A system, method and apparatus may comprise a wafer having a plurality of spiral test structures located on the kerf of the wafer. The spiral test structure may comprise a spiral connected at either end by a capacitor to allow the spiral test structure to resonate. The spiral structures may be located on a first metal layer or on multiple metal layers. The system may further incorporate a test apparatus having a frequency transmitter and a receiver. The test apparatus may be a sensing spiral which may be placed over the spiral test structures. A controller may provide a range of frequencies to the test apparatus and receiving the resonant frequencies from the test apparatus. The resonant frequencies will be seen as reductions in signal response at the test apparatus.
|
7. A system comprising:
a semiconductor wafer comprising a plurality of spiral test structures, the plurality of spiral test structures each comprising a single capacitor and a test spiral, the capacitor comprises a first conductive plate and a second conductive plate separated by an insulator, the first conductive plate is electrically connected to one end of the test spiral and the second conductive plate is electrically connected to the other end of the test spiral such that each of the plurality of spiral test structures comprises a predetermined resonant frequency based on physical dimensions of its test spiral and a capacitance of its capacitor, wherein each metal wiring layer of the semiconductor wafer comprises a first test spiral and a second test spiral each having different wire thickness and different wire spacing from each other;
a test apparatus, comprising a frequency transmitter and a receiver; and
a controller for providing a range of frequencies to the test apparatus and receiving resonant frequencies from the test apparatus.
17. An apparatus comprising:
a first spiral winding on a metal wiring layer of a semiconductor wafer;
a first capacitor connected to both ends of the first spiral winding, the first capacitor comprises a first conductive plate and a second conductive plate separated by an insulator, the first conductive plate is electrically connected to one end of the first spiral winding and the second conductive plate is electrically connected to the other end of the first spiral winding such that the first spiral winding and the first capacitor comprises a first predetermined resonant frequency based on physical dimensions of the first spiral winding and a capacitance of the first capacitor;
a second spiral winding on the metal wiring layer of a semiconductor wafer; and
a second capacitor connected to both ends of the second spiral winding, the second capacitor comprises a first conductive plate and a second conductive plate separated by an insulator, the first conductive plate is electrically connected to one end of the second spiral winding and the second conductive plate is electrically connected to the other end of the second spiral winding such that the second spiral winding and the second capacitor comprises a second predetermined resonant frequency based on physical dimensions of the first spiral winding and a capacitance of the first capacitor, a wire width of the first test spiral is smaller than a wire width of the second test spiral, and a wire spacing of the first test spiral is greater than a wire spacing of the second test spiral,
wherein the resonant frequency of the first spiral winding is different from the first predetermined resonant frequency based on whether an open circuit is present,
wherein the resonant frequency of the second spiral winding is different from the second predetermined resonant frequency based on whether a short circuit is present.
23. A method comprising:
forming a first test spiral test structure entirely in a kerf region of a semiconductor wafer, the first spiral test structure comprising a first deep trench capacitor connected to a first test spiral, the first test spiral is a metal wire in a spiral configuration located in a single metal wiring level above a semiconductor substrate of the semiconductor wafer, the first deep trench capacitor is located in the semiconductor substrate and electrically connected to two ends of the first test spiral, the first deep trench capacitor comprises a first conductive plate and a second conductive plate separated by a first insulator, the first conductive plate is electrically connected without interruption to one end of the first test spiral and the second conductive plate is electrically connected without interruption to the other end of the first test spiral such that the first spiral test structure comprises a first predetermined resonant frequency dependent on physical dimensions of the first test spiral and a capacitance of the first deep trench capacitor;
forming a second spiral test structure entirely in the kerf region, the second spiral test structure comprising a second deep trench capacitor connected to a second test spiral, the second test spiral is a metal wire in a spiral configuration located in the single metal wiring level, the second deep trench capacitor is located in the semiconductor substrate and electrically connected to two ends of the second test spiral, the second deep trench capacitor comprises a third conductive plate and a fourth conductive plate separated by a second insulator, the third conductive plate is electrically connected without interruption to one end of the second test spiral and the fourth conductive plate is electrically connected without interruption to the other end of the second test spiral such that the second spiral test structure comprises a second predetermined resonant frequency dependent on the physical dimensions of the second test spiral and a capacitance of the second deep trench capacitor, a wire width of the first test spiral is smaller than a wire width of the second test spiral and a wire spacing of the first test spiral is greater than a wire spacing of the second test spiral.
1. A method comprising:
forming a first spiral test structure in a wiring layer of a semiconductor wafer, the first spiral test structure comprising a first capacitor connected to two ends of a first test spiral, the first capacitor comprises a first conductive plate and a second conductive plate separated by an insulator, the first conductive plate is electrically connected to one end of the first test spiral and the second conductive plate is electrically connected to the other end of the first test spiral such that the first spiral test structure comprises a first predetermined resonant frequency dependent on physical dimensions of the first test spiral and a capacitance of the first capacitor;
forming a second spiral test structure in the wiring layer of the semiconductor wafer, the second spiral test structure comprising a second capacitor connected to two ends of a second test spiral, the second capacitor comprises a first conductive plate and a second conductive plate separated by an insulator, the first conductive plate is electrically connected to one end of the second test spiral and the second conductive plate is electrically connected to the other end of the second test spiral such that the second spiral test structure comprises a second predetermined resonant frequency dependent on physical dimensions of the second test spiral and a capacitance of the second capacitor, a wire width of the first test spiral is smaller than a wire width of the second test spiral, and a wire spacing of the first test spiral is greater than a wire spacing of the second test spiral;
providing a first range of frequencies to the first spiral test structure from a test apparatus causing the first spiral test structure to resonate at a first reflected resonant frequency;
monitoring the first reflected resonant frequency of the first spiral test structure;
determining if an open circuit exist in the first spiral test structure based on a change in the first resonant frequency as compared to the first predetermined resonant frequency;
providing a second range of frequencies to the second spiral test structure from the test apparatus causing the second spiral test structure to resonate at a second reflected resonant frequency;
monitoring the second reflected resonant frequency of the second spiral test structure; and
determining if a short exist in the second spiral test structure based on a change in the second resonant frequency as compared to the second predetermined resonant frequency.
2. The method of
placing a sensing spiral of the test apparatus directly above the first test spiral without contacting the first test spiral;
placing the sensing spiral of the test apparatus directly above the second test spiral without contacting the second test spiral.
3. The method of
4. The method of
5. The method of
6. The method of
8. The system of
9. The system of
10. The system of
13. The system of
15. The system of
16. The system of
18. The apparatus of
21. The apparatus of
22. The apparatus of
24. The method of
placing a sensing spiral of the test apparatus directly above the first test spiral without contacting the first test spiral;
placing the sensing spiral of the test apparatus directly above the second test spiral without contacting the second test spiral.
25. The method of
26. The method of
27. The method of
28. The method of
forming an additional spiral test structures on another metal wiring layer above the single wiring layer.
|
The present invention relates generally to defect detection in semiconductor device manufacturing, and, more particularly, to a test structure for determining open and short circuits in semiconductor devices.
For advanced integrated circuit process, the wiring line width can be tens of nanometers. As a result one issue during production is electrical opens in the wiring lines. Electrical opens occur due to defects such as hollow metal, stress voiding, missing patterns and other process errors. Additionally, electrical shorts occur due to defects such as metal debris or out-diffusion between wiring lines. It is critical to have methods and test structures on the wafer to test for these errors in the production process which allows the production team to detect when an error occurs prior to completing the manufacture of the entire wafer.
As part of the process monitoring and inline test for product chips, specially designed structures are often placed in Kerf areas, which are between functional dies and will be cut out during the dicing process. Such test structures should facilitate maximizing the efficiency of detection for shorts and opens by allowing for as many tests as necessary, using a minimal amount of area, while still detecting all defects of concern with minimal “escapes” (i.e. missed defects).
Certain test structures for wiring line in existence, such as comb structures for example, are configured to detect short circuits. Other test structures may be a serpentine structure, hybrid serpentine structures made up of serpentine structures and comb structures to detect both short and open circuits, and finally spiral structures such as that found in U.S. Pat. No. 7,187,179, entitled, “Wiring Test Structure for Determining Open and Short Circuits in Semiconductor Devices”.
The current structures for open and short defect monitoring are designed for contact DC probing, where metal probes are brought in electrical contact with probe pads in order to detect open and short circuits. DC probing may subject the wafer to mechanical damage in low-k dielectrics and metal layer causing yield and reliability issues in advanced technologies. In addition metal probe pads (typically 60 um×80 um each) take significant space in the kerf area.
According to one embodiment of the present invention, a method comprises the steps of forming a spiral test structure on a wafer, the spiral test structure has a capacitor. A frequency signal is provided to the spiral test structure by a test apparatus, for example a sensing spiral. The test structure is monitored for a reflected resonant frequency from the spiral test structure. By monitoring the output it is possible to determine if an open or a short is present in the spiral test structure. This is possible as the test structure will resonate in view of the spiral contacted at either end by a capacitor. When the spiral test structure does not have opens or shorts, it will resonate at a first frequency, when an open or a short is present the resonate frequency will change. The frequency applied by the sensing spiral may be a range of frequencies for example the range comprising 1 GHz to 5 GHz, or the frequency range may be larger for example from 100 KHz to 10 GHz.
The method may further comprise the step when an open or a short is detected determining if the errors are acceptable, in the case errors are acceptable testing additional spiral test structures. If the errors are not acceptable determining if the wafer can be reworked.
A system may be utilized to implement the method, where the system may comprise a wafer having a plurality of spiral test structures located on the kerf of the wafer. The spiral structures may be located on a first metal layer or on multiple metal layers. The system may further incorporate a test apparatus having a frequency transmitter and a receiver. The test apparatus may be a sensing spiral which may be placed over the spiral test structures. A controller may provide a range of frequencies to the test apparatus and receiving the resonant frequencies from the test apparatus. The resonant frequencies will be seen as reductions in signal response at the test apparatus. The range of frequencies may be for example from one to five GHz.
The spiral test structure may comprise a spiral winding on a metal layer of a wafer with a capacitor connected to either end of said spiral winding. This will allow for the spiral test structure to resonate when a frequency signal is presented to apparatus. The resonant frequency of the spiral test structure may changes when a short or an open is present. The spiral test structure may be located on the kerf of the wafer. Further the capacitor may be for example a front end of line capacitor or a back end of line capacitor.
A second embodiment may comprise the steps of forming a spiral test structure on a wafer, the spiral test structure having a capacitor. A frequency signal may be provided to the spiral test structure from a test apparatus. When a signal is provided to the spiral test structure the output is monitored to identify a reflected resonant frequency from the spiral test structure. Finally based on the detected resonant frequency it is possible to determine if a short or an open is present in the spiral test structure.
The test apparatus may comprise a sensing spiral, wherein the sensing spiral is placed over the spiral test structure. Further the frequency signal may be a range of frequencies for example from 1 GHz to 5 GHz or an even greater range for example from 100 KHz to 10 GHz. When a short or an open is detected it is possible to determine if the errors are acceptable, in the case errors are acceptable testing additional spiral test structures. In the event the errors are not acceptable determining if the wafer can be reworked.
In a further embodiment, it is possible to test for both shorts and opens and test for these errors on multiple layers. For example by incorporating test structures with smaller wire widths and larger spacing it is possible to test for opens, while simultaneously, by placing structures with larger wire widths and smaller spacing it is possible to test for shorts. In addition by designing the spiral test structures to have different resonant frequencies it is possible to test multiple test structures simultaneously.
With reference now to
The test spiral 105 may be built on any one of the metal wire levels of the wafer. By building the test spiral 105 on multiple layers it is possible to determine if defects are present on multiple metal layers. Further by mixing of the test spiral 105 on the layers to test for opens and shorts it possible to determine whether either error may exist on any of the metal layers.
The capacitor 110 may be any one of the capacitors known to one of ordinary skill in the art. For example the capacitor may be front end of line (FEOL) capacitors such as polysilicon capacitors, deep trench capacitor or metal-insulator-silicon capacitors. In another embodiment the capacitors may be back end line (BEOL) capacitors, such as a vertical natural capacitor or metal-insulator-metal capacitor. It is possible to tune the test structure 115 by adjusting the capacitor 110 capacitance combined with the number of windings, size and shape of the test spiral 105. In this manner multiple test structures 115 may be tuned with different resonant frequencies thus allowing for the differentiation of multiple test structures 115.
The test apparatus may comprise a sensing spiral, wherein the sensing spiral is placed over the spiral test structure. The sensing spiral may be a spiral such as the one taught in
Once errors have been detected, the method may further comprise the step to determine if the errors are acceptable, in the case in which errors are acceptable the testing can move to additional spiral test structures. If the errors are not acceptable it may be advantageous to determine if the wafer can be reworked to correct the errors.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Feng, Kai D., Wang, Ping-Chuan, Yang, Zhijian, Ding, Hanyi
Patent | Priority | Assignee | Title |
11961771, | Dec 18 2018 | Mitsui Mining & Smelting Co., Ltd. | Laminate sheet and method of use thereof |
Patent | Priority | Assignee | Title |
6265890, | Aug 26 1999 | Lucent Technologies, INC | In-line non-contact depletion capacitance measurement method and apparatus |
6734960, | Jun 09 1999 | GLOBALWAFERS JAPAN CO , LTD | Wafer defect measuring method and apparatus |
6819120, | Nov 13 2002 | Northrop Grumman Systems Corporation | Non-contact surface conductivity measurement probe |
6859031, | Feb 01 2002 | CREDENCE, INC ; Credence Systems Corporation | Apparatus and method for dynamic diagnostic testing of integrated circuits |
6909291, | Jun 24 2003 | KLA-Tencor Technologies Corp. | Systems and methods for using non-contact voltage sensors and corona discharge guns |
7026175, | Mar 29 2004 | Applied Materials, Inc. | High throughput measurement of via defects in interconnects |
7102363, | Nov 21 2003 | SEMICONDUCTOR PHYSICS LABORATORY, INC | Method and system for non-contact measurement of microwave capacitance of miniature structures of integrated circuits |
7187179, | Oct 19 2005 | International Business Machines Corporation | Wiring test structures for determining open and short circuits in semiconductor devices |
7969564, | Oct 03 2002 | Applied Materials Israel, Ltd | System and method for defect localization on electrical test structures |
7982457, | Jan 15 2009 | Enerize Corporation | Method and eddy current system for non-contact determination of interface resistance |
20020068682, | |||
20020121914, | |||
20040007326, | |||
20040140861, | |||
20050223812, | |||
20060070450, | |||
20060234398, | |||
20070236851, | |||
20080197285, | |||
20090085589, | |||
20090240452, | |||
20100045304, | |||
20100231253, | |||
20100253380, | |||
20100332011, | |||
20110006794, | |||
20110010107, | |||
20110050262, | |||
20120062334, | |||
20130169308, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2012 | DING, HANYI | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029406 | /0430 | |
Dec 03 2012 | FENG, KAI D | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029406 | /0430 | |
Dec 04 2012 | WANG, PING-CHUAN | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029406 | /0430 | |
Dec 04 2012 | YANG, ZHIJIAN | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029406 | /0430 | |
Dec 05 2012 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 22 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 01 2020 | 4 years fee payment window open |
Feb 01 2021 | 6 months grace period start (w surcharge) |
Aug 01 2021 | patent expiry (for year 4) |
Aug 01 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 01 2024 | 8 years fee payment window open |
Feb 01 2025 | 6 months grace period start (w surcharge) |
Aug 01 2025 | patent expiry (for year 8) |
Aug 01 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 01 2028 | 12 years fee payment window open |
Feb 01 2029 | 6 months grace period start (w surcharge) |
Aug 01 2029 | patent expiry (for year 12) |
Aug 01 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |