A method for operating a shearing tool that includes: operating a first switch to control a drive unit to drive a blade of a blade set; and operating a second switch to cause the drive unit to operate in an anti-binding mode in which a direction of an input to the drive unit is alternated at least twice. A shearing tool is also provided.
|
1. A shearing tool comprising:
a housing;
a blade set having first and second shearing blades;
a drive unit received in the housing and drivingly coupled to at least one of the first and second shearing blades, the drive unit having a motor having an output shaft that is rotatable in a first rotary direction and a second rotary direction that is opposite the first rotary direction, wherein rotation of the output shaft of the motor in the first rotary direction creates relative motion between the first and second shearing blades that permits the blade set to shear a workpiece;
a trigger switch;
a release switch; and
a controller coupled to the drive unit, the trigger switch and the release switch, the controller being configured to operate the drive unit at least partly in response to a state of the trigger switch and a state of the release switch;
wherein the trigger switch is configured to provide a first trigger signal when the trigger switch is in a first trigger switch state, and to provide a second trigger signal when the trigger switch is in a second trigger switch state;
wherein the release switch is configured to provide a first release signal when the release switch is in a first release switch state, and to provide a second release signal when the release switch is in a second release switch state; and
wherein the controller is configured to operate the drive unit in a cutting mode in which the motor is driven in the first rotary direction when the trigger switch is in the second trigger switch state and the release switch is in the first release switch state, and wherein the controller is configured to operate the drive unit in an anti-binding mode in which the motor is alternately driven in the first and second rotary directions in response to maintained operation of the trigger switch in the second trigger switch state with operation of the release switch in the second release switch state.
2. The shearing tool of
3. The shearing tool of
4. The shearing tool of
5. The shearing tool of
6. The shearing tool of
7. The shearing tool of
8. The shearing tool of
9. The shearing tool of
10. The shearing tool of
11. The shearing tool of
12. The shearing tool of
13. The shearing tool of
14. The shearing tool of
|
The present disclosure relates to a shearing tool.
This section provides background information related to the present disclosure which is not necessarily prior art.
Shearing tools, such as hedge trimmers, are commonly employed in the maintenance of landscape to trim vegetation. Such shearing tools commonly have a pair of shearing blades that can be moved relative to one another to shear a workpiece, such as a branch of a shrub. Shearing motion of the blades is commonly responsive to the operator's use of a trigger switch that is integrated into the shearing tool.
It is relatively commonplace for the shearing blades to jam on occasion, as when attempting to cut a workpiece that is relatively large in cross-sectional area or when cutting several workpieces simultaneously. In such situations, the operator of a prior art shearing tool has very limited capability to un-jam the shearing blades. For example, the operator could release and re-activate the trigger switch, but doing so would merely stop and restart the motor that provides power to the shearing blades; because the jammed workpiece is disposed between the shearing blades and the shearing blades have no additional momentum, it is unlikely that merely stopping and re-starting the motor will be effective in un-jamming the shearing blades of the shearing tool. A remaining option is to pull the workpiece out of the shearing blades, for example by tugging on the shearing tool.
A shearing tool that is disclosed in U.S. Patent Application Publication No. 2009/0188361 is configured with a control means that changes the direction of the movement of the shearing blade(s) automatically in response to an event sensed by the control means. The event could be an increase in or a high value of a cutting load or the activation of a trigger switch that is operated by the user of the shearing tool to cause the motor to operate. One problem that we have noted with this configuration concerns the inability of the control means to distinguish between a workpiece and a foreign object, such as fencing or netting. We have noted that often times it would not be desirable to attempt to cut through a foreign object that has (inadvertently) become jammed between the shearing blades. Accordingly, there remains a need in the art for an improved shearing tool having capabilities for unjamming a set of jammed shearing blades.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present teachings provide a shearing tool that includes a housing, a blade set having first and second shearing blades, a drive unit, a trigger switch, a release switch and a controller. The drive unit is received in the housing and is drivingly coupled to at least one of the first and second shearing blades. The drive unit has a motor with an output shaft that is rotatable in a first rotary direction and a second rotary direction that is opposite the first rotary direction. Rotation of the output shaft of the motor in the first rotary direction creates relative motion between the first and second shearing blades that permits the blade set to shear a workpiece. The trigger switch and the release switch are coupled to the housing. The controller is coupled to the drive unit, the trigger switch and the release switch and is configured to operate the drive unit at least partly in response to a state of the trigger switch and a state of the release switch.
In another form, the present teachings provide a method for operating a shearing tool. The method includes: operating a first switch to control a drive unit to drive a blade of a blade set; and operating a second switch to cause the drive unit to operate in an anti-binding mode in which a direction of an input to the drive unit is alternated at least twice.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
With reference to
With additional reference to
Returning to
The release switch 20 is mounted to the housing 12 and is operable in a first release switch state, in which the release switch 20 is configured to provide a first release switch signal, and a second release switch state in which the release switch 20 is configured to provide a second release switch signal. The state of the release switch 20 is responsive to the actuation of a switch actuator 68. In the particular example provided, the switch actuator 68 is coupled to the housing 12 for movement between a first actuator position, which is associated with operation of the release switch 20 in the first release switch state, and a second actuator position that is associated with operation of the release switch 20 in the second release switch state. The switch actuator 68 can include a button 70 that can be positioned in any desired location on the housing 12, such as in a location where it can be pressed by the thumb of the hand of an operator of the shearing tool 10 that is used to operate the trigger switch 18. In the particular example provided, the switch actuator 68 prevents over-travel of the contacts of the release switch 20 (through contact between the switch actuator 68 and another suitable structure, such as a housing 20h of the release switch 20), but it will be appreciated that the release switch 20 could be configured and positioned so that it can be directly operated by the operator of the shearing tool 10.
The controller 22 is coupled to the drive unit 16, the trigger switch 18 and the release switch 20 and is configured to operate the drive unit 16 at least partly in response to a state of the trigger switch 18 and a state of the release switch 20. More specifically, the controller 22 is configured to receive signals provided by the trigger switch 18 and the release switch 20 and to responsively operate the motor 50 of the drive unit 16.
The trigger switch 18 provides a first trigger switch signal when the trigger switch 18 not activated (i.e., in the first trigger switch state) and provides a second trigger switch signal when the trigger switch 18 is activated (i.e., in the second trigger switch state). The controller 22 is configured such that upon receipt of the first trigger switch signal (and either the first release switch signal or the second release switch signal), the controller 22 responsively operates the drive unit 16 to inhibit the supply of electrical power to the motor 50 that would cause rotation of the motor 50 in either rotational direction. Accordingly, the controller 22 is configured to control the drive unit 16 such that the drive unit 16 will not cause corresponding reciprocating motion of the first blade 40 relative to the second blade 42 when the controller 22 receives the first trigger switch signal from the trigger switch 18.
The controller 22 is also configured such that upon receipt of the second trigger switch signal (and the first release switch signal), the controller 22 responsively controls the operation of the drive unit 16 to cause rotation of the motor 50 in the first rotational direction to cause corresponding reciprocating motion of the first blade 40 relative to the second blade 42. Accordingly, the controller 22 is configured to control the drive unit 16 such that the motor 50 of the drive unit 16 will rotate in the first rotational direction to cause corresponding reciprocating motion of the first blade 40 relative to the second blade 42 when the controller receives the second trigger switch signal from the trigger switch 18 and the first release switch signal from the release switch 20.
The controller 22 is further configured to operate the drive unit 16 in an anti-binding mode in response to receipt of the second trigger switch signal and the second release switch signal. When the drive unit 16 is operated in the anti-binding mode, the motor 50 is alternately driven in the first and second rotary directions in a predetermined manner provided that the state of the trigger switch 18 is maintained in the second trigger switch state. The controller 22 terminates operation of the drive unit 16 in the anti-binding mode after the occurrence of one of a plurality of predetermined termination events. The predetermined termination events could comprise, for example: a) a change in the state of the trigger switch 18 to the first trigger switch state, b) a change in the state of the release switch 20 from the second release switch state to the first release switch state, c) the elapse of a predetermined amount of time, d) completion of an anti-binding control routine, or e) in response to determining that the load on the drive unit 16 that is associated with driving the blade set 14 has dropped below a predetermined threshold.
With additional reference to
In decision block 106, control determines if the state of the release switch 20 has changed from the first release switch state to the second release switch state. If the state of the release switch 20 has not changed to the second release switch state, control loops back to block 104. If, however, the state of the release switch 20 has changed in decision block 106, control proceeds to block 108 to operate the drive unit 16 in the anti-binding mode.
In block 108 control halts operation of the motor 50 for a predetermined length of time, such as 60 milliseconds. Control proceeds to decision block 110, where control determines if an anti-binding mode termination event has occurred. The anti-binding mode termination event can be selected from a plurality of predetermined termination events, such as a predetermined maximum time of continuous operation of the anti-binding mode (e.g., a time that is greater than or equal to 840 milliseconds), the occurrence of a predetermined quantity of reversals in the rotational direction in which the motor 50 is operated, and/or a change in the state of the trigger switch 18 (to the first trigger switch state). Optionally, the plurality of predetermined termination events can comprise a change in the state of the release switch 20 (to the first release switch state). If control determines that one or more of the predetermined termination events has occurred, control proceeds to block 112 where the anti-binding mode terminates. Control loops back to block 104.
Returning to decision block 110, if control determines that none of the predetermined termination events has occurred, control proceeds to block 114, where control operates the motor 50 in the second rotational direction at a predetermined speed, such as at a maximum speed, for a predetermined length of time, such as 150 milliseconds. It will be appreciated that reversing the direction of the rotation of the motor 50 will reverse the direction in which the first blade 40 is driven relative to the second blade 42 to thereby separate the first and second shearing teeth 46a and 48a (
Control proceeds to decision block 116, where control determines if an anti-binding mode termination event has occurred. If control determines that one or more of the predetermined termination events has occurred, control proceeds to block 112 where the anti-binding mode terminates. Returning to decision block 116, if control determines that none of the predetermined termination events has occurred, control proceeds to block 118, where control halts operation of the motor 50 for a predetermined length of time, such as 60 milliseconds.
Control proceeds to decision block 120, where control determines if an anti-binding mode termination event has occurred. If control determines that one or more of the predetermined termination events has occurred, control proceeds to block 112 where the anti-binding mode terminates. Returning to decision block 120, if control determines that none of the predetermined termination events has occurred, control proceeds to block 122, where control operates the motor 50 in the first rotational direction at a predetermined speed, such as at a maximum speed, for a predetermined length of time, such as 150 milliseconds. It will be appreciated that reversing the direction of the rotation of the motor 50 will reverse the direction in which the first blade 40 is driven relative to the second blade 42 to thereby drive the first and second shearing teeth 46 and 48 toward one another in an attempt to cut through the workpiece W (
Control proceeds to decision block 124, where control determines if an anti-binding mode termination event has occurred. If control determines that one or more of the predetermined termination events has occurred, control proceeds to block 112 where the anti-binding mode terminates. Returning to decision block 124, if control determines that none of the predetermined termination events has occurred, control loops back to block 104.
While the method has been described as employing a timer that is employed as one possible condition for terminating the anti-binding mode, it will be appreciated that a method in accordance with the teachings of the present disclosure need not employ such a timer. Rather, the method could be configured to progress through a predetermined quantity of discrete steps as a prerequisite for normally terminating the anti-binding mode. For example, the method could be configured to alternate a direction of an input to the drive unit 16 at least twice. It will also be appreciated that while the methodology has been illustrated and described as including discrete steps at which control determines whether or not an anti-binding mode termination event has occurred, the methodology could be configured such that control determines on a more frequent basis (e.g., at regular and relatively more frequent intervals or on a continuous basis) whether an anti-binding mode termination event has occurred.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Sergyeyenko, Oleksiy P., Wu, Robert, Dyer, Kelly E., Ng, Wong Kun
Patent | Priority | Assignee | Title |
11432467, | Jun 28 2019 | YAMABIKO CORPORATION | Reciprocating blade apparatus and handheld working machine |
11432468, | Jun 28 2019 | YAMABIKO CORPORATION | Reciprocating blade apparatus and handheld working machine |
ER2636, | |||
ER3712, | |||
ER410, | |||
ER5455, | |||
ER8418, | |||
ER8700, | |||
ER9359, |
Patent | Priority | Assignee | Title |
2225171, | |||
3347029, | |||
3408875, | |||
3611083, | |||
3961671, | Sep 03 1974 | Earth anchor drive process | |
4495456, | Sep 23 1982 | General Binding Corporation | Automatic reversing system for shredder |
4533800, | Dec 09 1983 | Bankers Trust Company | Reversible rotary actuator |
4534390, | Nov 09 1983 | CHIPARVESTORS, INC , WINN, MICHIGAN 48896 A CORP OF MI | Portable chipper with relatively low power high torque tree feed mechanism for feeding the tree or other product to be chipped at a controlled feed angle |
4609155, | Apr 09 1985 | SHREDDING SYSTEMS, INC , A CORP OF OR | Shredding apparatus including overload protection of drive line |
4611461, | May 04 1984 | Olive picker with speed control and selected picker dimensions | |
4793561, | May 24 1982 | MAC Corporation of America | Speed-responsive reversing hydraulic drive for rotary shredder |
4925116, | Mar 07 1989 | Slow speed shredder | |
4944461, | Aug 07 1989 | Invequest, Inc. | Carbon paper shredder |
5150523, | Jul 11 1991 | RYOBI NORTH AMERICA, INC | Deadman switch arrangement for a hedge trimmer |
5252904, | Nov 02 1992 | General Binding Corporation | Auto reverse circuit |
6293479, | Nov 29 1999 | Clark Equipment Company | Feed control hydraulic circuit for wood chipper attachment |
6814320, | Dec 10 2001 | BANDIT INDUSTRIES, INC | Reversing automatic feed wheel assembly for wood chipper |
6830204, | Dec 10 2001 | BANDIT INDUSTRIES, INC | Reversing automatic feed wheel assembly for wood chipper |
6886317, | Jan 25 2003 | Global Neighbor Incorporated | Low energy sickle mower and system using controlled gap thin blade shear process and torque management |
7011258, | Nov 08 2000 | Vermeer Manufacturing Co. | Brush chipper and methods of operating same |
7044409, | Nov 08 2000 | Vermeer Manufacturing Company | Brush chipper and methods of operating same |
7232083, | Nov 08 2000 | Vermeer Manufacturing Co. | Method of operating brush chippers |
7448563, | Apr 27 2004 | INSINKERATOR LLC | De-jamming device and method |
7543434, | Jan 25 2003 | Global Neighbor Inc. | Low energy sickle mower system using controlled gap thin blade shear process and torque management |
7633252, | Apr 14 2005 | Lear Corporation | Bidirectional motor stall protection circuit |
7637444, | Nov 08 2000 | Vermeer Manufacturing Co. | Brush chipper and methods of operating same |
7654479, | Nov 08 2000 | Vermeer Manufacturing Co. | Method of controlling a brush chipper |
8523095, | May 10 2007 | Vermeer Manufacturing Company | Feed control arrangement |
20090188361, | |||
20120017558, | |||
20130025135, | |||
20140047719, | |||
20150289451, | |||
20150355280, | |||
EP1969919, | |||
EP2027767, | |||
EP2027768, | |||
GB2492886, | |||
JP2005269972, | |||
SE2011120534, | |||
WO2013023696, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 14 2014 | SERGYEYENKO, OLEKSIY P | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034053 | /0809 | |
Oct 14 2014 | NG, WONG KUN | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034053 | /0809 | |
Oct 14 2014 | WU, ROBERT | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034053 | /0809 | |
Oct 20 2014 | DYER, KELLY E | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034053 | /0809 | |
Oct 28 2014 | Black & Decker Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 24 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 03 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 13 2020 | 4 years fee payment window open |
Dec 13 2020 | 6 months grace period start (w surcharge) |
Jun 13 2021 | patent expiry (for year 4) |
Jun 13 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 13 2024 | 8 years fee payment window open |
Dec 13 2024 | 6 months grace period start (w surcharge) |
Jun 13 2025 | patent expiry (for year 8) |
Jun 13 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 13 2028 | 12 years fee payment window open |
Dec 13 2028 | 6 months grace period start (w surcharge) |
Jun 13 2029 | patent expiry (for year 12) |
Jun 13 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |