A system for calibrating includes an input interface and a calibration parameter determiner. The input interface is configured to receive an image data of a calibrator in front of a camera unit. The camera unit is mounted inside a vehicle. The calibrator is mounted outside the vehicle. The calibration parameter determiner is configured to determine a calibration parameter based at least in part on the image data. The calibration parameter enables determination of an object proximity and a lane pattern.
|
14. A method for calibrating, comprising:
receiving an image data of a calibrator, wherein:
the image data is captured by a camera unit,
the camera unit is mounted inside a vehicle, and
the calibrator is mounted outside the vehicle, wherein the calibrator includes at least one lane marker image, and
identifying a characteristic of a lane and a characteristic of a field of view of the vehicle based on the image data while the vehicle is in a non-driving state; and
determining, using a processor, a calibration parameter based on the identified characteristics, wherein the calibration parameter improves accuracy of determination of an object proximity and a lane pattern compared with determination without the calibration parameter.
16. A calibrator for calibrating a driver assistance system, comprising:
a mount; and
an image coupled to the mount, wherein the mount mounts the image outside a vehicle and in front of a camera unit that is inside the vehicle, wherein the image includes a left side lane image and a right side lane image;
wherein the calibrating the driver assistance system is based on a calibration parameter, and the calibration parameter:
is determined, based on identifying a characteristic of a lane and a characteristic of a field of view of the vehicle based on the image, while the vehicle is in a non-driving state, and
improves accuracy of determination of an object proximity and a lane pattern compared with determination without the calibration parameter.
1. A system for calibrating, comprising:
an input interface configured to receive an image data of a calibrator, wherein:
the image data is captured by a camera unit,
the camera unit is mounted inside a vehicle, and
the calibrator is mounted outside the vehicle, wherein the calibrator includes at least one lane marker image; and
a calibration parameter determiner configured to:
identify a characteristic of a lane and a characteristic of a field of view of the vehicle based on the image data while the vehicle is in a non-driving state; and
determine a calibration parameter based on the identified characteristics, wherein the calibration parameter improves accuracy of determination of an object proximity and a lane pattern compared with determination without the calibration parameter.
15. A computer program product for calibrating, the computer program product being embodied in a non-transitory computer readable storage medium and comprising computer instructions for:
receiving an image data of a calibrator, wherein the image data is captured by a camera unit is mounted inside a vehicle, and wherein the calibrator is mounted outside the vehicle and the calibrator includes at least one lane marker image;
identifying, using a processor, a characteristic of a lane and a characteristic of a field of view of the vehicle based on the image data while the vehicle is in a non-driving state; and
determining, using the processor, a calibration parameter based on the identified characteristics, wherein the calibration parameter improves accuracy of determination of an object proximity and a lane pattern compared with determination without the calibration parameter.
2. The system of
8. The system of
17. The system of
18. The system of
19. The calibrator of
20. The calibrator of
|
Modern vehicles (e.g., airplanes, boats, trains, cars, trucks, etc.) can include a vehicle event recorder in order to better understand the timeline of an anomalous event (e.g., an accident). A vehicle event recorder typically includes a set of sensors, e.g., video recorders, audio recorders, accelerometers, gyroscopes, vehicle state sensors, GPS (global positioning system), etc., that report data, which is used to determine the occurrence of an anomalous event. The vehicle event recorder system can additionally be used as part of a driver assistance system (e.g., advanced driver assistance systems (ADAS)). The driver assistance system monitors driver behavior and assists the driver with the driving process—for example, with lane position, changing lanes, following distance, maintaining speed, etc. In order for the driver assistance system to function properly, the driver assistance sensors must be calibrated (e.g., so that lane position or following distance can be accurately measured).
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
Calibration of an advanced driver assistance system is disclosed. A system for calibrating comprises an input interface configured to receive an image data of a calibrator in front of a camera unit, and a calibration parameter determiner configured to determine a calibration parameter based at least in part on the image data, wherein the calibration parameter enables determination of an object proximity and a lane pattern, wherein the camera unit is mounted inside a vehicle, and wherein the calibrator is mounted outside the vehicle. The system for calibrating additionally comprises a memory coupled to the calibration parameter determiner and configured to provide the calibration parameter determiner with instructions.
In some embodiments, a vehicle event recorder performs a set of advanced driver assistance system functions (e.g., assisting with lane position, changing lanes, following distance, maintaining speed, etc.) in addition to the typical vehicle event recorder system functions (e.g., recording sensor data, recording video data, detection anomalous events, etc.). The vehicle event recorder comprises a set of sensors (e.g., audio and video recorders, global positioning system sensors, accelerometers, gyroscopes, etc.) for performing the advanced driver assistance functions and the vehicle event recorder system functions, and a device for recording the sensor data. In order for the advanced driver assistance system functions to operate properly, it must first be calibrated. The vehicle event recorder needs to determine calibration parameters describing the location of the bottom of the field of view (e.g., where the vehicle hood blocks the view of the road) and the lane position (e.g., how to determine lane position from the orientation of the lane stripes). This calibration step can be performed by driving the vehicle on an empty street or testing area, however, this can be logistically challenging, and it would be preferred to not require driving the vehicle in order to calibrate the advanced driver assistance system functions. A calibrator for an advanced driver assistance system that does not require driving the vehicle comprises an image (e.g., an image including road lane stripes) positioned in front of the camera unit of the vehicle event recorder. The calibrator is aligned in a predetermined position relative to the vehicle (e.g., relative to the vehicle windshield) and the advanced driver assistance system is calibrated using an image taken of the calibrator.
In 808, a calibrator is attached to the vehicle calibration tool and aligned. For example, the calibrator is placed in a ball mount and aligned using laser beams and fiducials on the calibrator as well as using bubble levels and measuring devices to make sure that the calibrator is flat to the windshield. In 810, an image by the video event recorder of the calibrator is accessed. For example, a user is able to access an image taken by the video event recorder via an interface to the video event recorder (e.g., a laptop communicating with the video event recorder via an universal serial bus (USB) port accesses an image). In 812, calibration input values are received. For example, measurement values are received (e.g., via a user interface). In various embodiments, measurement values include a position of the video event recorder, the distance from the ground to the center of the outward facing lens of the video event recorder, the distance from the center of the windshield to the center of the outward facing lens of the video event recorder, the position of the lane markers on the calibrator, the hood location, the horizon location, or any other appropriate calibration value. In various embodiments, the calibration measurement is input using a text field, a graphic overlay tool (e.g., cursor moved markers that enable overlaying calibrator markers for lane calibration), or any other appropriate input method. In 814, calibration input values are stored. For example, the values are stored in the vehicle event recorder and enable the ADAS system in the vehicle event recorder to determine lane position and to warn the driver in the event that the lane position of the vehicle is not correct.
In some embodiments, the calibration values enable the ADAS system to calibrate for the position of the vehicle event recorder and any orientation of the camera as it determines lane positions. In some embodiments, the calibrator and the calibration process enables a vehicle event recorder to be calibrated for its position and orientation as placed in a vehicle so that an ADAS system is able to be correctly function. In some embodiments, the calibrator and calibration process enables the calibration for ADAS without the need to drive the vehicle on a road, thus saving time and expense of an on road test for calibration.
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
Sutton, Gregory Dean, Ribble, Dennis
Patent | Priority | Assignee | Title |
10203699, | Mar 30 2018 | Toyota Jidosha Kabushiki Kaisha | Selective remote control of ADAS functionality of vehicle |
10457205, | Mar 16 2017 | ROBOTZONE, LLC | Assisted trailer alignment system |
10554951, | Mar 22 2018 | Conti Temic Microelectronic GmbH | Method and apparatus for the autocalibration of a vehicle camera system |
10710500, | Mar 16 2017 | ROBOTZONE, LLC | Assisted trailer alignment system |
10710501, | Mar 16 2017 | ROBOTZONE, LLC | Assisted trailer alignment system |
10775621, | Sep 06 2018 | VOLKSWAGEN AKTIENGESELLSCHAFT | Method, device and computer-readable storage medium with instructions for setting a head-up display in a transportation vehicle |
10846884, | Sep 06 2018 | Aisin Seiki Kabushiki Kaisha | Camera calibration device |
11092667, | Dec 20 2017 | Bosch Automotive Service Solutions Inc.; Robert Bosch GmbH | Portable apparatus for vehicle sensor calibration |
11145087, | Apr 04 2019 | AirPro Diagnostics, LLC; STEP 2 ENGINEERING, INC | Optimized forward-facing camera calibration system with portable mounting apparatus and adaptable electronic calibration target display |
11325610, | Aug 28 2019 | Vehicle Service Group, LLC | Maintenance and repair system for advanced driver assistance features |
11414092, | Aug 28 2019 | Vehicle Service Group, LLC | Maintenance and repair system for advanced driver assistance features |
11487132, | Nov 12 2018 | Yutou Technology (Hangzhou) Co., Ltd. | Active alignment for assembling optical devices |
11662602, | Nov 12 2018 | Yutou Technology (Hangzhou) Co., Ltd. | Active alignment for assembling optical devices |
11668948, | Nov 12 2018 | Yutou Technology (Hangzhou) Co., Ltd. | Active alignment for assembling optical devices |
11677930, | Dec 20 2018 | HERE Global B.V. | Method, apparatus, and system for aligning a vehicle-mounted device |
11834056, | Aug 28 2019 | Vehicle Service Group, LLC | Maintenance and repair system for advanced driver assistance features |
Patent | Priority | Assignee | Title |
20040061596, | |||
20060113434, | |||
20090033926, | |||
20100172542, | |||
20100201814, | |||
20100254697, | |||
20110169998, | |||
20120233841, | |||
20130141520, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 31 2014 | Lytx, Inc. | (assignment on the face of the patent) | / | |||
Nov 07 2014 | SUTTON, GREGORY DEAN | LYTX, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034254 | /0482 | |
Nov 11 2014 | RIBBLE, DENNIS | LYTX, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034254 | /0482 | |
Mar 15 2016 | LYTX, INC | U S BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038103 | /0508 | |
Aug 31 2017 | U S BANK, NATIONAL ASSOCIATION | LYTX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043743 | /0648 | |
Feb 28 2020 | LYTX, INC | GUGGENHEIM CREDIT SERVICES, LLC | PATENT SECURITY AGREEMENT | 052050 | /0099 |
Date | Maintenance Fee Events |
Mar 24 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 18 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 17 2020 | 4 years fee payment window open |
Apr 17 2021 | 6 months grace period start (w surcharge) |
Oct 17 2021 | patent expiry (for year 4) |
Oct 17 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 17 2024 | 8 years fee payment window open |
Apr 17 2025 | 6 months grace period start (w surcharge) |
Oct 17 2025 | patent expiry (for year 8) |
Oct 17 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 17 2028 | 12 years fee payment window open |
Apr 17 2029 | 6 months grace period start (w surcharge) |
Oct 17 2029 | patent expiry (for year 12) |
Oct 17 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |