In a process for applying a friction-resistant coating to a steel sucker rod, the rod is passed, in sequence, through a surface preparation stage (for example, scale removal, shot peening, or other suitable method), an adhesive application stage (to enhance the strength of the coating's bond to the rod), an extrusion stage (in which the rod is passed through a die in conjunction with a flow of melted polymeric coating material), and a cooling (coating solidification) stage. Typically, the radial thickness of the coating will be between 0.125 and 0.375 inches. The process is adaptable to apply extruded coatings to continuous rod or to individual sucker rods having upset ends. The coating may be selected from but is not limited to high-density polyethylene, cross-linked polyethylene, polyvinylidene fluoride, ethylene tetrafluoroethylene, polytetrafluoroethylene, polyphenylensulfide, nylon, polyester, polyethersulfone, polyethylene terephthalate, polypropylene, polystyrene, epoxy, or acetyl.
|
12. A process for applying a coating of a low-friction material to continuous metal sucker rod, said process comprising:
preparing surfaces of the rod intended to receive the coating material by removing undesirable materials therefrom using selected surface preparation means;
treating the prepared rod surfaces with a selected adhesive, the metal rod being a steel rod having an upset threaded end, and the adhesive treatment not being carried out with respect to the upset threaded end;
passing the adhesive-treated rod through an extrusion die of selected configuration without rotating the rod while simultaneously flowing a melted low-friction material through the die, such that a coating of the low-friction material is deposited onto the adhesive-treated surfaces of the rod; and
using selected cooling means to solidify the coating of low-friction material.
1. A process for applying a coating of a low-friction material to an elongate metal rod, said process comprising:
preparing surfaces of the rod intended to receive the coating material by removing undesirable materials therefrom, using selected surface preparation means;
treating the prepared rod surfaces with a selected adhesive, wherein the metal rod is a steel rod having an upset threaded end, and wherein the adhesive treatment is not carried out with respect to the upset threaded end;
passing the adhesive-treated rod through an extrusion die of selected configuration without rotating the rod, while simultaneously flowing a melted low-friction material through the die, such that a coating of the low-friction material is deposited onto the adhesive-treated surfaces of the rod; and
using selected cooling means to solidify the coating of low-friction material.
2. A process as in
3. A process as in
6. A process as in
7. A process as in
8. A process as in
9. A process as in
11. An elongate metal rod having a coating of a low-friction material, manufactured using a process as in
13. A process as in
14. A process as in
17. A process as in
18. A process as in
19. A process as in
20. A process as in
22. A continuous metal sucker rod having a coating of a low-friction material, manufactured using a process as in
|
The present disclosure relates in general to sucker rods for use in conjunction with pump jacks on producing oil and gas wells, and in particular to processes for reducing friction between sucker rods and production tubing and resultant abrasion and wear.
In common methods for producing oil from a well drilled into an oil-bearing subsurface formation, a string of steel production tubing is positioned in the well bore and extending from the subsurface production zone up to a pump jack in accordance with well-known methods, and as schematically illustrated in
As the sucker rod reciprocates up and down within the production tubing, it inevitably comes into contact with the inner wall of the tubing. The resultant friction between the steel sucker rod and the tubing causes wear on both the rod and the tubing. In addition, this friction increases the magnitude of the force that needs to be provided by the pump jack to raise the sucker rod (and the travelling valve) on each upward stroke.
As an alternative to a pump jack as described above, well fluids may also be produced using a wellhead apparatus that rotates the sucker rod to drive a downhole screw pump (also known as a positive displacement pump), rather than reciprocating the sucker rod up and down. Although rotating sucker rods thus function in a different fashion than reciprocating sucker rods, they are nonetheless prone to friction-induced wear due to contact with the tubing.
Sucker rods are typically round or semi-elliptical in cross-section, and typically hot-rolled from carbon or alloy steel, with diameters ranging from ⅝ to 1⅛ inches. Sucker rods are commonly made up as a string of individual rods (typically 25 to 30 feet in length) threaded together using internally-threaded tubular couplers. The ends of a threaded sucker rod are typically upset (i.e., larger in diameter than the main length of the rod), and are threaded for mating engagement with couplers. The upset portion at each end of a threaded sucker rod is typically about 5 inches long, and includes a tool-engagement section to facilitate use of a wrench to tighten a coupler onto the rod. However, it is also known to use continuous sucker rod, such as COROD® continuous sucker rod available from Weatherford International Ltd.
It is known to mitigate the undesirable consequences of friction between sucker rods and production tubing by lining the tubing (i.e., coating the inner surfaces of the tubing) with a low-friction material such as HDPE (high-density polyethylene). Although lined tubing reduces friction, the steel sucker rods are still prone to deterioration due to friction-induced wear notwithstanding the lining, and friction loads still will be imposed on the pump jack. For these reasons, there is a need in the oil and gas industry for means for further reducing friction between sucker rods and the production tubing in which they reciprocate.
In one aspect, the present disclosure teaches processes for coating or encasing either continuous or individual steel rods with a friction-resistant material (alternatively referred to herein as a low-friction or friction-reducing material, and meaning a material having a comparatively low coefficient of friction such that that the frictional resistance of an object or surface to which the material is applied will be reduced). In a further aspect, the disclosure relates to continuous or individual steel rods that have been coated or encased with a friction-resistant material. When steel rods coated in accordance with the present teachings are used as sucker rods reciprocating or rotating within the production tubing of an oil well, friction-induced forces and wear arising from contact between the sucker rods and the tubing are significantly reduced. This is most particularly the case when the tubing is lined or coated with a friction-resistant material as well, due to the very low coefficient of friction between the friction-resistant material coating the sucker rods and the friction-resistant material lining the tubing.
In preferred embodiments, the friction-resistant coating material is a polymeric material comprising either a thermoplastic material or a thermoset material or both. The coating can be formed of co-polymers, homo-polymers, composite polymers, or co-extruded composite polymers. The term “co-polymers” refers to materials formed by mixing two or more polymers, “homo-polymers” refers to materials formed from a single polymer, and “composite polymers” refers to materials formed of two or more discrete polymer layers that can either be permanently bonded or fused.
The polymeric materials used to coat steel rods in accordance with the present disclosure may comprise any one or more of various polymers. In particularly preferred embodiment, the friction-resistant coating material is high-density polyethylene (HDPE) or cross-linked polyethylene (PEX). Polyethylene in general has several advantages over other materials such as polyurethane. For example, polyethylene has a lower coefficient of friction than polyurethane, it is easier to manufacture (e.g., it does not require catalysts or curing agents, and does not require time to cure), it is easier to recycle than thermoplastic polyurethane, and it is less costly.
However, the present disclosure is not restricted to the use of polyethylene or any other particular coating material. Other polymeric coating materials that may be used in accordance with the present teachings include but are not limited to polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE, or “Teflon”®), polyphenylensulfide (PPS, or “Fortron”®), polyamide (nylon), polyester, polyethersulfone, polyethylene terephthalate (PET), polypropylene, polystyrene, epoxy, and acetyl.
The coating material preferably but not necessarily will have an axial modulus of elasticity exceeding 100,000 psi, low thermal conductivity, elasticity (i.e., elongation before rupture) of at least 500%, extreme high chemical resistance, within an operating temperature range from as low as −75° C. to as high as +220° C., as required or desired to suit particular operational conditions.
Embodiments in accordance with the present disclosure will now be described with reference to the accompanying Figures, in which numerical references denote like parts, and in which:
After passing through surface preparation stage 30, the uncoated continuous rod 15A proceeds to adhesive application stage 40 where a suitable known adhesive or bonding agent is applied to the rod surface. The specific adhesive material applied in adhesive application stage 40 will depend on the physical properties and surface condition of continuous rod 15A, as well as the properties of the selected coating material.
Next, the adhesive-treated continuous rod 15A passes through extrusion apparatus 50, which receives melted HDPE (or other selected coating material) from a suitable melter (not shown), which may be part of extrusion apparatus 50 or separate from it. Extrusion apparatus 50 incorporates an extrusion die (not shown) configured to result in the application of a preferably substantially uniform circumferential coating of coating material over continuous rod 15A as it passes through the extrusion die in conjunction with a concurrent flow of melted coating material through the die. Typically and desirably, the radial thickness of the coating will be in the range of ⅛ to ⅜ of an inch, but the coating thickness could be outside this range to suit particular requirements.
The now-coated continuous rod (indicated by reference number 15B in
After exiting cooling stage 60, coated continuous rod 15B passes through puller stage 70, which grips coated rod 15B and applies tractive force to pull it through the various stages of coating apparatus 10, without damaging the coating material. The finished coated continuous rod 15B is then wound onto a take-up reel 26. As will be understood by persons skilled in the art, coating apparatus 10 typically will also incorporate suitable idlers and guides (schematically represented by reference numbers 22 and 24 in
Friction-resistant coatings can also be extruded onto non-continuous rods in accordance with unillustrated alternative embodiments of the process and apparatus shown in
In another variant of the process, the friction-resistant coating is extruded onto substantially the fully length of the threaded-end rods, and the excess coating material is removed later. This alternative process may be best understood with reference to
Depending on specific requirements, it may be necessary or desirable to expand or dilate the extrusion die to allow the upset rod ends to pass through. In preferred embodiments, however, the extrusion die will be of suitable size and configuration to permit passage of the upset rod ends.
It will be readily appreciated by persons skilled in the art that various modifications of embodiments in accordance with the present disclosure may be devised without departing from the scope and teaching of the present disclosure, including modifications which may use equivalent structures or materials hereafter conceived or developed. It is to be especially understood that the disclosure is not intended to be limited to any described or illustrated embodiment, and that the substitution of a variant of a claimed element or feature, without any substantial resultant change in operation or functionality, will not constitute a departure from the intended scope of the claim. It is also to be appreciated that the different teachings of the embodiments described and discussed herein may be employed separately or in any suitable combination to produce desired results.
In this patent document, any form of the word “comprise” is to be understood in its non-limiting sense to mean that any item following such word is included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one such element. Any use of any form of the word “typical” is to be understood in the non-limiting sense of “common” or “usual”, and not as suggesting essentiality or invariability. Any use of any form of the terms “connect”, “engage”, “couple”, “attach”, or any other term describing an interaction between elements is not meant to limit the interaction to direct interaction between the subject elements, and may also include indirect interaction between the elements through secondary or intermediary structure.
Patent | Priority | Assignee | Title |
11060386, | Nov 01 2018 | Pro-Pipe Service & Sales Ltd. | Tubular for downhole use |
11619121, | Nov 01 2018 | Pro-Pipe Service & Sales Ltd. | Method for forming a sleeve for insulating a joint of downhole tubing |
Patent | Priority | Assignee | Title |
3815640, | |||
4905760, | Oct 26 1987 | ICO WORLDWIDE, INC | Sucker rod coupling with protective coating |
5439711, | Jun 23 1994 | W. R. Grace & Co.-Conn. | Method for co-reactive extrusion coating of pipe using thermosetting material |
6174569, | Mar 31 1993 | BASF Coatings AG | Three-layer metal pipe coating compositions and process for the exterior coating or metal pipes by a three-layer method |
CA2291393, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 16 2012 | Lifting Solutions Energy Services, Inc. | (assignment on the face of the patent) | / | |||
Sep 30 2014 | MOORE, RUSSEL, MR | LIFTING SOLUTIONS ENERGY SERVICES INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035087 | /0595 | |
Sep 30 2014 | MOORE, JORDAN, MR | LIFTING SOLUTIONS ENERGY SERVICES INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035087 | /0595 |
Date | Maintenance Fee Events |
Nov 18 2020 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 19 2024 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
May 30 2020 | 4 years fee payment window open |
Nov 30 2020 | 6 months grace period start (w surcharge) |
May 30 2021 | patent expiry (for year 4) |
May 30 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 30 2024 | 8 years fee payment window open |
Nov 30 2024 | 6 months grace period start (w surcharge) |
May 30 2025 | patent expiry (for year 8) |
May 30 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 30 2028 | 12 years fee payment window open |
Nov 30 2028 | 6 months grace period start (w surcharge) |
May 30 2029 | patent expiry (for year 12) |
May 30 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |