.
According to one aspect related to the invention, the collection efficiency of particles contained in a fluid can be improved.
An embodiment related to the invention will be described below with reference to
As illustrated in
As illustrated in
Here, the lines 21, 22, and 23 will be simply described altogether.
The first line 21 is a portion of the gas line 2. The first line 21 is connected to the gas tank 12 and the bent pipe 31 and is arranged to extend in the first direction X that is a lateral side.
The second line 22 is arranged to extend in the second direction Z, which is a vertically downward direction, inside the collector 3.
The third line 23 is a portion of the gas line 2. The third line 23 is connected to the branch pipe 32 and the strainer 13 (illustrated in
The bent pipe 31 is formed of an L-shaped elbow that is bent in an L shape that forms a circular cross-sectional shape. The bent pipe 31 has a bent pipe inlet part 311 that is an inlet side and is connected to the first line 21, a bent part 312 that bends the direction of a flow to the second direction Z, and a bent pipe outlet part 313 that is an outlet side and is connected to the second line 22.
The branch pipe 32 is formed of a T-shaped piping joint that forms a circular cross-sectional shape. The branch pipe 32 has a straight pipe part 322 that extends in the second direction Z, and an outlet pipe part 321 that extends in the third direction Y from the middle of the straight pipe part 322. The straight pipe part 322 has a straight pipe inlet part 323 that extends in a vertically upward direction and is connected to the second line 22 on the bent pipe 31 side, and a straight pipe outlet part 324 that extends in the vertically downward direction and is connected to the second line 22 on the collection pipe 34 side. The outlet pipe part 321 is arranged to extend in the third direction Y from the middle of the straight pipe part 322 and is connected to the third line 23.
The reduction-expansion pipe 33 is arranged between the bent pipe 31 and the branch pipe 32 in the second line 22. The reduction-expansion pipe 33 is formed of a pair of eccentric reducers 332 with the diameter-reduced sides connected to each other. In the reduction-expansion pipe 33, a connecting portion where the diameter-reduced sides of the eccentric reducers 332 are connected to each other forms the flow path reduction part 331. An axis center of the flow path reduction part 331 is arranged at a position that is biased toward a side of the bent pipe inlet part 311 that is in a radial direction in the second line 22 and is an inlet side of the bent pipe 31 in the first direction X from a central axis C of the second line 22.
In the eccentric reducers 332, the cross-sectional area size of the flow path reduction part 331 may be appropriately selected and used in accordance with the size of particles P or the like to be removed from the gas fuel F.
The collection pipe 34 is a pipe material that is bent in an L shape that forms a circular cross-sectional shape. The collection pipe 34 is arranged at a lower end of the second line 22 that is an end of the straight pipe outlet part 324 in the branch pipe 32. The collection pipe 34 has one opening connected to the lower end of the second line 22 and has an opening and closing lid 341 in the other opening.
Next, the operation of the gas turbine plant 1 including the collector 3 of the above configuration will be described.
According to the gas turbine plant 1 including the collector 3 as described above, the gas fuel F containing the particles P that are impurities is supplied from the gas tank 12, flows through the first line 21 that is the gas line 2, and reaches the collector 3. The gas fuel F that has reached the collector 3 flows into the bent pipe 31 from the bent pipe inlet part 311, is changed in flow direction by the bent part 312 of the bent pipe 31, and flows out from the bent pipe outlet part 313 to the second line 22. Then, the gas fuel F passes through the flow path reduction part 331 with a narrowed flow path within the reduction-expansion pipe 33, and flows into the branch pipe 32 from the straight pipe inlet part 323. The gas fuel F that flows through the branch pipe 32 is changed in flow direction within the branch pipe 32, and flows out to the third line 23 via the outlet pipe part 321. Thereafter, the gas fuel F flows through the third line 23, reaches the combustor 11 via the strainer 13 and is combusted in the combustor. The turbine T is driven by the combustion gas generated through the combustion of the gas fuel F, and power generation using the generator G is performed by the driving of the turbine T.
Most of the particles P contained in the gas fuel F are sent not from the outlet pipe part 321 but from the straight pipe outlet part 324 to the collection pipe 34 within the branch pipe 32, are collected within the collection pipe 34, and are recovered by detaching the opening and closing lid 341 of the collection pipe 34.
According to the collector 3 as described above, a centrifugal force is applied to the particles P contained in the gas fuel F in the bent part 312 when the particles pass through the bent pipe 31. For this reason, when the particles P contained in the gas fuel F are guided from the bent pipe outlet part 313 to the second line 22, the particles fall while being biased and collected on the side opposite to the bent pipe inlet part 311 in a radial direction with respect to the central axis C of the second line 22 (refer to
On the other hand, the gas fuel F is not influenced by gravity or the centrifugal force as much as the particles P and flows while being diffused after passing through the flow path reduction part 331.
The outlet pipe part 321 of the branch pipe 32 is connected to the straight pipe part 322 toward the third direction Y. Additionally, an inlet opening of the outlet pipe part 321 that is a connecting portion with the straight pipe part 322 is arranged at a position of 90° from the flow path reduction part 331 that is biased to the side of the bent pipe inlet part 311, with the central axis C of the second line 22 as a reference. Since the particles P fall while being biased and collected to the bent pipe inlet part 311 side inside the straight pipe part 322 of the branch pipe 32, the particles flow at a distance from the inlet opening of the outlet pipe part 321, and hardly flow to the outlet pipe part 321 that is a lateral side of the straight pipe part 322.
On the other hand, as mentioned above, since the gas fuel F is not influenced by gravity or the centrifugal force as much as the particles P and flows while being diffused after passing through the flow path reduction part 331, the gas fuel flows from the outlet pipe part 321 to the third line 23 when passing through the branch pipe 32.
Accordingly, when the gas fuel F is made to flow to the outlet pipe part 321, the particles P are not easily mixed in and does not flow with the gas fuel. As a result, since most of the particles P are collected in the collection pipe 34 attached to the second line 22, the collection efficiency of the particles P can be improved.
Additionally, in the gas turbine plant 1 of the present embodiment, as described above, most of the particles P contained in the gas fuel F are removed by the collector 3 arranged in the gas line 2 from the gas tank 12 to the strainer 13. Moreover, the particles P are also removed from the gas fuel F that has passed through the collector 3, using the strainer 13. Hence, in the gas turbine plant 1 of the present embodiment, the gas fuel F containing almost no particles P can be supplied to the combustor 11.
Next, results of a computer analysis on the collection rates of various examples and comparative examples will be described.
First, the structures of various Examples 1 to 4 and various Comparative Examples 1 to 3 will be described.
Here, as illustrated in
As illustrated in
The collector 3a of Example 1 is the same as the collector 3 described in the present embodiment.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The results obtained by comparing the collection rates of the examples and the comparative examples with one another through computational fluid dynamics (CFD) analysis are illustrated in
As illustrated in
Additionally, as illustrated in
Moreover, as illustrated in
It was found from these results that, if the reduction-expansion pipe 33 is used, the collection efficiency can be further improved, and the collection efficiency can be further improved especially by forming the reduction-expansion pipe 33 using the eccentric reducers 332.
Additionally, it was found that the reduction-expansion pipe 33 in which the flow path reduction part 331 (the flow path reduction part 331a, the flow path reduction part 331b, or the flow path reduction part 331c) is arranged on the side of the bent pipe inlet part 311 as in Examples 1 to 4 can further improve collection rates than the reduction-expansion pipe 33 in which the position of the flow path reduction part 331 (331g) is arranged opposite to the side of the bent pipe inlet part 311 as in Comparative Example 3.
Moreover, it was found that collection rates can be further improved if the connecting position of the outlet pipe part 321 in the branch pipe 32 is at a position opposite to the flow path reduction part 331 as in Examples 1 to 4.
It was found from the above that high collection rates are exhibited if the flow path reduction part 331 of the reduction-expansion pipe 33 is arranged within a range of 180° to 270° from the first direction X, and in particular, higher collection rates are exhibited if the flow path reduction part is arranged within a range of 180° to 225° from the first direction X. Additionally, it was found from a symmetric property that high collection rates are exhibited if the flow path reduction part 331 of the reduction-expansion pipe 33 is arranged within a range of 90° to 180° that is a range symmetrical to the range of 180° to 270°, with the first direction X as a reference. In particular, it is also clear that higher collection rates are exhibited if the flow path reduction part 331 of the reduction-expansion pipe 33 is arranged within a range of 135° to 180° that is a range symmetrical to the range of 180° to 225°, with the first direction X as a reference. That is, it was found that high collection rates are exhibited if the flow path reduction part 331 of the reduction-expansion pipe 33 is arranged within a range of 90° to 270° from the first direction X, and in particular, higher collection rates are exhibited if the flow path reduction part is arranged within a range of 135° to 225° from the first direction X. In other words, it was found that higher collection rates are exhibited if, when viewed in the second direction Z, the flow path reduction part 331 of the reduction-expansion pipe 33 is eccentric toward the radial side from the central axis C of the second line 22 which is the bent pipe inlet part 311 side with the central axis C as a reference.
Additionally, it was found that collection rates can be improved if the connecting position of the outlet pipe part 321 in the branch pipe 32 is a position of 90° to 180° and a position of 180° to 270° from the position of the flow path reduction part 331. In other words, it was found that the collection rates can be improved if, when viewed in the second direction Z, the outlet on the side connected to the strainer 13 of the branch pipe 32 is located opposite to the eccentric position of the flow path reduction part 331 with the central axis C of the outlet opening of the reduction-expansion pipe 33 as a reference.
Although the embodiment and the examples of the invention have been described above in detail with reference to the drawings, the components, combinations thereof, or the like in the above embodiment and examples are exemplary. Additions, omissions, substitutions, and other modifications of the components can be made without departing from the spirit of the invention. Additionally, the invention is not limited by the embodiment and the examples and is limited only by the appended claims.
Specifically, for example, in the above embodiment and examples, the second direction Z is a vertically downward direction. However, in the invention, the second direction only has to be directed to a vertically lower side than the first direction and the third direction. Additionally, in the above embodiment and examples, both of the first direction and the third direction are directions in the horizontal direction. However, in the invention, the first direction and the third direction only have to be directions including a horizontal direction component.
Although the eccentric reducers 332 are used as parts that form the flow path reduction part 331 in the above embodiment, the invention is not limited to this. For example, commercially well-known parts having a diameter-reduced structure, such as an orifice, may be used.
Additionally, although the target fluid is the gas fuel F in the present embodiment, the invention is not limited to this. For example, fluids, such as steam, may be targeted.
According to one aspect related to the invention, the collection efficiency of particles contained in a fluid can be improved.
Higashi, Kazuya, Yamaguchi, Akinori, Kushioka, Kiyonori
Patent | Priority | Assignee | Title |
10920608, | Sep 06 2017 | SIEMENS ENERGY, INC | Dead leg debris extractor for continuous on-line operation |
Patent | Priority | Assignee | Title |
5272866, | Jan 04 1990 | Foster Wheeler Energia Oy | Method and apparatus for treating gases from gasification or combustion plants |
20080156187, | |||
CN1266144, | |||
CN1957204, | |||
JP11324616, | |||
JP2000257403, | |||
JP2005180485, | |||
JP2008169834, | |||
JP2218803, | |||
JP24612, | |||
JP53142982, | |||
JP5501745, | |||
JP57113820, | |||
JP61157310, | |||
JP62136218, | |||
JP828208, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 23 2013 | MITSUBISHI HITACHI POWER SYSTEMS, LTD. | (assignment on the face of the patent) | / | |||
Nov 21 2014 | YAMAGUCHI, AKINORI | MITSUBISHI HITACHI POWER SYSTEMS, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034899 | /0521 | |
Nov 21 2014 | HIGASHI, KAZUYA | MITSUBISHI HITACHI POWER SYSTEMS, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034899 | /0521 | |
Nov 21 2014 | KUSHIOKA, KIYONORI | MITSUBISHI HITACHI POWER SYSTEMS, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034899 | /0521 | |
Sep 01 2020 | MITSUBISHI HITACHI POWER SYSTEMS, LTD | MITSUBISHI POWER, LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVING PATENT APPLICATION NUMBER 11921683 PREVIOUSLY RECORDED AT REEL: 054975 FRAME: 0438 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 063787 | /0867 | |
Sep 01 2020 | MITSUBISHI HITACHI POWER SYSTEMS, LTD | MITSUBISHI POWER, LTD | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 054975 | /0438 |
Date | Maintenance Fee Events |
Sep 29 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 23 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
May 09 2020 | 4 years fee payment window open |
Nov 09 2020 | 6 months grace period start (w surcharge) |
May 09 2021 | patent expiry (for year 4) |
May 09 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 09 2024 | 8 years fee payment window open |
Nov 09 2024 | 6 months grace period start (w surcharge) |
May 09 2025 | patent expiry (for year 8) |
May 09 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 09 2028 | 12 years fee payment window open |
Nov 09 2028 | 6 months grace period start (w surcharge) |
May 09 2029 | patent expiry (for year 12) |
May 09 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |