A system comprising: a nasogastric tube comprising: (a) a main lumen having one or more proximal connectors for connecting to a source of substances or pressure; (b) at least four vacuum lumens peripherally surrounding said main lumen; and (c) at least four suction ports for sealingly drawing an inner wall of an esophagus thereagainst, each of said at least four suction ports associated with a different one of said at least four vacuum lumens, wherein said at least four suction ports are distributed between at least two different locations along a longitudinal axis of said nasogastric tube.

Patent
   9789029
Priority
Jul 17 2011
Filed
Dec 05 2013
Issued
Oct 17 2017
Expiry
Jul 16 2032
Assg.orig
Entity
Small
4
19
window open
1. A system comprising: a tube comprising:
(a) a main lumen having one or more proximal connectors for connecting to a source of substances or pressure;
(b) at least six discrete vacuum lumens peripherally surrounding said main lumen;
(c) a first set of at least three suction ports for circumferentially sealingly drawing an inner wall of an esophagus thereagainst, each of said first set of at least three suction ports associated with a different one of said at least six discrete vacuum lumens and peripherally distributed around said main lumen in a same longitudinal location with respect to said main lumen;
(d) a second set of at least three suction ports associated with a different one of said at least six discrete vacuum lumens and peripherally distributed around said main lumen in a same longitudinal location with respect to said main lumen; such that each of said at least six discrete vacuum lumens is associated with a single suction port; wherein said first and second sets of at least three suction ports are spaced apart between at least two different locations along a longitudinal axis of said tube; and
(e) a valve connected to said six discrete vacuum lumens, said valve structured to interchange applied vacuum between (i) those of said six discrete vacuum lumens which are associated with said first set of at least three suction ports and (ii) those of said six discrete vacuum lumens which are associated with said second set of at least three suction ports, thereby changing location of the esophagus coupling to the tube and diminishing or preventing damage to esophageal tissue.
13. A method comprising: introducing a nasogastric tube into an esophagus of a patient, said nasogastric tube comprising (a) a main lumen having one or more proximal connectors for connecting to a source of substances or pressure; (b) at least six discrete vacuum lumens peripherally surrounding said main lumen; and (c) a first set of at least three suction ports for circumferentially sealingly drawing an inner wall of an esophagus thereagainst, each of said at least three suction ports associated with a different one of said at least six discrete vacuum lumens and peripherally distributed around said main lumen in a same longitudinal location with respect to said main lumen, (d) a second set of at least three suction ports associated with a different one of said at least six discrete vacuum lumens and peripherally distributed around said main lumen in a same longitudinal location with respect to said main lumen; such that each of said at least six discrete vacuum lumens is associated with a single suction port; wherein said first and second sets of at least three suction ports are spaced apart between at least two different locations along a longitudinal axis of said nasogastric tube, (e) a valve connected to said at least six discrete vacuum lumens, said valve structured to interchange applied vacuum between (i) those of said at least six discrete vacuum lumens which are associated with said first set of at least three suction ports and (ii) those of said at vacuum lumens which are associated with said second set of at least three suction ports, thereby changing location of esophagus coupling to the nasogastric tube and diminishing or preventing damage to esophageal tissue; and applying a vacuum interchangeably to said at least six vacuum lumens so as to sealingly draw an inner wall of an esophagus thereagainst, each time in a different location along said esophagus.
2. The system according to claim 1, further comprising a vacuum source connected to said at least six discrete vacuum lumens through said valve.
3. The system of claim 2, wherein said at least six discrete vacuum lumens are connected to said vacuum source also via a pressure regulator.
4. The system of claim 1, further comprising a manifold configured to connect said at least six discrete vacuum lumens to said valve.
5. The system of claim 4, wherein said manifold is transparent.
6. The system of claim 1, wherein said main lumen and said at least six discrete vacuum lumens are constructed as one unit.
7. The system of claim 1, wherein said at least six discrete vacuum lumens are a separate unit from said main lumen, and wherein said at least six vacuum lumens are slidable relative to said main lumen.
8. The system of claim 1, wherein said main lumen and said at least six discrete vacuum lumens are arranged as concentrically arranged conduits.
9. The system of claim 1, further comprising one or more auxiliary suction ports proximal to said first and second sets of at least three suction ports.
10. The system of claim 1, wherein each of said first and second sets of at least three suction ports is formed as a concavity in an outer wall of said tube, the concavity having an opening to a respective one of said at least six discrete vacuum lumens, thereby preventing or diminishing damage to esophageal tissue.
11. The system of claim 1, wherein said tube further comprises two or more longitudinal radiopaque stripes.
12. The system of 1, wherein said two or more longitudinal radiopaque stripes are embedded in an outer wall of said tube.
14. The method of claim 13, wherein said at least six discrete vacuum lumens are connected to said vacuum via a pressure regulator and said valve.
15. The method of claim 14, further comprising visually monitoring a transparent manifold coupling said at least six discrete vacuum lumens with said valve for backflow of gastric substances.
16. The method of claim 15, wherein at least one suction port of said first or second set of at least three suction ports comprises two or more suction ports, successively arranged along a portion of a longitudinal axis of said nasogastric tube.
17. The method of claim 13, further comprising regulating the vacuum so that a suction level is not constant over time.
18. The method of claim 13, further comprising regulating the vacuum to said first or second set of at least three suction ports of said six discrete vacuum lumens, so as to create peristaltic movement or other oscillatory movement of the esophagus.
19. The method of claim 13, wherein said applying of the vacuum restricts at least 60% of passage through the esophagus.
20. The method of claim 13, wherein said first and second set of at least three suction ports comprise a graduated edging.

This application is a continuation in part of U.S. application Ser. No. 13/982,289, filed Jul. 29, 2013, which is a National Stage of International Application No. PCT/US2012/046850, filed Jul. 16, 2012, which claims priority to and the benefit of U.S. Provisional Application No. 61/508,670, filed Jul. 17, 2011. The entire contents of all of these are incorporated herein by reference.

The present invention relates generally to nasogastric tubes.

Enteral feeding is a form of hyperalimentation and metabolic support in which nutrient formulas or medicaments are delivered directly to the GI tract, either to the stomach or the duodenum. A nasogastric tube (NGT) is used for feeding and administering drugs and other oral agents. The tube is inserted into the patient's esophagus and stomach in order to ensure the passage of the agents into the stomach and not into the lungs. The NGT can also be used for suction of fluids from the stomach.

However, the use of NGTs can have disadvantages. Minor complications include nose bleeds, sinusitis, and a sore throat. Sometimes more significant complications occur including erosion of the nose where the tube is anchored, esophageal perforation, pulmonary aspiration, a collapsed lung, or intracranial placement of the tube.

Even worse, during feeding, excessive gastric pressure may result. From time to time, the body relieves such excess gastric pressure by expelling gas or liquid or reflux fluid. The fluids are expelled from the stomach through the esophagus to the mouth or nasal pathways. The reflux fluids may be inhaled into the lungs with possible risk of aspiration pneumonia, bacterial infection in the pharynx or esophagus or any other ailments. Accordingly, numerous studies have linked the use of the NGT to an increase in ventilator-associated pneumonia (VAP). VAP is the most common nosocomial infection in the intensive care unit (ICU), and it is associated with prolonged hospitalization, increased health care costs, and high attributable mortality.

There thus exists a pressing need for an NGT that is capable of significantly reducing the risk of reflux food and developing VAP.

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope.

There is provided, in accordance with an embodiment, a system comprising: a nasogastric tube comprising: (a) a main lumen having one or more proximal connectors for connecting to a source of substances or pressure; (b) at least four vacuum lumens peripherally surrounding said main lumen; and (c) at least four suction ports for sealingly drawing an inner wall of an esophagus thereagainst, each of said at least four suction ports associated with a different one of said at least four vacuum lumens, wherein said at least four suction ports are distributed between at least two different locations along a longitudinal axis of said nasogastric tube.

There is further provided, in accordance with an embodiment, a method comprising: introducing a nasogastric tube into an esophagus of a patient, said nasogastric tube comprising a main lumen having one or more proximal connectors for connecting to a source of substances or pressure, four or more vacuum lumens peripheral to said main lumen, and four or more suction ports, each of said four or more suction ports associated with a different one of said four or more vacuum lumens, wherein said four or more suction ports are distributed between at least two different locations along said nasogastric tube; and applying vacuum interchangeably to said four or more vacuum lumens so as to sealingly draw an inner wall of an esophagus thereagainst, each time in a different location along said esophagus.

In some embodiments, the system further comprises a vacuum source connected to said at least four vacuum lumens.

In some embodiments, said at least four vacuum lumens are connected to said vacuum source via a pressure regulator and a valve.

In some embodiments, said main lumen and said at least four vacuum lumens are constructed as one unit.

In some embodiments, said at least four vacuum lumens are a separate unit from said main lumen, and wherein said at least four vacuum lumens are slidable relative to said main lumen.

In some embodiments, said main lumen and said at least four vacuum lumens are arranged as concentrically arranged conduits.

In some embodiments, the system further comprises one or more auxiliary suction ports proximal to said at least four suction ports.

In some embodiments, each of said at least four suction ports comprises a graduated edging.

In some embodiments, the system further comprises a manifold configured to connect said at least four vacuum lumens to said valve.

In some embodiments, said manifold is transparent.

In some embodiments, said at least four vacuum lumens comprise at least six vacuum lumens.

In some embodiments, at least one of said at least four suction ports comprises two or more suction ports, successively arranged along a portion of a longitudinal axis of said nasogastric tube.

In some embodiments, said nasogastric tube further comprises two or more longitudinal radiopaque stripes.

In some embodiments, said two or more longitudinal radiopaque stripes are embedded in an outer wall of said nasogastric tube.

In some embodiments, the method further comprises regulating the vacuum so that a suction level is not constant over time.

In some embodiments, the method further comprises regulating vacuum to said four or more suction ports of said four or more vacuum lumen, so as to create peristaltic movement or other oscillatory movement of the esophagus.

In some embodiments, said applying of the vacuum restricts at least 60% of passage through the esophagus.

In some embodiments, the method further comprises visually monitoring a transparent manifold coupling said four or more vacuum lumens with said valve for backflow of gastric substances.

In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the figures and by study of the following detailed description.

The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:

FIG. 1 is a simplified schematic illustration of a nasogastric tube, constructed and operative in accordance with a non-limiting embodiment of the present invention;

FIG. 2 is a simplified sectional illustration of the NGT of FIG. 1, taken along lines II-II in FIG. 1;

FIG. 3 is a simplified schematic illustration of the nasogastric tube being used to suck and seal the inner wall of the esophagus against the NGT, in accordance with an embodiment of the present invention;

FIG. 4A is a simplified, schematic illustration of a transparent front view of a portion of a nasogastric tube, constructed and operative in accordance with another embodiment of the present invention;

FIG. 4B is a simplified schematic illustration of a cross-section along line I-I of the nasogastric tube of FIG. 4A;

FIG. 4C is a simplified schematic illustration of a cross-section along line of the nasogastric tube of FIG. 4A;

FIG. 4D is an illustration of the nasogastric tube of FIG. 1 having the vacuum lumens as a separate unit from the main lumen and which is slid over the main lumen.

FIG. 5 is a schematic diagram of a manifold; and

FIG. 6 is a cross section of a nasogastric tube.

The present invention provides a nasogastric tube (NGT) and a method thereof, as is described more in detail hereinbelow. The NGT includes a tube and a vacuum control unit. The vacuum control unit couples the esophagus to the tube thus disabling the reflux of the food along the esophagus to the trachea. Furthermore, the structure of an NGT according to the present invention enables locally selective application of the vacuum within the esophagus. Thus, the location of the esophagus coupling to the tube may be changed in time in order to diminish tissue damage to the esophagus. An NGT according to the present invention can be used in ICU, or elsewhere, in order to reduce the complications associated with reflux such as the risk of VAP and in order to prevent or reduce tissue damage.

According to the present invention, the inner wall of the esophagus is drawn by negative pressure (vacuum) towards and against the outer contour of the NGT. A vacuum control unit, which is connected to the hospital vacuum unit or any other vacuum unit, enables either simultaneous vacuum pressure in one or more suction units of the NGT or changeable vacuum pressure between the different suction units. In this way, the NGT of the present invention prevents reflux and aspiration of substances or liquids into the patient's lungs and prevents tissue damage, while obviating the need to remove and replace the entire device from the patient's esophagus.

In some embodiments, a tube according to the present invention may be used in other locations in the GI tract or in any other body lumen, such as arteries, veins, etc. However, for simplicity of discussion, this tube is referred to throughout the specification as an NGT.

Reference is now made to FIGS. 1 and 2, which illustrate a nasogastric tube 10, constructed and operative in accordance with a non-limiting embodiment of the present invention.

NGT 10 includes a main (typically, but not necessarily, central) lumen 12. Main lumen 12 may be used to feed and administer drugs and other oral agents, and may also be used for sucking fluids from the stomach. As such, as is known in the art, main lumen 12 may be a double lumen, one lumen for feeding and the other lumen for suction (not to be confused with the vacuum lumens mentioned later). Main lumen 12 is provided with one or more suitable proximal connectors 14 for connecting to a source of substances for feeding or administering, and optionally to a source of pressure (e.g., suction), as is known in the art.

NGT 10 includes one or more vacuum lumens 16 that peripherally surround main lumen 12. The term “peripherally surround” as used in the description and claims, encompasses continuous surrounding (no gaps between the vacuum lumens or one continuous, peripheral vacuum lumen) and discontinuous surrounding (wherein there are separations between discrete vacuum lumens). In one embodiment, illustrated in FIG. 2, there are four vacuum lumens 16 peripherally spaced around main lumen 12; the invention is not limited to this number of vacuum lumens. The vacuum lumens 16 may be equally or unequally spaced from each other. Main lumen 12 and vacuum lumens 16 are thus arranged as concentrically arranged conduits. Vacuum lumens 16 are coupled with a vacuum source 18, such as via a pressure regulator 20 and a valve 22, which form a vacuum control unit.

Main lumen 12 may be constructed from any suitable biocompatible material, such as but not limited to, polyurethane, silicone, polyvinyl chloride and many others. The vacuum lumens 16 may be constructed of similar materials, but alternatively may be constructed of medically safe metals, such as but not limited to, stainless steel, titanium alloys, NITINOL and others. Generally, without limitation, main lumen 12 may have a length in the range of 50 to 130 cm, with an outside diameter in the range of 5-12 Fr.

Main lumen 12 and vacuum lumens 16 may be constructed as one unit. Alternatively, vacuum lumens 16 may be a separate unit which is slid over main lumen 12, as illustrated in FIG. 4D, after insertion of main lumen 12 into the patient. As another alternative, vacuum lumens 16 may be first introduced into the patient, and main lumen 12 may be slid in between vacuum lumens 16.

With reference to FIG. 1, each vacuum lumen 16 includes a vacuum sealing portion 24, which includes one or more suction ports 26. As shown in FIG. 1, some vacuum lumens 16 may have more suction ports than others. As shown in FIG. 3, upon application of vacuum generated by vacuum source 18, the inner wall of the esophagus is drawn by negative pressure towards and against suction ports 26 (the outer contour of NGT 10). The outer contour of NGT 10, at least at vacuum sealing portion 24, is preferably round (circular or oval), for better conforming to and sealing of the esophagus. In one embodiment, the vacuum sealing restricts at least 60% of the passage through the esophagus.

Pressure regulator 20 may be used to reduce or otherwise regulate the negative pressure generated by vacuum source 18. For example, pressure regulator 20 may be used to match the vacuum level generated by vacuum source 18 to the vacuum level needed in vacuum sealing portion 24. Such vacuum pressure may be, for example, between 0.5-50, 50-100, 100-200, 200-300, 300-400, 400-500, 500-600 or 600-700 mmHg. Different vacuum pressure values may be suitable to different patients and/or to different luminal structures into which the tube of the present invention is inserted.

Valve 22 may be used to shift the vacuum between the different vacuum lumens 16 so that the suction level is not constant over time in the vacuum sealing portion 24, which may provide variability in how the esophagus wall is sucked in, and for how long.

NGT 10 may be provided with different numbers of vacuum sealing portions 24 and suction ports 26, and the vacuum to the sealing portions 24 may be regulated so as to create peristaltic movement or other oscillatory movement of the esophagus.

In accordance with an embodiment of the invention, one or more auxiliary suction ports 33 are provided proximal to vacuum sealing portion 24. Since vacuum sealing portion 24 seals off the esophagus, any oropharyngeal secretions, such as saliva, may accumulate above (i.e., proximal to) vacuum sealing portion 24. Auxiliary suction ports 33 may be used to suck and remove such secretions. Additionally or alternatively, one or more of vacuum lumens 16 may be used to evacuate liquids arriving from the patient's stomach. That is, if a reflux occurs, one or more of vacuum lumens 16 may withdrawn at least a portion of it, through suction ports 26, towards valve 22. There, the stomach contents may be collected inside a suitable reservoir and then discarded.

Vacuum source 18 is preferably activated following the insertion and localization of NGT 10 in the esophagus in order to reduce the risk of VAP, or other bacterial infections, by preventing or minimizing reflux food and liquid aspiration into the lungs.

Reference is now made to FIG. 5, which shows a schematic diagram of a manifold 100, which, in accordance with some embodiments, serves as valve 22 of FIG. 1. Manifold 100 may be used to interconnect tubes extending between the patient, the food and/or medicament supply, and the vacuum source (e.g. a vacuum pump).

A main tube 102 may extend between the patient and the food and/or medicament supply. Main tube 102 may include, at manifold 100, two or more junctions 104 and 106. Junctions 104 and 106 may be used for alternating between different vacuum lumens or groups of vacuum lumens. That is, each of junctions 104 and 106 may interconnect different vacuum lumens or groups of vacuum lumens to the vacuum source. Junction 104, for example, may be connected to the vacuum source via a first tube (represented by tube portions 108 and 110). Junction 106, for example, may be connected to the vacuum source via a second tube (represented by tube portions 112 and 114). Tube portions 110 and 114 may be connected to the vacuum source through a selector 100. Selector 106 may have two possible states: In the first state, negative pressure from the vacuum source is channeled towards portion 110 and from there to junction 104. In the second state, negative pressure from the vacuum source is channeled towards portion 114 and from there to junction 106. In embodiments where more than two junctions are present (not shown), a selector may have a number of states corresponding to the number of junctions.

Optionally, manifold 100 may include one or more vacuum discharge ports, for releasing negative pressure from a certain vacuum lumen or a group of vacuum lumens after the negative pressure has been switched away from this lumen or group of vacuum lumens by selector 116. Two exemplary vacuum discharge ports 118 and 120 are shown in the figure. Optionally, the vacuum discharge ports 118 and 120 may each be a cap threadable at some point between selector 116 and junctions 104 and 106, respectively. After the caregiver has switched the vacuum from a first vacuum lumen (or a first group of lumens) to a second vacuum lumen (or a second group of lumens), he or she may use the suitable one of vacuum discharge ports 118 and 120 in order to immediately discharge the negative pressure from the first vacuum lumen (or the first group of lumens). This way, the inner wall of the esophagus, at the vacuum port(s) connected to the first vacuum lumen (or the first group of lumens), may be immediately released from the vacuum port(s) and tissue damage may be prevented or at least mitigated.

One method of using NGT 10 of the present invention includes the following steps, without limitation and not necessarily in sequential order:

Reference is now made to FIGS. 4A, 4B and 4C. FIG. 4A is a simplified, schematic illustration of a transparent front view of a portion of a nasogastric tube 50, constructed and operative in accordance with another non-limiting embodiment of the present invention. FIG. 4B is a simplified schematic illustration of a cross-section along line I-I of nasogastric tube 50 of FIG. 4A. FIG. 4C is a simplified schematic illustration of a cross-section along line II-II of nasogastric tube 50 of FIG. 4A. Nasogastric tube 50 is generally similar to nasogastric tube 10 of FIG. 1. The differences between nasogastric tube 10 and nasogastric tube 50 are detailed herein below. FIG. 4A shows a proximal portion of nasogastric tube 50 to be inserted into a patient's esophagus and with respect to it. Nasogastric tube 50 includes an additional upper portion, which is not shown, that is left outside of the patient's body and is coupled with, for example, vacuum source 18, pressure regulator 20 or valve 22. Nasogastric tube 50 includes main lumen 12 and six vacuum lumens 16, specifically denoted 16a, 16b, 16c, 16d, 16e and 16f However, in other embodiments (not shown), a different number of vacuum lumens, such as four or more, may be used.

Each vacuum lumen 16 includes a suction port 26, specifically denoted 26a, 26b, 26c, 26d, 26e and 26f correspondingly. Therefore, each of suction ports 26 is associated with one of lumens 16. Suction ports 26a, 26b, 26c, 26d, 26e and 26f are distributed along a longitudinal axis of nasogastric tube 50. Suction ports 26a, 26c and 26e are located above suction ports 26b, 26d and 26f along the longitudinal axis of nasogastric tube 50 and with respect to a patient's body. Such a longitudinal axis may be advantageously located within main lumen 12.

With specific reference to FIGS. 4B and 4C, FIG. 4B shows a cross-section of suction ports 26a, 26c and 26e. Suction ports 26a, 26c and 26e are peripherally distributed around main lumen 12 in the same longitudinal location with respect to main lumen 12 (i.e., along a longitudinal axis of nasogastric tube 50). FIG. 4C shows a cross-section of suction ports 26b, 26d and 26f. Suction ports 26b, 26d and 26f are peripherally distributed around main lumen 12 in the same longitudinal location with respect to main lumen 12, as shown in FIG. 4A. The longitudinal location of suction ports 26a, 26c and 26e is different from and located above the longitudinal location of suction ports 26b, 26d and 26f, as shown in FIG. 4A.

Therefore, for example, applying vacuum to vacuum lumens 16a or 16c or 16e or to any combination thereof, allows sealing of the esophagus against nasogastric tube 50 in different peripheral locations (i.e., depending on the vacuum lumens which are used) and in different levels (i.e., depending on how many vacuum lumen are used) but in a specific longitudinal location (denoted by line I-I with respect to nasogastric tube 50 in FIG. 4A). In order to allow maximal sealing of the esophagus, vacuum may be applied to vacuum lumens 16a, 16c and 16e together at, the same time. Applying vacuum to vacuum lumens 16b or 16d or 16f or to a combination thereof, would result the same correspondingly but in different peripheral locations with respect to main lumen 12 (i.e., according to the peripheral locations of vacuum lumens 16b, 16d or 16f) and in particular, in a different longitudinal location along nasogastric tube 50, denoted by line II-II in FIG. 4A. Vacuum may be also applied to vacuum lumens located in different longitudinal locations along nasogastric tube 50 at the same time.

Hence, the location of the vacuum lumens within the nasogastric tube according to the present invention determines the peripheral location of the applied vacuum and the location of the suction ports determines the longitudinal location of the applied vacuum within the esophagus. It should be noted that the positioning of nasogastric tube 50 within the esophagus as performed by the attending caregiver should be also considered. Switching the applied vacuum between the vacuum lumens allows applying vacuum on the esophagus inner wall at different locations peripherally and longitudinally during time, thus diminishing or preventing damage to the esophagus tissue facing the suction ports.

Valve 22 may be used to switch the vacuum between one or more vacuum lumens 16. Valve 22 may be separately connected to each vacuum lumen 16 or, for example, connected to all of vacuum lumens 16 having suction ports 26 at the same longitudinal location with respect to nasogastric tube 50 together. Obviously, the latter setup of valve 22 allows less freedom in switching between vacuum lumens 16. Hence, valve 22 may be used to switch the applied vacuum after a time duration from one or more vacuum lumens located at specific peripheral and longitudinal locations to one or more vacuum lumens located at other peripheral locations or furthermore at other longitudinal locations. Such a switch may be preformed gradually in order to keep the esophagus sealed at least to some extent against nasogastric tube 50 during the switch.

Nasogastric tube 50 may include two or more vacuum lumens 16 which peripherally surround main lumen 12. At least two of vacuum ports 26 are located at different longitudinal locations along nasogastric tube 50 in order to allow a longitudinal location switch within the esophagus.

Suction ports 26 are elliptical but may be of any other form, such as circular. Suction ports 26 may include a graduated edging 28 to prevent or diminish damage to the esophagus tissue while an inner wall of the esophagus is pressed against suction ports 26. Graduated edging 28 is advantageously graduated in an obtuse angle. Graduated edging 28 may be graduated entirely or only include a graduated portion. Generally, graduated edging 28 may provide each of suction ports 26 with a concave shape, having an opening approximately in its middle.

Nasogastric tube 50 may be coupled with a manifold (not shown). The manifold may connect vacuum lumens 16 to valve 22 in a separate manner to allow vacuum application to one or more vacuum lumens 16. The manifold may be transparent in order to visually monitor backflow of gastric substances, such as bile.

In some embodiments, at least one suction port 26 may include two or more suction ports, successively arranged along a portion of a longitudinal axis of nasogastric tube 50.

A method of using NGT 50 of the present invention may include the following steps, without limitation and not necessarily in sequential order:

The vacuum may be applied to one or more vacuum lumens each time, and in each time to vacuum lumens which include suction ports peripherally distributed around the same location along a longitudinal axis of the NGT (for example, vacuum lumens 16a and 16c or vacuum lumens 16b, 16 d and 16f of FIGS. 4A, 4B and 4C) or peripherally distributed around different locations along a longitudinal axis of the NGT (for example, vacuum lumens 16a and 16d of FIGS. 4A, 4B and 4C).

The interchanging between the vacuum lumens to which a vacuum is applied may be performed at various manners, for example, it may be performed once or more per patient while each location change may be performed once in a constant or variable period of time, all according to the caregiver discretion regarding the specific patient.

The method may further include the step of regulating the vacuum so that a suction level is not constant over time in the suction ports. The vacuum may be regulated to the vacuum ports so as to create peristaltic movement or other oscillatory movement of the esophagus.

In some embodiments, the vacuum may be applied such that to restricts at least 60% of passage through the esophagus.

The method may further include the step of visually monitoring a transparent manifold which couples the vacuum lumens with a valve for backflow of gastric substances, such as bile.

In some embodiments of the present invention, the present invention may be utilized to insert one or more probes through main lumen 12, through one or more of vacuum lumens 16 and/or through a different, dedicated lumen (not shown) into the patient's body. Such probes may include, for example: a temperature sensor, an electromagnetic radiation sensor, a pH sensor, an image sensor, a fiber optic, an ultrasound probe, an OCT (optical coherence tomography) probe, a mini MRI (magnetic resonance imaging) probe, etc.

Reference is now made to FIG. 6, which shows a cross section of a nasogastric tube 200, optionally similar to tube 10 (FIGS. 1-2) and/or to tube 50 (FIGS. 4A-4C). For simplicity of illustration, the cross section is shown at a portion of the tube which lacks any suction ports.

Tube 200 may include one or more radiopaque stripes, such as stripes 202-212, disposed along the longitudinal axis of the tube. Radiopaque stripes 202-212 may be visible, when tube 200 (or a portion thereof) is inside the patient, using X-ray imaging and/or other types of electromagnetic radiation imaging. That is, radiopaque stripes 202-212 are made of a radiodense material which inhibits the passage of some or all electromagnetic radiation, thereby creating a contrast in relation to more radiolucent body tissue and/or radiolucent portions of a medical device. Generally, if two or more parallel, longitudinal radiopaque stripes are present, the resulting electromagnetic radiation image may enable a better depth perception of the tube. This, since one or more of the stripes may be farther away from the imager than other one or more of the stripes. Furthermore, having two or more parallel, longitudinal radiopaque stripes may enable visualizing a situation in which the tube is twisted; this will result in a spiral-like image of the stripes.

An example of a suitable radiodense material is Barium sulfate, but those of skill in the art will recognize that other known radiodense materials may be used. In case Barium sulfate is used, its density in stripes 202-212 may be, for example, between 40-60%, between 60-80% or higher. The remainder percentage may be one or more filler materials.

Stripes 202-212, whether by virtue of their high-percentage Barium sulfate contents and/or their thickness, may endow tube 200 with a certain rigidity. This rigidity is to a degree which assists the caregiver in pushing the tube down the GI tract (or any other bodily lumen) on one hand, but still allows the tube to resiliently maneuver through the pertinent bodily lumen.

Optionally, one or more of stripes 202-212 may have an essentially triangular cross section, as shown in the figure. One apex of the triangle may be directed towards the inside of tube, and the base opposite to that apex may be directed towards the outside of the tube. In other embodiments (not shown), one or more of the stripes may have a rectangular cross-section, a circular cross-section, or an otherwise shaped cross-section.

Stripes 202-212 are optionally embedded, at least partially, in the outer wall of tube 200. Further optionally, stripes 202-212 may slightly protrude beyond the outside surface of the tube. For example, the protrusion may be by 50-100 micrometers, 100-150 micrometers, 150-250 micrometers, 250-400 micrometers or more. This protrusion may enable the caregiver holding tube 200 to get a better grip of the tube, especially when the tube has to be rotated. The protrusion may prevent the tube from slipping in the caregiver's hands while rotated.

It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the features described hereinabove as well as modifications and variations thereof which would occur to a person of skill in the art upon reading the foregoing description and which are not in the prior art.

Haytman, Eyal, Besser, Doron, Ben Ezra, Guy, Shaked, Orit, Nevler, Avinoam

Patent Priority Assignee Title
10350145, Jul 17 2011 ENVIZION MEDICAL LTD Nasogastric tube
10646406, Jul 17 2011 ENVIZION MEDICAL LTD Nasogastric tube
11730926, Aug 31 2020 Avent, Inc System and method for detecting medical device location and orientation in relation to patient anatomy
ER9839,
Patent Priority Assignee Title
5389074, Oct 27 1993 The Regents of the University of California Body insertion tube with anesthetic jacket
5707351, Jun 06 1995 DAVOL, INC Remote tubing assembly
6695764, Aug 13 1999 Boston Scientific Scimed, Inc Apparatus for treating wall of body cavity
6790214, May 17 2002 ENDOGASTRIC SOLUTIONS, INC Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method
7794425, Dec 21 2006 CITIBANK, N A Gastro-esophageal reflux control system and pump
7967780, Aug 29 2007 CITIBANK, N A Gastro-esophageal reflux control system and pump
8100874, May 22 2009 SUMMIT MEDICAL, LLC Tissue refining device
20030208209,
20040153098,
20040220515,
20050059962,
20090306626,
20110046653,
20130310806,
20150174013,
EP2301512,
WO3034976,
WO2015198297,
WO2016024260,
//////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 05 2013NUTRISEAL LIMITED PARTNERSHIP(assignment on the face of the patent)
Jun 11 2014HAYTMAN, EYALTURBO SEAL L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333170194 pdf
Jun 16 2014BEN EZRA, GUYTURBO SEAL L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333170194 pdf
Jun 16 2014NEVLER, AVINOAMTURBO SEAL L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333170194 pdf
Jun 16 2014SHAKED, ORITTURBO SEAL L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333170194 pdf
Jun 16 2014BESSER, DORONTURBO SEAL L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333170194 pdf
Dec 25 2014TURBOSEAL LIMITED PARTNERSHIPNUTRISEAL LIMITED PARTNERSHIPCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0427040475 pdf
Jul 12 2018NUTRISEAL L P ENVIZION MEDICAL LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0463440440 pdf
Sep 19 2023ENVIZION MEDICAL LTD ALPHA CAPITAL ANSTALTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0649610581 pdf
Nov 01 2023ENVIZION MEDICAL LTD ALPHA CAPITAL ANSTALTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0654860113 pdf
Date Maintenance Fee Events
Mar 26 2021M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.


Date Maintenance Schedule
Oct 17 20204 years fee payment window open
Apr 17 20216 months grace period start (w surcharge)
Oct 17 2021patent expiry (for year 4)
Oct 17 20232 years to revive unintentionally abandoned end. (for year 4)
Oct 17 20248 years fee payment window open
Apr 17 20256 months grace period start (w surcharge)
Oct 17 2025patent expiry (for year 8)
Oct 17 20272 years to revive unintentionally abandoned end. (for year 8)
Oct 17 202812 years fee payment window open
Apr 17 20296 months grace period start (w surcharge)
Oct 17 2029patent expiry (for year 12)
Oct 17 20312 years to revive unintentionally abandoned end. (for year 12)