A tibiotalar fusion system includes that includes a curved fusion nail and interlocking fasteners, along with delivery instrumentation. The curved ankle fusion nail is delivered with the fasteners in such a manner that the curved ankle fusion nail does not pass through the subtalar (talocalcaneal) joint. The curved fusion nail thus preserves the subtalar (talocalcaneal) joint and the natural motion of the hindfoot within a mammal such as, for example, a human. Additionally, drill guided delivery instrumentation and surgical methods of delivering and fixing the curved tibiotalar nail within a desired anatomical location such as the ankle.
|
1. A tibiotalar fusion system comprising:
a rod having a proximal end, a distal end, and an elongate body extending between the proximal end and the distal end, the elongate body being curved in a manner allowing the rod to be inserted through a talus bone and a tibial bone without penetrating a calcaneal bone;
a first hole passing through the elongate body of the rod; and
a first fastener sized to pass through the first hole in the elongate body of the rod and secure the rod to at least one of the talus bone or the tibial bone;
wherein at least a portion of the elongate body has a radius of curvature in a range between 1.5 and 4.0 inches.
11. A method of fusing together only a talus bone and a tibial bone, the method comprising:
drilling a hole along a curved path through only the talus bone and the tibial bone;
inserting a rod through the hole so that the rod spans only the talus bone and the tibial bone, the rod having a proximal end, a distal end, and an elongate body extending between the proximal end and the distal end, the elongate body being curved in a manner corresponding to the curved path of the hole; and
inserting a first screw through a first hole in the elongate body of the rod and at least one of the talus bone or the tibial bone;
wherein, at least a portion of the elongate body has a radius of curvature in a range between 1.5 and 4.0 inches.
2. The tibiotalar fusion system of
3. The tibiotalar fusion system of
4. The tibiotalar fusion system of
5. The tibiotalar fusion system of
6. The tibiotalar fusion system of
7. The tibiotalar fusion system of
8. The tibiotalar fusion system of
9. The tibiotalar fusion system of
10. The tibiotalar fusion system of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
This application claims the benefit of the filing date of U.S. Provisional Application No. 61/957,433, filed on Jul. 2, 2013. U.S. Provisional Application No. 61/957,433 is hereby incorporated by reference.
The present application generally relates bone fusion systems and methods, and more particularly, to bone fusion nails for repairing or treating an injury to an ankle joint area or a degenerative joint disease affecting an ankle joint area, instruments for delivering bone fusion nails and surgical methods of using bone fusion nails.
Painful degenerative joint disease of the ankle can be caused by many conditions including osteoarthritis, rheumatoid arthritis, trauma and deformity. These conditions are typically treated by surgical methods including fusion with screw fixation, fusion with intramedullary nailing, or a total ankle arthroplasty. Each of these choices presents significant problems. For instance, a screw used in fusion screw fixation may loosen over time and result in loss of fixation. Fusion screw fixation also involves a risk of screw migration or breakage, and may necessitate prolonged post-operative non-weight-bearing limitations on the patient. Traditional intramedullary nailing options may provide a stronger construct than fusion screw fixation and permit earlier post-operative weight-bearing activities by the patient. However, traditional intramedullary nails span the subtalar (talocalcaneal) joint and thus destroy the subtalar (talocalcaneal) joint. This aspect of traditional intramedullary nails severely limits motion of the hindfoot and makes it difficult to walk, especially on uneven surfaces. Another problem with traditional intramedullary nails is that such nails transfer a significant amount of stress to other joints of the foot, which can lead to degeneration of these joints, additional pain, and in some cases, require further surgical intervention. Because total ankle arthroplasty typically has an unacceptably high failure rate, ankle fusion is generally viewed as a more reliable choice for the treatment of degenerative joint disease of the ankle.
Currently available intramedullary nailing options, while better than most other treatment options, each require the fusion nail to be inserted through the heel bone or calcaneus bone, through the subtalar (talocalcaneal) joint, up through the talus bone, through the tibiotalar joint, and into the tibia. A need therefore exists for devices and methods for delivering a secured fusion nail that bypasses and preserves the subtalar (talocalcaneal) joint.
A tibiotalar fusion system is disclosed that allows for the bypass of the subtalar (talocalcaneal) joint and includes a curved fusion nail and interlocking fasteners along with delivery and targeting instrumentation. The fasteners are used to secure the placement of the curved fusion nail in a desired anatomical location. The curved fusion nail is dimensioned so that it does not pass through the subtalar (talocalcaneal) joint, and thus preserves the subtalar joint and the natural motion of the hindfoot within a mammal, such as, a human.
Also disclosed are delivery instruments such as drill guide jigs that facilitate placement of the curved fusion nail within a desired location, such as an ankle joint area, and allow for precise specific fastener placement within the curved fusion nail.
Further disclosed are surgical methods of using the curved fusion nail for repair of ankle trauma, deformity, and/or treatment of degenerative ankle joints.
Embodiments and/or variations are now described by way of example with reference to the accompanying drawings.
Described herein is a curved tibiotalar fusion system including a curved fusion nail and interlocking fasteners along with delivery and targeting instrumentation, and additionally, surgical methods for using a tibiotalar fusion system. The presently disclosed curved tibiotalar fusion system and surgical methods may be utilized for the fusion of degenerative joints, such as, for example, a tibiotalar joint fusion. Also disclosed are delivery and targeting instrumentations, such as, for example, a drill guide jig, to currently align the fasteners with the curved fusion nail after the curved fusion nail is placed in the desired bone tissue surrounding the targeted joint, such as, for example, a tibiotalar joint.
The curved fusion nail 101 includes a proximal end 113, a distal end 115 and an elongate body 130 extending between the proximal end 113 and the distal end 115. The elongate body 130 is curved in a manner allowing the curved fusion nail 101 to be inserted through the talus bone 105 and into the tibia bone 103 without penetrating the calcaneal bone 121. In one embodiment, at least a portion of the elongate body 130 possesses a radius of curvature in a range between approximately (e.g., ±10%) 1.5 and 4.0 inches, or lesser or greater. For example, at least a portion of the elongate body 130 may possess a radius of curvature in a range between 2.0 and 3.0 inches. Additionally, the proximal end 113 and the distal end 115 of the nail 101 may be curved, as illustrated in the figures, and their respective radiuses of curvature may fall within the previously described ranges. In one embodiment, only the proximal end 113 is curved. The elongate body 130 is not limited to having a single radius of curvature. Different portions of the elongate body 130 may have different radiuses of curvature. For example, the radius of curvature of the middle portion of the elongate body 130 may be greater than the ends of the elongate body 130 such that the elongate body 130 becomes straighter near its ends. The elongate body 130 may have a circular cross section and have a diameter in a range between approximately (e.g., ±10%) 7.0 and 12.0 mm, for example, between 8.0 and 11.0 mm, and, for example, between 9.0 and 10.0 mm. The curved fusion nail 101 may be made of any suitable material for placement within the body, including, but not limited, titanium and/or stainless steel. The curved fusion nail 101 may also be coated with a therapeutic agent to aid in the healing process such as, for example, a bone-growth promoting agent. Each of the fasteners 109, 110, 111 may have an external thread, as shown in the figures, and have a diameter in a range between approximately (e.g., ±10%) 4.0 and 5.5 mm, for example, between 4.5 and 5.0 mm.
In the preferred embodiment of the method disclosed the surgeon would drill a hole along a curved path through the talus bone 105 and the tibia bone 103, then deliver a curved fusion nail 101 by entering the talus bone 105 at an angle deliver the curved fusion nail 101 through the talus bone 105, across the ankle (tibiotalar) joint 107, and then place the curved fusion nail 101 with its distal end 115 within the tibia bone 103. This delivery method preserves the subtalar (talocalcaneal) joint 119 from fusion and maintains normal motion of the hindfoot. Once the curved fusion nail 101 is placed, a drill guide jig 123 is utilized with the curved fusion nail 101 that allows for the accurate placement 125 of the proximal fasteners 110 and 111. The two distal fasteners 109 are then placed through the tibia bone 103 and the curved fusion nail 101.
In one embodiment, as illustrated in
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the described device as specifically shown here without departing from the spirit or scope of that broader disclosure. The various examples are, therefore, to be considered in all respects as illustrative and not limiting.
Patent | Priority | Assignee | Title |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 02 2014 | CMARR ENTERPRISES, LLC | (assignment on the face of the patent) | / | |||
Dec 12 2015 | MARRERO, ROY R , SR | CMARR ENTERPRISES | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037363 | /0312 | |
Aug 21 2017 | MARRERO, ROY R , SR | CMARR ENTERPRISES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043405 | /0275 | |
Aug 21 2017 | MARRERO, ROY R , SR | CMARR ENTERPRISES, LLC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 037363 FRAME: 0312 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 043676 | /0251 |
Date | Maintenance Fee Events |
Mar 24 2021 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 10 2020 | 4 years fee payment window open |
Apr 10 2021 | 6 months grace period start (w surcharge) |
Oct 10 2021 | patent expiry (for year 4) |
Oct 10 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 10 2024 | 8 years fee payment window open |
Apr 10 2025 | 6 months grace period start (w surcharge) |
Oct 10 2025 | patent expiry (for year 8) |
Oct 10 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 10 2028 | 12 years fee payment window open |
Apr 10 2029 | 6 months grace period start (w surcharge) |
Oct 10 2029 | patent expiry (for year 12) |
Oct 10 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |