Isolated binding proteins, e.g., antibodies or antigen binding portions thereof, which bind to tumor necrosis factor-alpha (TNF-α), e.g., human TNF-α, and related antibody-based compositions and molecules are disclosed. Also disclosed are pharmaceutical compositions comprising the antibodies, as well as therapeutic and diagnostic methods for using the antibodies.

Patent
   9803009
Priority
Oct 24 2011
Filed
Oct 24 2012
Issued
Oct 31 2017
Expiry
Aug 30 2034

TERM.DISCL.
Extension
675 days
Assg.orig
Entity
Large
1
48
EXPIRED
1. A binding protein that binds human TNF-α, the binding protein comprising at least one heavy chain variable region (VH region) and at least one light chain variable region (VL region), wherein
the VH region comprises the amino acid sequence of SEQ ID NO: 74 and
the VL region comprises the amino acid sequence of SEQ ID NO: 84.
2. The binding protein of claim 1, wherein the binding protein comprises two VH regions and two VL regions.
3. The binding protein of claim 1, wherein the binding protein comprises:
(a) a heavy chain constant region comprising an amino acid sequence of SEQ ID NO:2 or SEQ ID NO: 3; and
(b) a light chain constant region comprising an amino acid sequence of SEQ ID NO:4 or SEQ ID NO: 5.
4. The binding protein of claim 1, wherein the binding protein comprises a DVD-Ig protein.
5. The binding protein of claim 2, wherein the binding protein is conjugated to an imaging agent selected from the group consisting of a radiolabel, an enzyme, a fluorescent label, a luminescent label, a bioluminescent label, a magnetic label, and biotin.
6. The binding protein of claim 1, wherein the binding protein further comprises a therapeutic or cytotoxic agent selected from the group consisting of an antimetabolite, an alkylating agent, an antibiotic, a growth factor, a cytokine, an anti-angiogenic agent, an anti-mitotic agent, and an anthracycline.
7. A pharmaceutical composition comprising the binding protein of claim 1, and a pharmaceutically acceptable carrier.
8. A pharmaceutical composition comprising the binding protein of claim 2, and a pharmaceutically acceptable carrier.
9. A pharmaceutical composition comprising the binding protein of claim 4, and a pharmaceutically acceptable carrier.
10. The binding protein of claim 1, wherein the binding protein comprises a bispecific antibody.
11. A pharmaceutical composition comprising the binding protein of claim 10, and a pharmaceutically acceptable carrier.
12. The binding protein of claim 1, wherein the binding protein is conjugated to an imaging agent selected from the group consisting of a radiolabel, an enzyme, a fluorescent label, a luminescent label, a bioluminescent label, a magnetic label, and biotin.

This application claims priority to U.S. Provisional Application Ser. No. 61/550,587, filed Oct. 24, 2011, which is incorporated herein by reference in its entirety.

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 3, 2014, is named 532365_BBI-387_Sequence_Listing.txt and is approximately 1,223,428 bytes in size. This sequence listing replaces a previous sequence listing in ASCII format that was submitted Feb. 27, 2013, and which was also incorporated by reference in its entirety.

Field of the Invention

TNF-α binding proteins and their uses in the prevention and/or treatment of acute and chronic immunological diseases are provided.

Background of the Invention

There is a need in the art for improved binding proteins capable of binding TNF-α (also referred to as tumor necrosis factor, tumor necrosis factor-alpha, tumor necrosis factor-α, TNF, and cachectin). Provided are a novel family of binding proteins, CDR grafted binding proteins, humanized binding proteins, and fragments thereof, capable of binding TNF-α with high affinity and neutralizing TNF-α.

TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α are provided. In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.

In an embodiment, the binding protein binds TNF-α. In another embodiment, the binding protein modulates a biological function of TNF-α. In another embodiment, the binding protein neutralizes TNF-α. In yet another embodiment, the binding protein diminishes the ability of TNF-α to bind to its receptor, for example, the binding protein diminishes the ability of pro-human TNF-α, mature-human TNF-α, or truncated-human TNF-α to bind to its receptor. In yet another embodiment, the binding protein reduces one or more TNF-α biological activities selected from: TNF-dependent cytokine production; TNF-dependent cell killing; TNF-dependent inflammation; TNF-dependent bone erosion; and TNF-dependent cartilage damage.

In an embodiment, the binding protein has an on rate constant (Kon) selected from: at least about 102 M−1s−1; at least about 103 M−1s−1; at least about 104 M−1s−1; at least about 105 M−1s−1; and at least about 106 M−1s−1; as measured by surface plasmon resonance. In another embodiment, the binding protein has an off rate constant (Koff) selected from: at most about 10−3 s−1; at most about 10−4 s−1; at most about 10−5 s−1; and at most about 10−6 s−1, as measured by surface plasmon resonance. In yet another embodiment, the binding protein has a dissociation constant (KD) selected from: at most about 10−7 M; at most about 10−8 M; at most about 10−9 M; at most about 10−10 M; at most about 10−11 M; at most about 10−12 M; and at most 10−13 M.

In another aspect, a method for treating a mammal is provided comprising administering to the mammal an effective amount of the pharmaceutical composition disclosed herein. In another embodiment, a method for reducing human TNF-α activity is provided, the method comprising: contacting human TNF-α with the binding protein disclosed herein such that human TNF-α activity is reduced. In another embodiment, provided is a method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject the binding protein disclosed herein such that human TNF-α activity in the human subject is reduced. In another embodiment, provided is a method for treating a subject for a disease or a disorder in which TNF-α activity is detrimental, the method comprising administering to the subject the binding protein disclosed herein such that treatment is achieved.

In one embodiment, the method treats diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those associated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.

Provided are TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α, pharmaceutical compositions thereof, as well as nucleic acids, recombinant expression vectors and host cells for making such binding proteins and fragments. Also provided are methods of using the binding proteins disclosed herein to detect human TNF-α, to inhibit human TNF-α either in vitro or in vivo, and to regulate gene expression or TNF-α related functions.

Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. The meaning and scope of the terms should be clear, however, in the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. In this application, the use of “or” means “and/or”, unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms of the term, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.

Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, pathology, oncology, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The term “human TNF-α” (abbreviated herein as hTNF-α) includes a trimeric cytokine protein. The term includes a homotrimeric protein comprising three 17.5 kD TNF-α proteins. The homotrimeric protein is referred to as a “TNF-α protein”. The term human “TNF-α” is intended to include recombinant human TNF-α (rhTNF-α), which can be prepared by standard recombinant expression methods. The sequence of human TNF-α is shown in Table 1.

TABLE 1
Sequence of Human TNF-α
Pro- Sequence Sequence
tein Identifier 12345678901234567890123456789012
Human SEQ ID VRSSSRTPSDKPVAHVVANPQAEGQLQWLNDR
TNF-α NO.: 1 ANALLANGVELRDNQLVVPSEGLYLIYSQVLF
KGQGCPSTHVLLTHTISRIAVSYQTKVNLLSA
IKSPCQRETPEGAEAKPWYEPIYLGGVFQLEK
GDRLSAEINRPDYLDFAESGQVYFGIIAL

The term “antibody”, broadly refers to any immunoglobulin (Ig) molecule, or antigen binding portion thereof, comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment, mutant, variant, or derivation thereof, which retains the essential epitope binding features of an Ig molecule. Such mutant, variant, or derivative antibody formats are known in the art.

In a full-length antibody, each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG2, IgG 3, IgG4, IgA1 and IgA2) or subclass.

The term “antigen-binding portion” or “antigen-binding region” of a binding protein (or simply “binding protein portion”), refers to one or more fragments of a binding protein that retain the ability to specifically bind to an antigen (e.g., hTNF-α). The antigen-binding function of a binding protein can be performed by fragments of a full-length binding protein. Such binding protein embodiments may also have bispecific, dual specific, or multi-specific formats; specifically binding to two or more different antigens. Examples of binding fragments encompassed within the term “antigen-binding portion” of a binding protein include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. (1989) Nature 341:544-546, Winter et al., PCT publication WO 90/05144 A1), which comprises a single variable domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain binding proteins are also intended to be encompassed within the term “antigen-binding portion” of a binding protein. Other forms of single chain binding proteins, such as diabodies are also encompassed. Diabodies are bivalent, bispecific binding proteins in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see, e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123).

The term “binding protein” refers to a polypeptide comprising one or more antigen-binding portions disclosed herein optionally linked to a linker polypeptide or a constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Such linker polypeptides are well known in the art (see e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123). A constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences are known in the art and represented in Table 2.

TABLE 2
Sequence of Human IgG Heavy Chain Constant
Domain and Light Chain Constant Domain
Sequence
Pro- Identi- Sequence
tein fier 12345678901234567890123456789012
Ig SEQ ID ASTKGPSVFFLAPSSKSTSGGTAALGCLVKDY
gamma-1 NO.: 2 FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
constant LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK
region KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPP
KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW
YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG
QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF
LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT
QKSLSLSPGK
Ig SEQ ID ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDY
gamma-1 NO.: 3 FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
constant LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK
region KVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPP
mutant KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW
YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG
QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF
LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT
QKSLSLSPGK
Ig Kappa SEQ ID TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY
constant NO.: 4 PREAKVQWKVDNALQSGNSQESVTEQDSKDST
region YSLSSTLTLSKADYEKHKVYACEVTHQGLSSP
VTKSFNRGEC
Ig SEQ ID QPKAAPSVTLFPPSSEELQANKATLVCLISDF
Lambda NO.: 5 YPGAVTVAWKADSSPVKAGVETTTPSKQSNNK
constant YAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE
region KTVAPTECS

A binding protein, or antigen-binding portion thereof, may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the binding protein or binding protein portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, et al. (1995) Hum. Antibod. Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab′)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, binding proteins, binding protein portions and immunoadhesion molecules can be obtained using standard recombinant DNA techniques, as described herein.

An “isolated binding protein” refers to a binding protein, or antigen-binding portion thereof, that is substantially free of other binding proteins having different antigenic specificities (e.g., an isolated binding protein that specifically binds hTNF-α is substantially free of binding proteins that specifically bind antigens other than hTNF-α). An isolated binding protein that specifically binds hTNF-α may, however, have cross-reactivity to other antigens, such as TNF-α molecules from other species. Moreover, an isolated binding protein may be substantially free of other cellular material and/or chemicals.

The term “human binding protein” includes binding proteins, or antigen-binding portion thereof, that having variable and constant regions derived from human germline immunoglobulin sequences. The human binding proteins disclosed herein may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human binding protein”, is not intended to include binding proteins in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

The terms “Kabat numbering”, “Kabat definitions” and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e., hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and Kabat, et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). See also, Martin, “Protein Sequence and Structure Analysis of Antibody Variable Domains,” In Kontermann and Dübel, eds., Antibody Engineering (Springer-Verlag, Berlin, 2001), Chapter 31, especially pages 432-433. For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 106 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.

The term “CDR” refers to the complementarity determining region within antibody variable sequences. There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Chothia and coworkers (Chothia and Lesk (1987) J. Mol. Biol. 196:901-917) and Chothia et al. (1989) Nature 342:877-883) found that certain sub-portions within Kabat CDRs adopt nearly identical peptide backbone conformations, despite having great diversity at the level of amino acid sequence. These sub-portions were designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (1995) FASEB J. 9:133-139 and MacCallum (1996) J. Mol. Biol. 262(5):732-745. Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems, although particular embodiments use Kabat or Chothia defined CDRs.

Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences listed from V-base (hvbase.mrc-cpe.cam.ac.uk/) or from IMGT®, the international ImMunoGeneTics information System® (himgt.cines.fr/textes/IMGTrepertoire/LocusGenes/). In another embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences described in Table 3 and Table 4, respectively.

TABLE 3
Heavy Chain Acceptor Sequences
SEQ Protein Sequence
ID No. region 12345678901234567890123456789012
SEQ ID VH4-59 FR1 QVQLQESGPGLVKPSETLSLTCTVSGGSISS
NO: 6
SEQ ID VH4-59 FR2 WIRQPPGKGLEWIG
NO: 7
SEQ ID VH4-59 FR3 RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
NO: 8
SEQ ID VH3-53 FR1 EVQLVESGGGLIQPGGSLRLSCAASGFTVSS
NO: 9
SEQ ID VH3-53 FR2 WVRQAPGKGLEWVS
NO: 10
SEQ ID VH3-53 FR3 RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
NO: 11
SEQ ID JH1/JH4/ WGQGTLVTVSS
NO: 12 JH5 FR4
SEQ ID JH2 FR4 WGRGTLVTVSS
NO: 13
SEQ ID JH6 FR4 WGQGTTVTVSS
NO: 14

TABLE 4
Light Chain Acceptor Sequences
SEQ Protein Sequence
ID No. region 12345678901234567890123456789012
SEQ ID 1-39/O12 DIQMTQSPSSLSASVGDRVTITC
NO: 15 FR1
SEQ ID 1-39/O12 WYQQKPGKAPKLLIY
NO: 16 FR2
SEQ ID 1-39/O12 GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
NO: 17 FR3
SEQ ID 3-15/L2 FR1 EIVMTQSPATLSVSPGERATLSC
NO: 18
SEQ ID 3-15/L2 FR2 WYQQKPGQAPRLLIY
NO: 19
SEQ ID 3-15/L2 FR3 GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC
NO: 20
SEQ ID JK2 FR4 FGQGTKLEIKR
NO: 21

The term “multivalent binding protein” is used in this specification to denote a binding protein comprising two or more antigen binding sites. The multivalent binding protein may be engineered to have the three or more antigen binding sites, and is generally not a naturally occurring antibody. The term “multispecific binding protein” refers to a binding protein capable of binding two or more related or unrelated targets. Dual variable domain (DVD) binding proteins or immunoglobulins (DVD-Ig) as used herein, are binding proteins that comprise two or more antigen binding sites and are tetravalent or multivalent binding proteins. Such DVD-binding proteins may be monospecific, i.e., capable of binding one antigen or multispecific, i.e., capable of binding two or more antigens. DVD-binding proteins comprising two heavy chain DVD-Ig polypeptides and two light chain DVD-Ig polypeptides are referred to a DVD-Ig. Each half of a DVD-Ig comprises a heavy chain DVD-Ig polypeptide, and a light chain DVD-Ig polypeptide, and two antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of 6 CDRs involved in antigen binding per antigen binding site. DVD binding proteins and methods of making DVD binding proteins are disclosed in U.S. Pat. No. 7,612,181.

One aspect of the disclosure pertains to a DVD binding protein comprising binding proteins capable of binding TNF-α. In a particular embodiment, the DVD binding protein is capable of binding TNF-α and a second target.

The term “neutralizing” refers to neutralization of a biological activity of a cytokine when a binding protein specifically binds the cytokine. In a particular embodiment, binding of a neutralizing binding protein to hTNF-α results in inhibition of a biological activity of hTNF-α, e.g., the neutralizing binding protein binds hTNF-α and reduces a biologically activity of hTNF-α by at least about 20%, 40%, 60%, 80%, 85% or more Inhibition of a biological activity of hTNF-α by a neutralizing binding protein can be assessed by measuring one or more indicators of hTNF-α biological activity well known in the art. For example neutralization of the cytoxicity of TNF-α on L929 cells.

In another embodiment, the terms “agonist” or “agonizing” refer to an increase of a biological activity of TNF-α when a binding protein specifically binds TNF-α, e.g., hTNF-α. In a particular embodiment, binding of an agonizing binding protein to TNF-α results in the increase of a biological activity of TNF-α. In a particular embodiment, the agonistic binding protein binds TNF-α and increases a biologically activity of TNF-α by at least about 20%, 40%, 60%, 80%, 85%, 90%, 95, 96%, 97%, 98%, 99%, and 100%. An inhibition of a biological activity of TNF-α by an agonistic binding protein can be assessed by measuring one or more indicators of TNF-α biological activity well known in the art.

The term “activity” includes activities such as the binding specificity/affinity of a binding protein for an antigen, for example, a hTNF-α binding protein that binds to a TNF-α antigen and/or the neutralizing potency (or agonizing potency) of a binding protein, for example, a hTNF-α binding protein whose binding to hTNF-α inhibits the biological activity of hTNF-α, e.g., neutralization of the cytoxicity of TNF-α on L929 cells.

The term “surface plasmon resonance” refers to an optical phenomenon that allows for the analysis of real-time bio specific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).

The term “Kon” refers to the on rate constant for association of a binding protein (e.g., an antibody) to the antigen to form, e.g., the antibody/antigen complex as is known in the art. The “Kon” also is known by the terms “association rate constant”, or “ka”, as used interchangeably herein. This value indicating the binding rate of an antibody to its target antigen or the rate of complex formation between an antibody and antigen also is shown by the equation below:
Antibody(“Ab”)+Antigen(“Ag”)→Ab−Ag

The term “Koff” refers to the off rate constant for dissociation, or “dissociation rate constant”, of a binding protein (e.g., an antibody), from the, e.g., antibody/antigen complex as is known in the art. This value indicates the dissociation rate of an antibody from its target antigen or separation of Ab−Ag complex over time into free antibody and antigen as shown by the equation below:
Ab+Ag←Ab−Ag

The term “KD” refers to the “equilibrium dissociation constant” and refers to the value obtained in a titration measurement at equilibrium, or by dividing the dissociation rate constant (Koff) by the association rate constant (Kon). The association rate constant, the dissociation rate constant and the equilibrium dissociation constant are used to represent the binding affinity of an antibody to an antigen. Methods for determining association and dissociation rate constants are well known in the art. Using fluorescence-based techniques offers high sensitivity and the ability to examine samples in physiological buffers at equilibrium. Other experimental approaches and instruments such as a BIAcore® (biomolecular interaction analysis) assay can be used (e.g., instrument available from BIAcore International AB, a GE Healthcare company, Uppsala, Sweden). Additionally, a KinExA® (Kinetic Exclusion Assay) assay, available from Sapidyne Instruments (Boise, Id.) can also be used.

I. Binding Proteins that Bind Human TNF-α

One aspect of the present disclosure provides isolated fully-human anti-human TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity. A second aspect of the disclosure provides affinity-matured fully-human anti-TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity.

A. Method of Making TNF-α Binding Proteins

The binding proteins disclosed herein may be made by any of a number of techniques known in the art.

1. Anti-TNF-α Monoclonal Antibodies Using Transgenic Animals

In another embodiment of the disclosure, binding proteins are produced by immunizing a non-human animal comprising some, or all, of the human immunoglobulin locus with a TNF-α antigen. In a particular embodiment, the non-human animal is a XENOMOUSE transgenic mouse, an engineered mouse strain that comprises large fragments of the human immunoglobulin loci and is deficient in mouse antibody production. See, e.g., Green et al. (1994) Nature Genet. 7:13-21 and U.S. Pat. Nos. 5,916,771; 5,939,598; 5,985,615; 5,998,209; 6,075,181; 6,091,001; 6,114,598 and 6,130,364. See also PCT Publications WO 91/10741, published Jul. 25, 1991; WO 94/02602, published Feb. 3, 1994; WO 96/34096 and WO 96/33735, both published Oct. 31, 1996; WO 98/16654, published Apr. 23, 1998; WO 98/24893, published Jun. 11, 1998; WO 98/50433, published Nov. 12, 1998; WO 99/45031, published Sep. 10, 1999; WO 99/53049, published Oct. 21, 1999; WO 00/09560, published Feb. 24, 2000; and WO 00/37504, published Jun. 29, 2000. The XENOMOUSE transgenic mouse produces an adult-like human repertoire of fully human antibodies, and generates antigen-specific human Mabs. The XENOMOUSE transgenic mouse contains approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and x light chain loci. See, Mendez et al. (1997) Nature Genet. 15:146-156; Green and Jakobovits (1998) J. Exp. Med. 188:483-495.

2. Anti-TNF-α Monoclonal Antibodies Using Recombinant Antibody Libraries

In vitro methods also can be used to make the binding protein disclosed herein, wherein an antibody library is screened to identify an antibody having the desired binding specificity. Methods for such screening of recombinant antibody libraries are well known in the art and include methods described in, for example, U.S. Pat. No. 5,223,409; PCT Publications WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; and WO 97/29131; Fuchs et al. (1991) Bio/Technology 9:1369-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; McCafferty et al. (1990) Nature 348:552-554; Griffiths et al. (1993) EMBO J. 12:725-734; Hawkins et al. (1992) J. Mol. Biol. 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrard et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nucl. Acid Res. 19:4133-4137; and Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:7978-7982; and U.S. Patent Publication No. 2003.0186374.

The recombinant antibody library may be from a subject immunized with TNF-α, or a portion of TNF-α. Alternatively, the recombinant antibody library may be from a naïve subject, i.e., one who has not been immunized with TNF-α, such as a human antibody library from a human subject who has not been immunized with human TNF-α. Antibodies disclosed herein are selected by screening the recombinant antibody library with the peptide comprising human TNF-α to thereby select those antibodies that recognize TNF-α. Methods for conducting such screening and selection are well known in the art, such as described in the references in the preceding paragraph. To select antibodies disclosed herein having particular binding affinities for hTNF-α, such as those that dissociate from human TNF-α with a particular koff rate constant, the art-known method of surface plasmon resonance can be used to select antibodies having the desired koff rate constant. To select antibodies disclosed herein having a particular neutralizing activity for hTNF-α, such as those with a particular an IC50, standard methods known in the art for assessing the inhibition of hTNF-α activity may be used.

In one aspect, provided is an isolated binding protein, or an antigen-binding portion thereof, that binds TNF-α, e.g., human TNF-α. In a particular embodiment, the binding protein is a neutralizing binding protein. In various embodiments, the binding protein is a recombinant binding protein or a monoclonal antibody.

For example, the binding proteins disclosed herein can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular, such phage can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the binding proteins disclosed herein can be found in the art.

As described in the above references, after phage selection, the binding protein coding regions from the phage can be isolated and used to generate whole binding proteins including human binding protein or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab′ and F(ab′)2 fragments can also be employed using methods known in the art such as those disclosed in PCT Publication WO 92/22324; Mullinax et al. (1992) BioTechniques 12(6):864-869; and Sawai et al. (1995) Am. J. Reprod. Immunol. 34:26-34; and Better et al. (1998) Science 240:1041-1043. Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Pat. Nos. 4,946,778 and 5,258,498; Huston et al. (1991) Methods Enzymol. 203:46-88; Shu et al. (1993) Proc. Natl. Acad Sci. USA 90:7995-7999; and Skerra et al. (1998) Science 240:1038-1041.

Alternative to screening of recombinant antibody libraries by phage display, other methodologies known in the art for screening large combinatorial libraries can be applied to the identification of dual specificity binding protein disclosed herein. One type of alternative expression system is one in which the recombinant antibody library is expressed as RNA-protein fusions, as described in PCT Publication No. WO 98/31700 and in Roberts and Szostak (1997) Proc. Natl. Acad. Sci. USA 94:12297-12302. In this system, a covalent fusion is created between an mRNA and the peptide or protein that it encodes by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3′ end. Thus, a specific mRNA can be enriched from a complex mixture of mRNAs (e.g., a combinatorial library) based on the properties of the encoded peptide or protein, e.g., antibody, or portion thereof, such as binding of the antibody, or portion thereof, to the dual specificity antigen. Nucleic acid sequences encoding antibodies, or portions thereof, recovered from screening of such libraries can be expressed by recombinant means as described above (e.g., in mammalian host cells) and, moreover, can be subjected to further affinity maturation by either additional rounds of screening of mRNA-peptide fusions in which mutations have been introduced into the originally selected sequence(s), or by other methods for affinity maturation in vitro of recombinant antibodies, as described above.

In another approach the binding proteins disclosed herein can also be generated using yeast display methods known in the art. In yeast display methods, genetic methods are used to tether antibody domains to the yeast cell wall and display them on the surface of yeast. In particular, such yeast can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Examples of yeast display methods that can be used to make the binding proteins disclosed herein include those disclosed Wittrup et al. U.S. Pat. No. 6,699,658 and Frenken et al., U.S. Pat. No. 6,114,147.

B. Production of Recombinant TNF-α Binding Proteins

Binding proteins disclosed herein may be produced by any of a number of techniques known in the art. For example, expression from host cells, wherein expression vector(s) encoding the heavy and light chains is (are) transfected into a host cell by standard techniques. The various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. Although it is possible to express the binding proteins disclosed herein in either prokaryotic or eukaryotic host cells, expression of binding protein in eukaryotic cells is contemplated, for example, in mammalian host cells, because such eukaryotic cells (and in particular mammalian cells) are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active binding protein.

Mammalian host cells for expressing the recombinant binding proteins disclosed herein include Chinese Hamster Ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) J. Mol. Biol. 159:601-621), NS0 myeloma cells, COS cells and SP2 cells. When recombinant expression vectors encoding binding protein genes are introduced into mammalian host cells, the binding proteins are produced by culturing the host cells for a period of time sufficient to allow for expression of the binding protein in the host cells or, in particular, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.

Host cells can also be used to produce functional binding protein fragments, such as Fab fragments or scFv molecules. It will be understood that variations on the above procedure are within the scope of the present disclosure. For example, it may be desirable to transfect a host cell with DNA encoding functional fragments of either the light chain and/or the heavy chain of a binding protein disclosed herein. Recombinant DNA technology may also be used to remove some, or all, of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to the antigens of interest. The molecules expressed from such truncated DNA molecules are also encompassed by the binding proteins disclosed herein. In addition, bifunctional binding proteins may be produced in which one heavy and one light chain are a binding protein disclosed herein and the other heavy and light chain are specific for an antigen other than the antigens of interest by crosslinking a binding protein disclosed herein to a second binding protein by standard chemical crosslinking methods.

In an exemplary system for recombinant expression of a binding protein, or antigen-binding portion thereof, disclosed herein, a recombinant expression vector encoding both the heavy chain and the light chain is introduced into dhfr CHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the heavy and light chain genes are each operatively linked to CMV enhancer/AdMLP promoter regulatory elements to drive high levels of transcription of the genes. The recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are cultured to allow for expression of the heavy and light chains and intact binding protein is recovered from the culture medium. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the binding protein from the culture medium. Still further a method of synthesizing a recombinant binding protein disclosed herein is provided by culturing a host cell disclosed herein in a suitable culture medium until a recombinant binding protein disclosed herein is synthesized. The method can further comprise isolating the recombinant binding protein from the culture medium.

II. hTNF-α Binding Proteins

A. Individual Clone Sequences

Table 5 provides the VH and VL sequences of fully human anti-human TNF binding proteins, including CDRs from each VH and VL sequence.

TABLE 5
Individual Fully Human Anti-TNF-α VH Sequences
Sequence
Protein region 123456789012345678901234567890
AE11-1 VH SEQ ID NO.: 22 EVQLVQSGAEVKKPGASVKVSCKASGYTFT
SYDVNWVRQATGQGLEWMGWMNPNSGNTGY
AQKFQGRVTITADESTSTAYMELSSLRSED
TAVYYCAIFDSDYMDVWGKGTLVTVSS
AE11-1 VH CDR- Residues 31-35 SYDVN
H1 of SEQ ID
NO.: 22
AE11-1 VH CDR- Residues 50-66 WMNPNSGNTGYAQKFQG
H2 of SEQ ID
NO.: 22
AE11-1 VH CDR- Residues 99-106 FDSDYMDV
H3 of SEQ ID
NO.: 22
AE11-1 VL SEQ ID NO.: 23 SYELTQPPSVSLSPGQTARITCSGDALPKQ
YAYWYQQKPGQAPVLVIYKDTERPSGIPER
FSGSSSGTTVTLTISGAQAEDEADYYCQSA
DSSGTSWVFGGGTKLTVL
AE11-1 VL CDR- Residues 23-33 SGDALPKQYAY
L1 of SEQ ID
NO.: 23
AE11-1 VL CDR- Residues 49-55 KDTERPS
L2 of SEQ ID
NO.: 23
AE11-1 VL CDR- Residues 89-98 SADSSGTSWV
L3 of SEQ ID
NO.: 23
AE11-5 VH SEQ ID NO.: 24 EVQLVQSGAEVKKPGSSAKVSCKASGGTFS
SYAISWVRQAPGQGLEWMGGIIPILGTANY
AQKFLGRVTITADESTSTVYMELSSLRSED
TAVYYCARGLYYDPTRADYWGQGTLVTVSS
AE11-5 VH CDR- Residues 31-35 SYAIS
H1 of SEQ ID
NO.: 24
AE11-5 VH CDR- Residues 50-66 GIIPILGTANYAQKFLG
H2 of SEQ ID
NO.: 24
AE11-5 VH CDR- Residues 99-109 GLYYDPTRADY
H3 of SEQ ID
NO.: 24
AE11-5 VL SEQ ID NO.: 25 DIVMTQSPDFHSVTPKEKVTITCRASQSIG
SSLHWYQQKPDQSPKLLIRHASQSISGVPS
RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ
SSSSPPPTFGQGTQVEIK
AE11-5 VL CDR- Residues 24-34 RASQSIGSSLH
L1 of SEQ ID
NO.: 25
AE11-5 VL CDR- Residues 50-56 HASQSIS
L2 of SEQ ID
NO.: 25
AE11-5 VL CDR- Residues 89-98 HQSSSSPPPT
L3 of SEQ ID
NO.: 25
TNF-JK1 VH SEQ ID NO.: 26 EVQLVESGGGLVQPGGSLRLSCATSGFTFN
NYWMSWVRQAPGKGLEWVANINHDESEKYY
VDSAKGRFTISRDNAEKSLFLQMNSLRAED
TAVYYCARIIRGRVGFDYYNYAMDVWGQGT
LVTVSS
TNF-JK1 VH CDR- Residues 31-35 NYWMS
H1 of SEQ ID
NO.: 26
TNF-JK1 VH CDR- Residues 50-66 NINHDESEKYYVDSAKG
H2 of SEQ ID
NO.: 26
TNF-JK1 VH CDR- Residues 99-115 IIRGRVGFDYYNYAMDV
H3 of SEQ ID
NO.: 26
TNF-JK1 VL SEQ ID NO.: 27 DIRLTQSPSPLSASVGDRVTITCRASQSIG
NYLNWYQHKPGKAPKLLIYAASSLQSGVPS
RFSGTGSGTDFTLTISSLQPEDFATYYCQE
SYSLIFAGGTKVEIK
TNF-JK1 VL CDR- Residues 24-34 RASQSIGNYLN
L1 of SEQ ID
NO.: 27
TNF-JK1 VL CDR- Residues 50-56 AASSLQS
L2 of SEQ ID
NO.: 27
TNF-JK1 VL CDR- Residues 89-95 QESYSLI
L3 of SEQ ID
NO.: 27
TNF-Y7C VH SEQ ID NO.: 28 EVQLVQSGAEVKKPGASVKVSCKTSGYTFS
NYDINWVRQPTGQGLEWMGWMDPNNGNTGY
AQKFVGRVTMTRDTSKTTAYLELSGLKSED
TAVYYCARSSGSGGTWYKEYFQSWGQGTMV
TVSS
TNF-Y7C VH CDR- Residues 31-35 NYDIN
H1 of SEQ ID
NO.: 28
TNF-Y7C VH CDR- Residues 50-66 WMDPNNGNTGYAQKFVG
H2 of SEQ ID
NO.: 28
TNF-Y7C VH CDR- Residues 99-112 KSSGSGGTWYKEYFQS
H3 of SEQ ID
NO.: 28
TNF-Y7C VL SEQ ID NO.: 29 DIVMTQSPLSLPVTPGEPASISCRSSQSLL
HSNGYNYLDWYLQKPGQFPQLLIYLGSYRA
SGVPDRFSGSGSGTDFTLKISRVEAEDVGV
YYCMQRIEFPPGTFGQGTKLGIK
TNF-Y7C VL CDR- Residues 24-39 RSSQSLLHSNGYNYLD
L1 of SEQ ID
NO.: 29
TNF-Y7C VL CDR- Residues 55-61 LGSYRAS
L2 of SEQ ID
NO.: 29
TNF-Y7C VL CDR- Residues 94-103 MQRIEFPPGT
L3 of SEQ ID
NO.: 29
AE11-7 VH SEQ ID NO.: 30 EVQLVQSGAEVKKPGASVKVSCKTSGYSLT
QYPIHWVRQAPGQRPEWMGWISPGNGNTKL
SPKFQGRVTLSRDASAGTVFMDLSGLTSDD
TAVYFCTSVDLGDHWGQGTLVTVSS
AE11-7 VH CDR- Residues 31-35 QYPIH
H1 of SEQ ID
NO.: 30
AE11-7 VH CDR- Residues 50-66 WISPGNGNTKLSPKFQG
H2 of SEQ ID
NO.: 30
AE11-7 VH CDR- Residues 99-104 VDLGDH
H3 of SEQ ID
NO.: 30
AE11-7 VL SEQ ID NO.: 31 DIVMTQSPEFQSVTPKEKVTITCRASQSIG
SSLHWYQQKPDQSPKLLINYASQSFSGVPS
RFSGGGSGTDFTLTINSLEAEDAATYYCHQ
SSNLPITFGQGTRLEIK
AE11-7 VL CDR- Residues 24-34 RASQSIGSSLH
L1 of SEQ ID
NO.: 31
AE11-7 VL CDR- Residues 50-56 YASQSFS
L2 of SEQ ID
NO.: 31
AE11-7 VL CDR- Residues 89-97 HQSSNLPIT
L3 of SEQ ID
NO.: 31
AE11-13 VH SEQ ID NO.: 32 EVQLVESGGGLVQPGRSLRLSCAASGFTFD
DYPMHWVRQAPGEGLEWVSGISSNSASIGY
ADSVKGRFTISRDNAQNTLYLQMNSLGDED
TAVYYCVSLTLGIGQGTLVTVSS
AE11-13 VH CDR- Residues 31-35 DYPMH
H1 of SEQ ID
NO.: 32
AE11-13 VH CDR- Residues 50-66 GISSNSASIGYADSVKG
H2 of SEQ ID
NO.: 32
AE11-13 VH CDR- Residues 99-102 LTLG
H3 of SEQ ID
NO.: 32
AE11-13 VL SEQ ID NO.: 33 DIRLTQSPSSLSASVGDRVTITCRASQSIG
NYLHWYQQKPGKAPKLLIYAASSLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
SYSTLYSFGQGTKLEIK
AE11-13 VL CDR- Residues 24-34 RASQSIGNYLH
L1 of SEQ ID
NO.: 33
AE11-13 VL CDR- Residues 50-56 AASSLQS
L2 of SEQ ID
NO.: 33
AE11-13 VL CDR- Residues 89-97 QQSYSTLYS
L3 of SEQ ID
NO.: 33

B. IgG Converted Clones

Table 6 provides the VH sequence of humanized anti-TNF MAK-195 antibodies that were converted into IgG clones as discussed in detail in Example 2.

TABLE 6
Humanized anti-TNF MAK-195 Ab VH sequences of
IgG converted clones
Sequence
Protein region 123456789012345678901234567890
A8 SEQ ID NO.: 34 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVNWVRQAPGKGLEWVSMIAADGFTDYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWHHGPVAYWGQGTLVTVSS
A8 CDR-H1 Residues 31-35 NYGVN
VH of SEQ ID
NO.: 34
A8 CDR-H2 Residues 50-65 MIAADGFTDYASSVKG
VH of SEQ ID
NO.: 34
A8 CDR-H3 Residues 98-106 EWHHGPVAY
VH of SEQ ID
NO.: 34
B5 SEQ ID NO.: 35 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWHHGPVAYWGQGTLVTVSS
B5 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 35
B5 CDR-H2 Residues 50-65 LIRGDGSTDYASSLKG
VH of SEQ ID
NO.: 35
B5 CDR-H3 Residues 98-106 EWHHGPVAY
VH of SEQ ID
NO.: 35
rHC44 SEQ ID NO.: 36 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
DTLKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC44 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 36
rHC44 CDR-H2 Residues 50-65 MIWADGSTHYADTLKS
VH of SEQ ID
NO.: 36
rHC44 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 36
rHC22 SEQ ID NO.: 37 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC22 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 37
rHC22 CDR-H2 Residues 50-65 MIWADGSTDYADTVKG
VH of SEQ ID
NO.: 37
rHC22 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 37
rHC81 SEQ ID NO.: 38 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DSVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
rHC81 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 38
rHC81 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS
VH of SEQ ID
NO.: 38
rHC81 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 38
rHC18 SEQ ID NO.: 39 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC18 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 39
rHC18 CDR-H2 Residues 50-65 MIWSDGSTDYASSVKG
VH of SEQ ID
NO.: 39
rHC18 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 39
rHC14 SEQ ID NO.: 40 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPAAYWGQGTLVTVSS
rHC14 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 40
rHC14 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG
VH of SEQ ID
NO.: 40
rHC14 CDR-H3 Residues 98-106 EWQHGPAAY
VH of SEQ ID
NO.: 40
rHC3 SEQ ID NO.: 41 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC3 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 41
rHC3 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG
VH of SEQ ID
NO.: 41
rHC3 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 41
rHC19 SEQ ID NO.: 42 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPAAYWGQGTLVTVSS
rHC19 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 42
rHC19 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 42
rHC19 CDR-H3 Residues 98-106 EWQHGPAAY
VH of SEQ ID
NO.: 42
rHC34 SEQ ID NO.: 43 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPSAYWGQGTLVTVSS
rHC34 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 43
rHC34 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 43
rHC34 CDR-H3 Residues 98-106 EWQHGPSAY
VH of SEQ ID
NO.: 43
rHC83 SEQ ID NO.: 44 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC83 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 44
rHC83 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 44
rHC83 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 44
S4-19 SEQ ID NO.: 45 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-19 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 45
S4-19 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 45
S4-19 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 45
S4-50 SEQ ID NO.: 46 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-50 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 46
S4-50 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 46
S4-50 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 46
S4-63 SEQ ID NO.: 47 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-63 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 47
S4-63 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 47
S4-63 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 47
S4-55 SEQ ID NO.: 48 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA
STVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-55 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 48
S4-55 CDR-H2 Residues 50-65 MIWADGSTDYASTVKG
VH of SEQ ID
NO.: 48
S4-55 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 48
S4-6 SEQ ID NO.: 49 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-6 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 49
S4-6 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 49
S4-6 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 49
S4-18 SEQ ID NO.: 50 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DSVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-18 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 50
S4-18 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS
VH of SEQ ID
NO.: 50
S4-18 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 50
S4-31 SEQ ID NO.:51 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVQWVRQAPGKGLEWVSGIGADGSTAYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHSGLAYWGQGTLVTVSS
S4-31 CDR-H1 Residues 31-35 NYGVQ
VH of SEQ ID
NO.: 51
S4-31 CDR-H2 Residues 50-65 GIGADGSTAYASSLKG
VH of SEQ ID
NO.: 51
S4-31 CDR-H3 Residues 98-106 EWQHSGLAY
VH of SEQ ID
NO.: 51
S4-34 SEQ ID NO.: 52 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-34 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 52
S4-34 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG
VH of SEQ ID
NO.: 52
S4-34 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 52
S4-74 SEQ ID NO.: 53 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-74 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 53
S4-74 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG
VH of SEQ ID
NO.: 53
S4-74 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 53
S4-12 SEQ ID NO.: 54 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-12 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 54
S4-12 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 54
S4-12 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 54
S4-54 SEQ ID NO.: 55 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-54 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 55
S4-54 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 55
S4-54 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 55
S4-17 SEQ ID NO.: 56 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-17 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 56
S4-17 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 56
S4-17 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 56
S4-40 SEQ ID NO.: 57 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-40 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 57
S4-40 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 57
S4-40 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 57
S4-24 SEQ ID NO.: 58 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-24 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 58
S4-24 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 58
S4-24 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 58

Table 7 provides VL sequences of IgG converted clones for Humanized anti-TNF MAK-195 antibodies as discussed in detail in Example 2.

TABLE 7
Humanized anti-TNF MAK-195 Ab VL sequences of
IgG converted clones
Sequence
Protein region 123456789012345678901234567890
hMAK195 SEQ ID NO.: 59 DIQMTQSPSSLSASVGDRVTITCKASQAVS
VL.1 SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
VL RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
hMAK195 CDR-L1 Residues 24-34 KASQAVSSAVA
VL.1 of SEQ ID
VL NO.: 59
hMAK195 CDR-L2 Residues 50-56 WASTRHT
VL.1 of SEQ ID
VL NO.: 59
hMAK195 CDR-L3 Residues 89-97 QQHYSTPFT
VL.1 of SEQ ID
VL NO.: 59
S4-24 SEQ ID NO.: 60 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-24 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 60
S4-24 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 60
S4-24 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 60
S4-40 SEQ ID NO.: 61 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFSFGQGTKLEIKR
S4-40 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 61
S4-40 CDR-L2 Residues 50-56 WASTRHS
VL of SEQ ID
NO.: 61
S4-40 CDR-L3 Residues 89-97 QQHYRTPFS
VL of SEQ ID
NO.: 61
S4-17 SEQ ID NO.: 62 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-17 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 62
S4-17 CDR-L2 Residues 50-56 WASTRHS
VL of SEQ ID
NO.: 62
S4-17 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 62
S4-54 SEQ ID NO.: 63 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYKTPFSFGQGTKLEIKR
S4-54 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 63
S4-54 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 63
S4-54 CDR-L3 Residues 89-97 QQHYKTPFS
VL of SEQ ID
NO.: 63
S4-12 SEQ ID NO.: 64 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYKTPFTFGQGTKLEIKR
S4-12 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 64
S4-12 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 64
S4-12 CDR-L3 Residues 89-97 QQHYKTPFT
VL of SEQ ID
NO.: 64
S4-74 SEQ ID NO.: 65 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-74 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 65
S4-74 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 65
S4-74 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 65
S4-34 SEQ ID NO.: 66 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-34 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 66
S4-34 CDR-L2 Residues 50-56 WASTRHT
VL of SEQ ID
NO.: 66
S4-34 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 66
S4-31 SEQ ID NO.: 67 DIQMTQSPSSLSASVGDRVTITCRASQGVS
VL SALAWYQQKPGKAPKLLIYWASALHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSAPFTFGQGTKLEIKR
S4-31 CDR-L1 Residues 24-34 RASQGVSSALA
VL of SEQ ID
NO.: 67
S4-31 CDR-L2 Residues 50-56 WASALHS
VL of SEQ ID
NO.: 67
S4-31 CDR-L3 Residues 89-97 QQHYSAPFT
VL of SEQ ID
NO.: 67
S4-18 SEQ ID NO.: 68 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
S4-18 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 68
S4-18 CDR-L2 Residues 50-56 WASTLHS
VL of SEQ ID
NO.: 68
S4-18 CDR-L3 Residues 89-97 QQHYSTPFT
VL of SEQ ID
NO.: 68
S4-6 SEQ ID NO.: 69 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
S4-6 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 69
S4-6 CDR-L2 Residues 50-56 WASTRHT
VL of SEQ ID
NO.: 69
S4-6 CDR-L3 Residues 89-97 QQHYSTPFT
VL of SEQ ID
NO.: 69
S4-55 SEQ ID NO.: 70 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-55 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 70
S4-55 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 70
S4-55 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 70
S4-63 SEQ ID NO.: 71 DIQMTQSPSSLSASVGDRVTITCKASQKVS
VL SALAWYQQKPGKAPKLLIYWASALHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRPPFTFGQGTKLEIKR
S4-63 CDR-L1 Residues 24-34 KASQKVSSALA
VL of SEQ ID
NO.: 71
S4-63 CDR-L2 Residues 50-56 WASALHS
VL of SEQ ID
NO.: 71
S4-63 CDR-L3 Residues 89-97 QQHYRPPFT
VL of SEQ ID
NO.: 71
S4-50 SEQ ID NO.: 72 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASALHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSSPYTFGQGTKLEIKR
S4-50 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 72
S4-50 CDR-L2 Residues 50-56 WASALHT
VL of SEQ ID
NO.: 72
S4-50 CDR-L3 Residues 89-97 QQHYSSPYT
VL of SEQ ID
NO.: 72
S4-19 SEQ ID NO.: 73 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-19 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 73
S4-19 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 73
S4-19 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 73

C. Individual hMAK-199 Sequences from Converted Clones

Table 8 provides VH sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.

TABLE 8
Humanized Anti-TNF MAK-199 Ab VH sequences of
IgG converted clones
Sequence
Protein region 123456789012345678901234567890
J662M2S3 SEQ ID NO.: 74 EVQLVQSGAEVKKPGASVKVSCKASGYTFA
#10 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
10 VH of SEQ ID
NO.: 74
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
10 VH of SEQ ID
NO.: 74
J662M2S3# CDR-H3 Residues 99-112 RASQDISQYLN
10 VH of SEQ ID
NO.: 74
J662M2S3# SEQ ID NO.: 75 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
13 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKLQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFNTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
13 VH of SEQ ID
NO.: 75
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKLQG
13 VH of SEQ ID
NO.: 75
J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD
13 VH of SEQ ID
NO.: 75
J662M2S3# SEQ ID NO.: 76 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
15 VH NYGIIWVRQAPGQGLEWMGWINTYTGVPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFNTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
15 VH of SEQ ID
NO.: 76
J662M2S3# CDR-H2 Residues 50-66 WINTYTGVPTYAQKFQG
15 VH of SEQ ID
NO.: 76
J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD
15 VH of SEQ ID
NO.: 76
J662M2S3# SEQ ID NO.: 77 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
16 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFNTVAVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
16 VH of SEQ ID
NO.: 77
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
16 VH of SEQ ID
NO.: 77
J662M2S3# CDR-H3 Residues 99-112 KLFNTVAVTDNAMD
16 VH of SEQ ID
NO.: 77
J662M2S3# SEQ ID NO.: 78 EVQLVQSGAEVKKPGASVKVSCKASGYTFR
21 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
21 VH of SEQ ID
NO.: 78
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
21 VH of SEQ ID
NO.: 78
J662M2S3# CDR-H3 Residues 99-112 KLFTTVDVTDNAMD
21 VH of SEQ ID
NO.: 78
J662M2S3# SEQ ID NO.: 79 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
34 VH NYGINWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKFRNTVAVTDYAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIN
34 VH of SEQ ID
NO.: 79
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
34 VH of SEQ ID
NO.: 79
J662M2S3# CDR-H3 Residues 99-112 KFRNTVAVTDYAMD
34 VH of SEQ ID
NO.: 79
J662M2S3# SEQ ID NO.: 80 EVQLVQSGAEVKKPGASVKVSCKASGYTFR
36 VH NYGITWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIT
36 VH of SEQ ID
NO.: 80
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
36 VH of SEQ ID
NO.: 80
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
36 VH of SEQ ID
NO.: 80
J662M2S3# SEQ ID NO.: 81 EVQLVQSGAEVKKPGASVKVSCKASGYTFA
45 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
45 VH of SEQ ID
NO.: 81
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
45 VH of SEQ ID
NO.: 81
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
45 VH of SEQ ID
NO.: 81
J662M2S3# SEQ ID NO.: 82 EVQLVQSGAEVKKPGASVKVSCKASGYTFS
58 VH NYGINWVRQAPGQGLEWMGWINTYTGQPSY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFKTEAVTDYAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIN
58 VH of SEQ ID
NO.: 82
J662M2S3# CDR-H2 Residues 50-66 WINTYTGQPSYAQKFQG
58 VH of SEQ ID
NO.: 82
J662M2S3# CDR-H3 Residues 99-112 KLFKTEAVTDYAMD
58 VH of SEQ ID
NO.: 82
J662M2S3# SEQ ID NO.: 83 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
72 VH NYGIIWVRQAPGQGLEWMGWINTYSGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
72 VH of SEQ ID
NO.: 83
J662M2S3# CDR-H2 Residues 50-66 WINTYSGKPTYAQKFQG
72 VH of SEQ ID
NO.: 83
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
72 VH of SEQ ID
NO.: 83

Table 9 provides VL sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.

TABLE 9
Humanized Anti-TNF MAK-199 Ab VL sequences of
IgG converted clones
Sequence
Protein region 123456789012345678901234567890
J662M2S3# SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
10 VL NO.: 84 QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#10 CDR-L1 Residues 24-34 RASQDISQYLN
VL of SEQ ID
NO.: 84
J662M2S3#10 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 84
J662M2S3#10 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 84
J662M2S3#13 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NO.: 85 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNSWPPTFGQGTKLEIK
J662M2S3#13 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 85
J662M2S3#13 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 85
J662M2S3#13 CDR-L3 Residues 89-97 QQGNSWPPT
VL of SEQ
ID NO.: 85
J662M2S3#15 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIY
VL NO.: 86 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#15 CDR-L1 Residues 24-34 RASQDIYNYLN
VL of SEQ ID
NO.: 86
J662M2S3#15 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 86
J662M2S3#15 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 86
J662M2S3#16 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIE
VL NO.: 87 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#16 CDR-L1 Residues 24-34 RASQDIENYLN
VL of SEQ ID
NO.: 87
J662M2S3#16 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 87
J662M2S3#16 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 87
J662M2S3#21 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NO.: 88 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#21 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 88
J662M2S3#21 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 88
J662M2S3#21 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 88
J662M2S3#34 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIY
VL NO.: 89 DVLNWYQQKPGKAPKLLIYYASRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
GITLPPTFGQGTKLEIK
J662M2S3#34 CDR-L1 Residues 24-34 RASQDIYDVLN
VL of SEQ ID
NO.: 89
J662M2S3#34 CDR-L2 Residues 50-56 YASRLQS
VL of SEQ ID
NO.: 89
J662M2S3#34 CDR-L3 Residues 89-97 QQGITLPPT
VL of SEQ
ID NO.: 89
J662M2S3#36 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NO.: 90 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#36 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 90
J662M2S3#36 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 90
J662M2S3#36 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 90
J662M2S3#45 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NO.: 91 QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#45 CDR-L1 Residues 24-34 RASQDISQYLN
VL of SEQ ID
NO.: 91
J662M2S3#45 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 91
J662M2S3#45 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 91
J662M2S3#58 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQNIY
VL NO.: 92 NVLNWYQQKPGKAPKLLIYYASRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTMPPTFGQGTKLEIK
J662M2S3#58 CDR-L1 Residues 24-34 RASQNIYNVLN
VL of SEQ ID
NO.: 92
J662M2S3#58 CDR-L2 Residues 50-56 YASRLQS
VL of SEQ ID
NO.: 92
J662M2S3#58 CDR-L3 Residues 89-97 QQGNTMPPT
VL of SEQ
ID NO.: 92
J662M2S3#72 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NO.: 93 NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#72 CDR-L1 Residues 24-34 RASQDISNFLN
VL of SEQ ID
NO.: 93
J662M2S3#72 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 93
J662M2S3#72 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 93

In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.

In an embodiment where the VH and/or the VL CDR sequences are provided above, the human acceptor framework comprises at least one amino acid sequence selected from: SEQ ID NOs: 6-21. In a particular embodiment, the human acceptor framework comprises an amino acid sequence selected from: SEQ IN NOs: 9, 10, 11, 12, 15, 16, 17, and 21. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution, wherein the amino acid sequence of the framework is at least 65% identical to the sequence of the human acceptor framework and comprises at least 70 amino acid residues identical to the human acceptor framework. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution at a key residue. The key residue selected from: a residue adjacent to a CDR; a glycosylation site residue; a rare residue; a residue capable of interacting with human TNF-α; a residue capable of interacting with a CDR; a canonical residue; a contact residue between heavy chain variable region and light chain variable region; a residue within a Vernier zone; and a residue in a region that overlaps between a Chothia-defined variable heavy chain CDR1 and a Kabat-defined first heavy chain framework. In an embodiment, the key residue is selected from: H1, H12, H24, H27, H29, H37, H48, H49, H67, H71, H73, H76, H78, L13, L43, L58, L70, and L80. In an embodiment, the VH mutation is selected from: Q1E, I12V, A24V, G27F, I29L, V29F F29L I37V, I48L, V48L, S49G, V67L, F67L, V71K, R71K, T73N, N76S, L78I, and F78I. In another embodiment, the VL mutation is selected from: V13L, A43S, I58V, E70D, and S80P. In an embodiment, the binding protein comprises two variable domains, wherein the two variable domains have amino acid sequences selected from: SEQ ID NOS: 22 and 23; 23 and 24; 24 and 25; 26 and 27; 28 and 29; 30 and 31; or 32 and 33.

III. Production of Binding Proteins and Binding Protein-Producing Cell Lines

In an embodiment, TNF-α binding proteins disclosed herein exhibit a high capacity to reduce or to neutralize TNF-α activity, e.g., as assessed by any one of several in vitro and in vivo assays known in the art. Alternatively, TNF-α binding proteins disclosed herein, also exhibit a high capacity to increase or agonize TNF-α activity.

In particular embodiments, the isolated binding protein, or antigen-binding portion thereof, binds human TNF-α, wherein the binding protein, or antigen-binding portion thereof, dissociates from human TNF-α with a koff rate constant of about 0.1 s−1 or less, as determined by surface plasmon resonance, such as 1×10−2 s−1 or less, 1×10−3 s−1 or less, 1×10−4 s−1 or less, 1×10−5 s−1 or less and 1×10−6 s−1 or less; or which inhibits human TNF-α activity with an IC50 of about 1×10−6 M or less, such as 1×10−7 M or less, 1×10−8 M or less, 1×10−9 M or less, 1×10−10 M or less and 1×10−11 M or less. In certain embodiments, the binding protein comprises a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region. In an embodiment, the heavy chain constant region is an IgG1 heavy chain constant region or an IgG4 heavy chain constant region. Furthermore, the binding protein can comprise a light chain constant region, either a kappa light chain constant region or a lambda light chain constant region. In another embodiment, the binding protein comprises a kappa light chain constant region. Alternatively, the binding protein portion can be, for example, a Fab fragment or a single chain Fv fragment.

Replacements of amino acid residues in the Fc portion to alter binding protein effector function are known in the art (See U.S. Pat. Nos. 5,648,260 and 5,624,821). The Fc portion of a binding protein mediates several important effector functions, e.g., cytokine induction, ADCC, phagocytosis, complement dependent cytotoxicity (CDC) and half-life/clearance rate of antibody and antigen-antibody complexes. In some cases these effector functions are desirable for therapeutic antibody but in other cases might be unnecessary or even deleterious, depending on the therapeutic objectives. Certain human IgG isotypes, particularly IgG1 and IgG3, mediate ADCC and CDC via binding to FcγRs and complement C1q, respectively. Neonatal Fc receptors (FcRn) are the critical components determining the circulating half-life of antibodies. In still another embodiment at least one amino acid residue is replaced in the constant region of the binding protein, for example the Fc region of the binding protein, such that effector functions of the binding protein are altered.

One embodiment provides a labeled binding protein wherein an antibody or antibody portion disclosed herein is derivatized or linked to another functional molecule (e.g., another peptide or protein). For example, a labeled binding protein disclosed herein can be derived by functionally linking an antibody or antibody portion disclosed herein (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate associate of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).

Useful detectable agents with which an antibody or antibody portion disclosed herein may be derivatized include fluorescent compounds. Exemplary fluorescent detectable agents include fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-1-napthalenesulfonyl chloride, phycoerythrin and the like. An antibody may also be derivatized with detectable enzymes, such as alkaline phosphatase, horseradish peroxidase, glucose oxidase and the like. When an antibody is derivatized with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a detectable reaction product. For example, when the detectable agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable. An antibody may also be derivatized with biotin, and detected through indirect measurement of avidin or streptavidin binding.

Another embodiment of the disclosure provides a crystallized binding protein. In an embodiment, provided are crystals of whole TNF-α binding proteins and fragments thereof as disclosed herein, and formulations and compositions comprising such crystals. In one embodiment the crystallized binding protein has a greater half-life in vivo than the soluble counterpart of the binding protein. In another embodiment the binding protein retains biological activity after crystallization.

Crystallized binding protein disclosed herein may be produced according methods known in the art and as disclosed in PCT Publication WO 02/72636.

Another embodiment of the disclosure provides a glycosylated binding protein wherein the binding protein or antigen-binding portion thereof comprises one or more carbohydrate residues. Nascent in vivo protein production may undergo further processing, known as post-translational modification. In particular, sugar (glycosyl) residues may be added enzymatically, a process known as glycosylation. The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins. Protein glycosylation depends on the amino acid sequence of the protein of interest, as well as the host cell in which the protein is expressed. Different organisms may produce different glycosylation enzymes (e.g., glycosyltransferases and glycosidases), and have different substrates (nucleotide sugars) available. Due to such factors, protein glycosylation pattern, and composition of glycosyl residues, may differ depending on the host system in which the particular protein is expressed. Glycosyl residues useful in the disclosure may include, but are not limited to, glucose, galactose, mannose, fucose, n-acetylglucosamine and sialic acid. In an embodiment, the glycosylated binding protein comprises glycosyl residues such that the glycosylation pattern is human.

It is known to those skilled in the art that differing protein glycosylation may result in differing protein characteristics. For instance, the efficacy of a therapeutic protein produced in a microorganism host, such as yeast, and glycosylated utilizing the yeast endogenous pathway may be reduced compared to that of the same protein expressed in a mammalian cell, such as a CHO cell line. Such glycoproteins may also be immunogenic in humans and show reduced half-life in vivo after administration. Specific receptors in humans and other animals may recognize specific glycosyl residues and promote the rapid clearance of the protein from the bloodstream. Other adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, a practitioner may prefer a therapeutic protein with a specific composition and pattern of glycosylation, for example glycosylation composition and pattern identical, or at least similar, to that produced in human cells or in the species-specific cells of the intended subject animal.

Expressing glycosylated proteins different from that of a host cell may be achieved by genetically modifying the host cell to express heterologous glycosylation enzymes. Using techniques known in the art a practitioner may generate antibodies or antigen-binding portions thereof exhibiting human protein glycosylation. For example, yeast strains have been genetically modified to express non-naturally occurring glycosylation enzymes such that glycosylated proteins (glycoproteins) produced in these yeast strains exhibit protein glycosylation identical to that of animal cells, especially human cells (U.S. Pat. Nos. 7,449,308 and 7,029,872).

Further, it will be appreciated by one skilled in the art that a protein of interest may be expressed using a library of host cells genetically engineered to express various glycosylation enzymes, such that member host cells of the library produce the protein of interest with variant glycosylation patterns. A practitioner may then select and isolate the protein of interest with particular novel glycosylation patterns. In an embodiment, the protein having a particularly selected novel glycosylation pattern exhibits improved or altered biological properties.

IV. Uses of TNF-α Binding Proteins

Given their ability to bind to human TNF-α, e.g., the human TNF-α binding proteins, or portions thereof, disclosed herein can be used to detect TNF-α (e.g., in a biological sample, such as serum or plasma), using a conventional immunoassay, such as an enzyme linked immunosorbent assays (ELISA), an radioimmunoassay (RIA) or tissue immunohistochemistry. A method for detecting TNF-α in a biological sample is provided comprising contacting a biological sample with a binding protein, or binding protein portion, disclosed herein and detecting either the binding protein (or binding protein portion) bound to TNF-α or unbound binding protein (or binding protein portion), to thereby detect TNF-α in the biological sample. The binding protein is directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound antibody. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include 3H, 14C, 35S, 90Y, 99Tc, 111In, 125I, 131I, 177Lu, 166Ho, or 153Sm.

Alternative to labeling the binding protein, human TNF-α can be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein. In this assay, the biological sample, the labeled rhTNF-α standards and the human TNF-α binding protein are combined and the amount of labeled rhTNF-α standard bound to the unlabeled binding protein is determined. The amount of human TNF-α in the biological sample is inversely proportional to the amount of labeled rhTNF-α standard bound to the TNF-α binding protein. Similarly, human TNF-α can also be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein.

In an embodiment, the binding proteins and binding protein portions disclosed herein are capable of neutralizing TNF-α activity, e.g., human TNF-α activity, both in vitro and in vivo. In another embodiment, the binding proteins and binding protein portions disclosed herein are capable of increasing or agonizing human TNF-α activity, e.g., human TNF-α activity. Accordingly, such binding proteins and binding protein portions disclosed herein can be used to inhibit or increase hTNF-α activity, e.g., in a cell culture containing hTNF-α, in human subjects or in other mammalian subjects having TNF-α with which a binding protein disclosed herein cross-reacts. In one embodiment, a method for inhibiting or increasing hTNF-α activity is provided comprising contacting hTNF-α with a binding protein or binding protein portion disclosed herein such that hTNF-α activity is inhibited or increased. For example, in a cell culture containing, or suspected of containing hTNF-α, a binding protein or binding protein portion disclosed herein can be added to the culture medium to inhibit or increase hTNF-α activity in the culture.

In another embodiment, a method is provided for reducing or increasing hTNF-α activity in a subject, advantageously from a subject suffering from a disease or disorder in which TNF-α-activity is detrimental or, alternatively, beneficial. Methods for reducing or increasing TNF-α activity in a subject suffering from such a disease or disorder is provided, which method comprises administering to the subject a binding protein or binding protein portion disclosed herein such that TNF-α activity in the subject is reduced or increased. In a particular embodiment, the TNF-α is human TNF-α, and the subject is a human subject. Alternatively, the subject can be a mammal expressing a TNF-α to which a binding protein provided is capable of binding. Still further the subject can be a mammal into which TNF-α has been introduced (e.g., by administration of TNF-α or by expression of a TNF-α transgene). A binding protein disclosed herein can be administered to a human subject for therapeutic purposes. Moreover, a binding protein disclosed herein can be administered to a non-human mammal expressing a TNF-α with which the binding protein is capable of binding for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of binding proteins disclosed herein (e.g., testing of dosages and time courses of administration).

The term “a disorder in which TNF-α activity is detrimental” includes diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-α activity is detrimental is a disorder in which reduction of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-α in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-α in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-α antibody as described above. Non-limiting examples of disorders that can be treated with the binding proteins disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.

Alternatively, the term “a disorder in which TNF-α activity is beneficial” include diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either beneficial for treating the pathophysiology of the disorder or a factor that contributes to a treatment of the disorder. Accordingly, a disorder in which TNF-α activity is beneficial is a disorder in which an increase of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Non-limiting examples of disorders that can be treated with the antibodies disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.

V. Pharmaceutical Compositions

Pharmaceutical compositions are also provided comprising a binding protein, or antigen-binding portion thereof, disclosed herein and a pharmaceutically acceptable carrier. The pharmaceutical compositions comprising binding protein disclosed herein are for use in, but not limited to, diagnosing, detecting, or monitoring a disorder, in preventing, treating, managing, or ameliorating of a disorder or one or more symptoms thereof, and/or in research. In a specific embodiment, a composition comprises one or more binding proteins disclosed herein. In another embodiment, the pharmaceutical composition comprises one or more binding proteins disclosed herein and one or more prophylactic or therapeutic agents other than binding proteins disclosed herein for treating a disorder in which TNF-α activity is detrimental. In a particular embodiment, the prophylactic or therapeutic agents known to be useful for or having been or currently being used in the prevention, treatment, management, or amelioration of a disorder or one or more symptoms thereof. In accordance with these embodiments, the composition may further comprise of a carrier, diluent or excipient.

The binding proteins and binding protein-portions disclosed herein can be incorporated into pharmaceutical compositions suitable for administration to a subject. Typically, the pharmaceutical composition comprises a binding protein or binding protein portion disclosed herein and a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition, may be included. Pharmaceutically acceptable carriers may further comprise minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the binding protein or binding protein portion.

Various delivery systems are known and can be used to administer one or more binding proteins disclosed herein or the combination of one or more binding proteins disclosed herein and a prophylactic agent or therapeutic agent useful for preventing, managing, treating, or ameliorating a disorder or one or more symptoms thereof, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the binding protein or binding protein fragment, receptor-mediated endocytosis (see, e. g., Wu and Wu (1987) J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of administering a prophylactic or therapeutic agent disclosed herein include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural administration, intratumoral administration, and mucosal administration (e.g., intranasal and oral routes). In addition, pulmonary administration can be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. In one embodiment, a binding protein disclosed herein, combination therapy, or a composition disclosed herein is administered using Alkermes AIR® pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.). In a specific embodiment, prophylactic or therapeutic agents disclosed herein are administered intramuscularly, intravenously, intratumorally, orally, intranasally, pulmonary, or subcutaneously. The prophylactic or therapeutic agents may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.

In a specific embodiment, it may be desirable to administer the prophylactic or therapeutic agents disclosed herein locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, by injection, or by means of an implant, said implant being of a porous or non-porous material, including membranes and matrices, such as sialastic membranes, polymers, fibrous matrices (e.g., Tissuel®), or collagen matrices. In one embodiment, an effective amount of one or more binding proteins disclosed herein antagonists is administered locally to the affected area to a subject to prevent, treat, manage, and/or ameliorate a disorder or a symptom thereof. In another embodiment, an effective amount of one or more binding proteins disclosed herein is administered locally to the affected area in combination with an effective amount of one or more therapies (e.g., one or more prophylactic or therapeutic agents) other than an antibody disclosed herein of a subject to prevent, treat, manage, and/or ameliorate a disorder or one or more symptoms thereof.

In a specific embodiment, where the composition disclosed herein is a nucleic acid encoding a prophylactic or therapeutic agent, the nucleic acid can be administered in vivo to promote expression of its encoded prophylactic or therapeutic agent, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, DuPont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see, e.g., Joliot et al. (1991) Proc. Natl. Acad. Sci. USA 88:1864-1868). Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression by homologous recombination.

The method disclosed herein may comprise administration of a composition formulated for parenteral administration by injection (e.g., by bolus injection or continuous infusion). Formulations for injection may be presented in unit dosage form (e.g., in ampoules or in multi-dose containers) with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle (e.g., sterile pyrogen-free water) before use.

The methods disclosed herein may additionally comprise of administration of compositions formulated as depot preparations. Such long acting formulations may be administered by implantation (e.g., subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compositions may be formulated with suitable polymeric or hydrophobic materials (e.g., as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives (e.g., as a sparingly soluble salt).

The methods disclosed herein encompass administration of compositions formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

Generally, the ingredients of compositions are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the mode of administration is infusion, composition can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the mode of administration is by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

In particular, it is also provided that one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity of the agent. In one embodiment, one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted (e.g., with water or saline) to the appropriate concentration for administration to a subject. In an embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied as a dry sterile lyophilized powder in a hermetically sealed container at a unit dosage of at least 5 mg, at least 10 mg, at least 15 mg, at least 25 mg, at least 35 mg, at least 45 mg, at least 50 mg, at least 75 mg, or at least 100 mg. The lyophilized prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein should be stored at between 2° C. and 8° C. in its original container and the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein should be administered within 1 week, within 5 days, within 72 hours, within 48 hours, within 24 hours, within 12 hours, within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted. In an alternative embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the agent. In an embodiment, the liquid form of the administered composition is supplied in a hermetically sealed container at least 0.25 mg/ml, at least 0.5 mg/ml, at least 1 mg/ml, at least 2.5 mg/ml, at least 5 mg/ml, at least 8 mg/ml, at least 10 mg/ml, at least 15 mg/kg, at least 25 mg/ml, at least 50 mg/ml, at least 75 mg/ml or at least 100 mg/ml. The liquid form should be stored at between 2° C. and 8° C. in its original container.

The binding proteins and binding protein-portions disclosed herein can be incorporated into a pharmaceutical composition suitable for parenteral administration. In an embodiment, the binding protein or binding protein-portions will be prepared as an injectable solution containing 0.1-250 mg/ml binding protein. The injectable solution can be composed of either a liquid or lyophilized dosage form in a flint or amber vial, ampoule or pre-filled syringe. The buffer can be L-histidine (1-50 mM), optimally 5-10 mM, at pH 5.0 to 7.0 (optimally pH 6.0). Other suitable buffers include but are not limited to, sodium succinate, sodium citrate, sodium phosphate or potassium phosphate. Sodium chloride can be used to modify the toxicity of the solution at a concentration of 0-300 mM (optimally 150 mM for a liquid dosage form). Cryoprotectants can be included for a lyophilized dosage form, principally 0-10% sucrose (optimally 0.5-1.0%). Other suitable cryoprotectants include trehalose and lactose. Bulking agents can be included for a lyophilized dosage form, principally 1-10% mannitol (optimally 2-4%). Stabilizers can be used in both liquid and lyophilized dosage forms, principally 1-50 mM L-Methionine (optimally 5-10 mM). Other suitable bulking agents include glycine, arginine, can be included as 0-0.05% polysorbate-80 (optimally 0.005-0.01%). Additional surfactants include but are not limited to polysorbate 20 and BRIJ surfactants.

Typical compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans with other antibodies. Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., binding protein or binding protein portion) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile, lyophilized powders for the preparation of sterile injectable solutions, the methods of preparation include vacuum drying and spray-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including, in the composition, an agent that delays absorption, for example, monostearate salts and gelatin.

As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. In certain embodiments, the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.

Supplementary active compounds can also be incorporated into the compositions. In certain embodiments, a binding protein or binding protein portion disclosed herein is coformulated with and/or coadministered with one or more additional therapeutic agents that are useful for treating disorders in which TNF-α activity is detrimental. For example, an anti-hTNF-α antibody or antibody portion disclosed herein may be coformulated and/or coadministered with one or more additional antibodies that bind other targets (e.g., antibodies that bind other cytokines or that bind cell surface molecules). Furthermore, one or more binding proteins disclosed herein may be used in combination with two or more of the foregoing therapeutic agents. Such combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible toxicities or complications associated with the various monotherapies.

In certain embodiments, a binding protein to TNF-α or fragment thereof is linked to a half-life extending vehicle known in the art. Such vehicles include, but are not limited to, the Fc domain, polyethylene glycol, and dextran. Such vehicles are described, e.g., in U.S. Pat. No. 6,660,843.

In a specific embodiment, nucleic acid sequences comprising nucleotide sequences encoding a binding protein disclosed herein or another prophylactic or therapeutic agent disclosed herein are administered to treat, prevent, manage, or ameliorate a disorder or one or more symptoms thereof by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the disclosure, the nucleic acids produce their encoded binding protein or prophylactic or therapeutic agent disclosed herein that mediates a prophylactic or therapeutic effect.

Any of the methods for gene therapy available in the art can be used according to the present disclosure.

TNF-α plays a critical role in the pathology associated with a variety of diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those assocated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, systemic lupus erythematosus, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders. In another embodiment, the disorder is a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, suppression of expression of a protective type 1 immune response during vaccination, neurodegenerative diseases, neuronal regeneration, and spinal cord injury.

It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods disclosed herein may be made using suitable equivalents without departing from the scope of the invention or the embodiments disclosed herein. Having now described the present disclosure in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.

Fully human anti-human TNF monoclonal antibodies were isolated by in vitro display technologies from human antibody libraries by their ability to bind recombinant human TNF proteins. The amino acid sequences of the variable heavy (VH) and variable light (VL) chains were determined from DNA sequencing and listed in Table 10.

TABLE 10
Individual clones sequences
Protein Sequence
region SEQ ID NO: 123456789012345678901234567890
AE11-1 VH 22 EVQLVQSGAEVKKPGASVKVSCKASGYTFT
SYDVNWVRQATGQGLEWMGMNPNSGNTGY
AQKFQGRVTITADESTSTAYMELSSLRSED
TAVYYCAIFDSDYMDVWGKGTLVTVSS
AE11-1 VH CDR- Residues 31-35 SYDVN
H1 of SEQ ID
NO.: 22
AE11-1 VH CDR- Residues 50-66 WMNPNSGNTGYAQKFQG
H2 of SEQ ID
NO.: 22
AE11-1 VH CDR- Residues 99-106 FDSDYMDV
H3 of SEQ ID
NO.: 22
AE11-1 VL 23 SYELTQPPSVSLSPGQTARITCSGDALPKQ
YAYWYQQKPGQAPVLVIYKDTERPSGIPER
FSGSSSGTTVTLTISGAQAEDEADYYCQSA
DSSGTSWVFGGGTKLTVL
AE11-1 VL CDR- Residues 23-33 SGDALPKQYAY
L1 of SEQ ID
NO.: 23
AE11-1 VL CDR- Residues 49-55 KDTERPS
L2 of SEQ ID
NO.: 23
AE11-1 VL CDR- Residues 89-98 SADSSGTSWV
L3 of SEQ ID
NO.: 23
AE11-5 VH 24 EVQLVQSGAEVKKPGSSAKVSCKASGGTFS
SYAISWVRQAPGQGLEWMGGIIPILGTANY
AQKFLGRVTITADESTSTVYMELSSLRSED
TAVYYCARGLYYDPTRADYWGQGTLVTVSS
AE11-5 VH CDR- Residues 31-35 SYAIS
H1 of SEQ ID
NO.: 24
AE11-5 VH CDR- Residues 50-66 GIIPILGTANYAQKFLG
H2 of SEQ ID
NO.: 24
AE11-5 VH CDR- Residues 99-109 GLYYDPTRADY
H3 of SEQ ID
NO.: 24
AE11-5 VL 25 DIVMTQSPDFHSVTPKEKVTITCRASQSIG
SSLHWYQQKPDQSPKLLIRHASQSISGVPS
RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ
SSSSPPPTFGQGTQVEIK
AE11-5 VL CDR- Residues 24-34 RASQSIGSSLH
L1 of SEQ ID
NO.: 25
AE11-5 VL CDR- Residues 50-56 HASQSIS
L2 of SEQ ID
NO.: 25
AE11-5 VL CDR- Residues 89-98 HQSSSSPPPT
L3 of SEQ ID
NO.: 25
TNF-JK1 VH 26 EVQLVESGGGLVQPGGSLRLSCATSGFTFN
NYWMSWVRQAPGKGLEWVANINHDESEKYY
VDSAKGRFTISRDNAEKSLFLQMNSLRAED
TAVYYCARIIRGRVGFDYYNYAMDVWGQGT
LVTVSS
TNF-JK1 VH CDR- Residues 31-35 NYWMS
H1 of SEQ ID
NO.: 26
TNF-JK1 VH CDR- Residues 50-66 NINHDESEKYYVDSAKG
H2 of SEQ ID
NO.: 26
TNF-JK1 VH CDR- Residues 99-115 IIRGRVGFDYYNYAMDV
H3 of SEQ ID
NO.: 26
TNF-JK1 VL 27 DIRLTQSPSPLSASVGDRVTITCRASQSIG
NYLNWYQHKPGKAPKLLIYAASSLQSGVPS
RFSGTGSGTDFTLTISSLQPEDFATYYCQE
SYSLIFAGGTKVEIK
TNF-JK1 VL CDR- Residues 24-34 RASQSIGNYLN
L1 of SEQ ID
NO.: 27
TNF-JK1 VL CDR- Residues 50-56 AASSLQS
L2 of SEQ ID
NO.: 27
TNF-JK1 VL CDR- Residues 89-95 QESYSLI
L3 of SEQ ID
NO.: 27
TNF-Y7C VH 28 EVQLVQSGAEVKKPGASVKVSCKTSGYTFS
NYDINWVRQPTGQGLEWMGWMDPNNGNTGY
AQKFVGRVTMTRDTSKTTAYLELSGLKSED
TAVYYCARSSGSGGTWYKEYFQSWGQGTMV
TVSS
TNF-Y7C VH CDR- Residues 31-35 NYDIN
H1 of SEQ ID
NO.: 28
TNF-Y7C VH CDR- Residues 50-66 WMDPNNGNTGYAQKFVG
H2 of SEQ ID
NO.: 28
TNF-Y7C VH CDR- Residues 99-112 KSSGSGGTWYKEYFQS
H3 of SEQ ID
NO.: 28
TNF-Y7C VL 29 DIVMTQSPLSLPVTPGEPASISCRSSQSLL
HSNGYNYLDWYLQKPGQFPQLLIYLGSYRA
SGVPDRFSGSGSGTDFTLKISRVEAEDVGV
YYCMQRIEFPPGTFGQGTKLGIK
TNF-Y7C VL CDR- Residues 24-39 RSSQSLLHSNGYNYLD
L1 of SEQ ID
NO.: 29
TNF-Y7C VL CDR- Residues 55-61 LGSYRAS
L2 of SEQ ID
NO.: 29
TNF-Y7C VL CDR- Residues 94-103 MQRIEFPPGT
L3 of SEQ ID
NO.: 29
AE11-7 VH 30 EVQLVQSGAEVKKPGASVKVSCKTSGYSLT
QYPIHWVRQAPGQRPEWMGWISPGNGNTKL
SPKFQGRVTLSRDASAGTVFMDLSGLTSDD
TAVYFCTSVDLGDHWGQGTLVTVSS
AE11-7 VH CDR- Residues 31-35 QYPIH
H1 of SEQ ID
NO.: 30
AE11-7 VH CDR- Residues 50-66 WISPGNGNTKLSPKFQG
H2 of SEQ ID
NO.: 30
AE11-7 VH CDR- Residues 99-104 VDLGDH
H3 of SEQ ID
NO.: 30
AE11-7 VL 31 DIVMTQSPEFQSVTPKEKVTITCRASQSIG
SSLHWYQQKPDQSPKLLINYASQSFSGVPS
RFSGGGSGTDFTLTINSLEAEDAATYYCHQ
SSNLPITFGQGTRLEIK
AE11-7 VL CDR- Residues 24-34 RASQSIGSSLH
L1 of SEQ ID
NO.: 31
AE11-7 VL CDR- Residues 50-56 YASQSFS
L2 of SEQ ID
NO.: 31
AE11-7 VL CDR- Residues 89-97 HQSSNLPIT
L3 of SEQ ID
NO.: 31
AE11-13 VH 32 EVQLVESGGGLVQPGRSLRLSCAASGFTFD
DYPMHWVRQAPGEGLEWVSGISSNSASIGY
ADSVKGRFTISRDNAQNTLYLQMNSLGDED
TAVYYCVSLTLGIGQGTLVTVSS
AE11-13 VH CDR- Residues 31-35 DYPMH
H1 of SEQ ID
NO.: 32
AE11-13 VH CDR- Residues 50-66 GISSNSASIGYADSVKG
H2 of SEQ ID
NO.: 32
AE11-13 VH CDR- Residues 99-102 LTLG
H3 of SEQ ID
NO.: 32
AE11-13 VL 33 DIRLTQSPSSLSASVGDRVTITCRASQSIG
NYLHWYQQKPGKAPKLLIYAASSLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
SYSTLYSFGQGTKLEIK
AE11-13 VL CDR- Residues 24-34 RASQSIGNYLH
L1 of SEQ ID
NO.: 33
AE11-13 VL CDR- Residues 50-56 AASSLQS
L2 of SEQ ID
NO.: 33
AE11-13 VL CDR- Residues 89-97 QQSYSTLYS
L3 of SEQ ID
NO.: 33

The AE11-5 human antibody to human TNF was affinity matured by in vitro display technology. One light chain library was constructed to contain limited mutagenesis at the following residues: 28, 31, 32, 51, 55, 91, 92, 93, 95a and 96 (Kabat numbering). This library also contained framework germline back-mutations D1E, M4L, H11Q, R49K, H76N and Q103K as well as toggled residues at position 50(R/K) and 94(S/L) to allow for framework germlining during library selections. Two heavy chain libraries were made to contain limited mutagenesis in CDRH1 and CDRH2 at residues 30, 31, 33, 50, 52, and 55 to 58 (Kabat numbering) or in CDRH3 at residues 95 to 100b. The library containing CDRH1 and CDRH2 diversities also had framework germline back-mutations Al8V and L64Q and toggled residue at 54(L/F) and 78(V/A). The CDRH3 library has an additional toggled residue at 100c(A/F).

All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 11 provides a list of amino acid sequences of VH regions of affinity matured fully human TNF antibodies derived from AE11-5. Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 11
List of amino acid sequences of affinity
matured AE11-5 VH variants
Clone SEQ ID NO: VH
J685M2S2-10VH 94 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-12VH 95 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYS
ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-13VH 96 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-14VH 97 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-16VH 98 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYS
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-18VH 99 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYA
ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-1VH 100 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGITPILGAAVYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-21VH 101 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-23VH 102 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGVAVYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-25VH 103 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-27VH 104 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-28VH 105 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-29VH 106 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-31VH 107 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT
ISWVRQAPGQGLEWMGGIIPILRNPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-32VH 108 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA
ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-35VH 109 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT
ISWVRQAPGQGLEWMGGIIPILGAPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-37VH 110 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-38VH 111 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS
ISWVRQAPGQGLEWMGGIMPILGSASYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-43VH 112 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTASYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-44VH 113 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-45VH 114 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-46VH 115 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYT
ISWVRQAPGQGLEWMGGIMPILGSPHYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-47VH 116 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-48VH 117 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-4VH 118 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-50VH 119 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J685M2S2-51VH 120 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSLYT
ISWVRQAPGQGLEWMGGIMPILGAPRYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-52VH 121 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA
ISWVRQAPGQGLEWMGGIMPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-53VH 122 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGILPILGSPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-55VH 123 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-56VH 124 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIVPILGAPLYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-58VH 125 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGIMPILGAPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-5VH 126 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYT
ISWVRQAPGQGLEWMGGIMPILGTPAYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-61VH 127 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS
ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-62VH 128 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-63VH 129 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIIPILGTPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-64VH 130 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGIGNYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-66VH 131 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGIVPILGAATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-67VH 132 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSSTYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-68VH 133 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-6VH 134 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNSIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-70VH 135 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-71VH 136 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-72VH 137 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA
ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-73VH 138 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAAIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-75VH 139 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTATYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-76VH 140 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS
ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-77VH 141 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-78VH 142 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILRSAVYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-7VH 143 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS
ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-80VH 144 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTASYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-81VH 145 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-82VH 146 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPAYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-83VH 147 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYA
ISWVRQAPGQGLEWMGGIIPILGPASYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-84VH 148 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILDAAIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-86VH 149 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGIPNYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-87VH 150 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-88VH 151 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA
ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-89VH 152 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDPKRADYWGQGTLVTVSS
J685M2S2-8VH 153 EVQLVQSGAEVKKPGSSVKVSCKASGGTFNWYT
ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-90VH 154 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDFTRADYWGQGTLVTVSS
J685M2S2-91VH 155 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIIPILRFPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-92VH 156 EVQLVQSGAEVKKPGSSVKVSCKVSGGTFSWYS
ISWVRQAPGQGLEWMGGILPILDTANYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-93VH 157 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGTAVYAQKFQG
RVTITADESTSTAYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J685M2S2-94VH 158 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYS
ISWVRQAPGQGLEWMGGILPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J688M2-11VH 159 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPTRADYWGQGTLVTVSS
J688M2-13VH 160 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPSRADYWGQGTLVTVSS
J688M2-14VH 161 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFNPTRADYWGQGTLVTVSS
J688M2-16VH 162 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPARFDYWGQGTLVTVSS
J688M2-20VH 163 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYNPSRADYWGQGTLVTVSS
J688M2-21VH 164 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPKRADYWGQGTLVTVSS
J688M2-22VH 165 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPRRADYWGQGTLVTVSS
J688M2-28VH 166 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
FYYDPTRADYWGQGTLVTVSS
J688M2-29VH 167 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDFTRADYWGQGTLVTVSS
J688M2-2VH 168 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYFDPKRADYWGQGTLVTVSS
J688M2-37VH 169 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDPTRADYWGQGTLVTVSS
J688M2-3VH 170 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPSRADYWGQGTLVTVSS
J688M2-46VH 171 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARS
LYYERTRADYWGQGTLVTVSS
J688M2-48VH 172 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARW
RFYIPIRFDYWGQGTLVTVSS
J688M2-4VH 173 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDFTRADYWGQGTLVTVSS
J688M2-50VH 174 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LFYDPSRADYWGQGTLVTVSS
J688M2-52VH 175 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPVRADYWGQGTLVTVSS
J688M2-56VH 176 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPIRADYWGQGTLVTVSS
J688M2-57VH 177 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J688M2-58VH 178 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYNPIRFDYWGQGTLVTVSS
J688M2-64VH 179 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDPARADYWGQGTLVTVSS
J688M2-65VH 180 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VFFDPTRADYWGQGTLVTVSS
J688M2-68VH 181 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VFYNPTRADYWGQGTLVTVSS
J688M2-69VH 182 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYEGPSADYWGQGTLVTVSS
J688M2-6VH 183 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYAPNRADYWGQGTLVTVSS
J688M2-73VH 184 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LFYDPTRADYWGQGTLVTVSS
J688M2-74VH 185 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYNPTRADYWGQGTLVTVSS
J688M2-75VH 186 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPARADYWGQGTLVTVSS
J688M2-7VH 187 EVQLVQSGAEVKKSGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPGRADYWGQGTLVTVSS
J688M2-81VH 188 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDPSRADYWGQGTLVTVSS
J688M2-82VH 189 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYFDPSRFDYWGQGTLVTVSS
J688M2-83VH 190 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYFDFTRADYWGQGTLVTVSS
J688M2-84VH 191 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPTRADYWGQGTLVTVSS
J688M2-88VH 192 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYFDPSRADYWGQGTLVTVSS
J688M2-89VH 193 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPSRFDYWGQGTLVTVSS
J688M2-8VH 194 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
QYYDTSRADYWGQGTLVTVSS
J688M2-90VH 195 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARS
LYYDTTRFDYWGQGTLVTVSS
J688M2-92VH 196 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VFYDPTRADYWGQGTLVTVSS
J688M2-94VH 197 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPARADYWGQGTLVTVSS
J688M2-95VH 198 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LFYDPRRADYWGQGTLVTVSS
J688M2-96VH 199 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDTTRADYWGQGTLVTVSS
J693FRM2S2L- 200 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
32VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPARADYWGQGTLVTVSS
J693FRM2S2L- 201 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
40VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCSRG
LYYDPTRADYWGQGTLVTVSS
J693FRM2S2L- 202 EVQLVQSGAEVMKPGSSVKVSCKASGGTFSSYA
70VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCTRG
LYYDPTRADYWGQGTLVTVSS
J693FRM2S2R- 203 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYA
29VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693FRM2S2R- 204 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
46VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCTRG
LYYDPTRADYWGQGTLVTVSS
J693FRM2S2R- 205 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
65VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCTRG
IYYDPTRADYWGQGTLVTVSS
J693M2S2L-17VH 206 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQEFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-32VH 207 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCVRG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-67VH 208 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTASYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-75VH 209 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCAKG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-78VH 210 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCERG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-79VH 211 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSNYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2L-94VH 212 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAHKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-22VH 213 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADCWGQGTLVTVSS
J693M2S2R-24VH 214 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVQQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-2VH 215 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-31VH 216 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-71VH 217 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
TSWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-84VH 218 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFLG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J693M2S2R-89VH 219 EVQLVQSGAEVKKPGSSVKVSCKASGGTSSSYA
ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPTRADYWGQGTLVTVSS
J703M1S3-10VH 220 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPKRADYWGQGTLVTVSS
J703M1S3-11VH 221 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPTRADYWGQGTLVTVSS
J703M1S3-12VH 222 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPARADYWGQGTLVTVSS
J703M1S3-13VH 223 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-14VH 224 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGSPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPRRADYWGQGTLVTVSS
J703M1S3-16VH 225 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-17VH 226 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIVPILGTPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-18VH 227 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPARADYWGQGTLVTVSS
J703M1S3-19VH 228 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-1VH 229 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTPVYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDFRRANYWGQGTLVTVSS
J703M1S3-20VH 230 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-21VH 231 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGDPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-22VH 232 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDYKRADYWGQGTLVTVSS
J703M1S3-25VH 233 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LFYDFRRADYWGQGTLVTVSS
J703M1S3-28VH 234 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA
ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-29VH 235 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-2VH 236 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
TSWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDHRRADYWGQGTLVTVSS
J703M1S3-34VH 237 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDYKRADYWGQGTLVTVSS
J703M1S3-37VH 238 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-38VH 239 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDFKRADYWGQGTLVTVSS
J703M1S3-3VH 240 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPRRADYWGQGTLVTVSS
J703M1S3-41VH 241 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-42VH 242 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAPVYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-45VH 243 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-46VH 244 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-47VH 245 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGSANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-4VH 246 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-50VH 247 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-51VH 248 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDYRRADYWGQGTLVTVSS
J703M1S3-53VH 249 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGIPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPARADYWGQGTLVTVSS
J703M1S3-54VH 250 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-57VH 251 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-5VH 252 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDYKRADYWGQGTLVTVSS
J703M1S3-62VH 253 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGYPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-6VH 254 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDFRRADYWGQGTLVTVSS
J703M1S3-72VH 255 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP
ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDFRRADYWGQGTLVTVSS
J703M1S3-78VH 256 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-79VH 257 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-7VH 258 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPARADYWGQGTLVTVSS
J703M1S3-81VH 259 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGAPNYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDYTRADYWGQGTLVTVSS
J703M1S3-83VH 260 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA
ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-86VH 261 EVQLVQSGAEVKKPGSSVKVSCKASGGTFGWYA
TSWVRQAPGQGLEWMGGIIPILGTPNYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-87VH 262 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDPKRADYWGQGTLVTVSS
J703M1S3-88VH 263 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT
ISWVRQAPGQGLEWMGGIMPILGSPNYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
IYYDPKRADYWGQGTLVTVSS
J703M1S3-91VH 264 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYFDPKRADYWGQGTLVTVSS
J703M1S3-93VH 265 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA
ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
LYYDPKRADYWGQGTLVTVSS
J703M1S3-9VH 266 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP
ISWVRQAPGQGLEWMGGITPILGAGIYAQKFQG
RVTITADESTSTVYMELSSLRSEDTAVYYCARG
VYYDFKRADYWGQGTLVTVSS

Table 12 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from AE11-5. Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 12
List of amino acid sequences of affinity matured
AE11-5 VL variants
Clone SEQ ID NO: VL
J685M2S2-17Vk 267 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG
TKVEIK
J685M2S2-94Vk 268 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQW
TKVEIK
J688M2-37Vk 269 EIVLTQSPDFQSVTPKEKVTITCRARQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TNFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG
TKVEIK
J688M2-90Vk 270 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG
TKVEIK
J693FRM2S2L- 271 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
26Vk WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNRSSPPSTFGQG
TKVEIK
J693FRM2S2L- 272 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
27Vk WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPVTFGQG
TKVEIK
J693FRM2S2L- 273 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
29Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSNLPAPTFGQG
TKVEIK
J693FRM2S2L- 274 EIVLTQSPDFQSVTPKEKVTITCRASQIIGGSLH
39Vk WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQPICSPPRTFGQG
TKVEIK
J693FRM2S2L- 275 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH
3Vk WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSISPPATFGQG
TKVEIK
J693FRM2S2L- 276 EIVLTQSPDFQSVTPKEKVTITCRASQCIGTSLH
40Vk WYQQKPDQSPKLLIKYDSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG
TKVEIK
J693FRM2S2L- 277 EIVLTQSPDFQSVTPKEKVTITCRASQNIGNSLH
42Vk WYQQKPDQSPKLLIKYTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTSSLPLPTFGQG
TKVEIK
J693FRM2S2L- 278 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
43Vk WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQISDLPTSTFGQG
TKVEIK
J693FRM2S2L- 279 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNLH
45Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSLPPPTFGQG
TKVEIK
J693FRM2S2L- 280 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH
46Vk WYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNSSPLSTFGQG
TKVEIK
J693FRM2S2L- 281 EIVLTQSPDFQSVTPKEKVTITCRASQNIGGSLH
47Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSLPLPTFGQG
TKVEIK
J693FRM2S2L- 282 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
48Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSKSPPPTFGQG
TKVEIK
J693FRM2S2L- 283 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH
52Vk WYQQKPDQSPKLLIKYASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSLPTPTFGQG
TKVEIK
J693FRM2S2L- 284 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGRLH
53Vk WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQASSSPSTTFGQG
TKVEIK
J693FRM2S2L- 285 EIVLTQSPDFQSVTPKEKVTITCRASQRIGPSLH
54Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSCLPSTTFGQG
TKVEIK
J693FRM2S2L- 286 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
58Vk WYQQKPDQSPKLLIKYASQSRSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGISPPTTFGQG
TKVEIK
J693FRM2S2L- 287 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
59Vk WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGMSSPAPTFGQG
TKVEIK
J693FRM2S2L- 288 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
5Vk WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRRNSPPPTFGQG
TKVEIK
J693FRM2S2L- 289 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSGLH
88Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNNSSPHKTFGQG
TKVEIK
J693FRM2S2L- 290 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH
89Vk WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPLPTFGQG
TKVEIK
J693FRM2S2L- 291 EIVLTQSPDFQSVTPKEKVTITCRASQNIGRSLH
8Vk WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPPPTFGQG
TKVEIK
J693FRM2S2L- 292 EIVLTQSPDFQSVTPKEKVTITCRASQCIGKSLH
90Vk WYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSIGLPPTTFGQG
TKVEIK
J693FRM2S2L- 293 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
91Vk WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSISPPATFGQG
TKVEIK
J693FRM2S2L- 294 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
92Vk WYQQKPDQSPKLLIKYESQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRCCSPTQTFGQG
TKVEIK
J693FRM2S2L- 295 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRKLH
94Vk WYQQKPDQSPKLLIKYSSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRSPPTTFGQG
TKVEIK
J693FRM2S2R- 296 EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSLH
10Vk WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPSPTFGQG
TKVEIK
J693FRM2S2R- 297 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
11Vk WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRGSSPPRTFGQG
TKVEIK
J693FRM2S2R- 298 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSTLH
12Vk WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSSPPPTFGQG
TKVEIK
J693FRM2S2R- 299 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH
14Vk WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRHSSPRATFGQG
TKVEIK
J693FRM2S2R- 300 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSNLH
15Vk WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPPATFGQG
TKVEIK
J693FRM2S2R- 301 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
16Vk WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRSPFRTFGQG
TKVEIK
J693FRM2S2R- 302 EIVLTQSPDFQSVTPKEKVTITCRASQCIGRRLH
34Vk WYQQKPDQSPKLLIKHASQSRSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCTSSPPPTFGQG
TKVEIK
J693FRM2S2R- 303 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNLH
36Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSLRLPPQTFGQG
TKVEIK
J693FRM2S2R- 304 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
39Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNRSLPRLTFGQG
TKVEIK
J693FRM2S2R- 305 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH
3Vk WYQQKPDQSPKLLIKYASQSISGVPSSSVASGSG
TDFTLTINSLEAEDAATYYCHQRSSLPQPTFGQG
TKVEIK
J693FRM2S2R- 306 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH
42Vk WYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSIDSPPPTFGQG
TKVEIK
J693FRM2S2R- 307 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH
45Vk WYQQKPDQSPKLLIKYKSQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRWGLPMPTFGQG
TKVEIK
J693FRM2S2R- 308 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSMLH
48Vk WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTNSLPPRTFGQG
TKVEIK
J693FRM2S2R- 309 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
50Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSRSPLDTFGQG
TKVEIK
J693FRM2S2R- 310 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH
51Vk WYQQKPDQSPKLLIKYASQSVSVVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSTLPPPTFGQG
TKVEIK
J693FRM2S2R- 311 EIVLTQSPDFQSVTPKEKVTITCRASQGIGTSLH
52Vk WYQQKPDQSPKLLIKHDSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTSSLPPPTFGQG
TKVEIK
J693FRM2S2R- 312 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH
56Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPLPTFGQG
TKVEIK
J693FRM2S2R- 313 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
58Vk WYQQKPDQSPKLLIKYTSQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGNRSPSTTFGQG
TKVEIK
J693FRM2S2R- 314 EIVLTQSPDFQSVTPKEKVTITCRASKRIGSSLH
59Vk WYQQKPDQSPKLLIKHKSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSASPPPTFGQG
TKVEIK
J693FRM2S2R- 315 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
5Vk WYQQKPDQSPKLLIKHPSQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSTSPPATFGQG
TKVEIK
J693FRM2S2R- 316 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
60Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSLPTPTFGQG
TKVEIK
J693FRM2S2R- 317 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
61Vk WYQQKPDQSPKLLIKHASQSFSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNCSPAHTFGQG
TKVEIK
J693FRM2S2R- 318 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSRLH
62Vk WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSRLPPPTFGQG
TKVEIK
J693FRM2S2R- 319 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSTLH
63Vk WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSCSPQATFGQG
TKVEIK
J693FRM2S2R- 320 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
64Vk WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGRSPPHTFGQG
TKVEIK
J693FRM2S2R- 321 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
65Vk WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSILPPPTFGQG
TKVEIK
J693FRM2S2R- 322 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSYLH
92Vk WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPTLTFGQG
TKVEIK
J693FRM2S2R- 323 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
93Vk WYQQKPDQSPKLLIKHASQSMSGVPSGFSGSGSG
TDFTLTINSLEAEDAATYYCHQTNRSPPPTFGQG
TKVEIK
J693FRM2S2R- 324 EIVLTQSPDFQSVTPKEKVTITCRASQNIGTSLH
9Vk WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLNINSLEAEDAATYYCHQSSCLPRPTFGQG
TKVEIK
J693M2S2L-10Vk 325 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSPLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSSPPPTFGQG
TKVEIK
J693M2S2L-11Vk 326 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
WYQQKPDQSPKLLIKHDSQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSDSPAPTFGQG
TKVEIK
J693M2S2L-12Vk 327 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH
WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRISPLPTFGQG
TKVEIK
J693M2S2L-13Vk 328 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH
WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSLPHPTFGQG
TKVEIK
J693M2S2L-14Vk 329 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRLH
WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSCSSPLVTFGQG
TKVEIK
J693M2S2L-16Vk 330 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGSSPQATFGQG
TKVEIK
J693M2S2L-17Vk 331 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNRGSPPQTFGQG
TKVEIK
J693M2S2L-18Vk 332 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSILH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNTSLPPPTFGQG
TKVEIK
J693M2S2L-19Vk 333 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSLH
WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSRLPVPTFGQG
TKVEIK
J693M2S2L-1Vk 334 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPAPTFGQG
TKVEIK
J693M2S2L-20Vk 335 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH
WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNSLPAPTFGQG
TKVEIK
J693M2S2L-21Vk 336 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSMSLPSATFGQG
TKVEIK
J693M2S2L-22Vk 337 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHLSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQPCRLPPSTFGQG
TKVEIK
J693M2S2L-23Vk 338 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSLLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSCSSPRHTFGQG
TKVEIK
J693M2S2L-24Vk 339 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRSPAPTFGQG
TKVEIK
J693M2S2L-25Vk 340 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH
WYQQKPDQSPKLLIKYSSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSILPSLTFGQG
TKVEIK
J693M2S2L-26Vk 341 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRNLPPRTFGQG
TKVEIK
J693M2S2L-27Vk 342 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSILH
WYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNGSSPPRTFGQG
TKVEIK
J693M2S2L-28Vk 343 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYFSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSCLPMQTFGQG
TKVEIK
J693M2S2L-29Vk 344 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH
WYQQKPDQSPKLLIKYSSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSISPPATFGQG
TKVEIK
J693M2S2L-2Vk 345 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH
WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSTCLPPRTFGQG
TKVEIK
J693M2S2L-30Vk 346 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYVSQSMSGVLSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQPSTSPRPTFGQG
TKVEIK
J693M2S2L-31Vk 347 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSLPPSTFGQG
TKVEIK
J693M2S2L-32Vk 348 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH
WYQQKPDQSPKLLIKYASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPSSTFGQG
TKVEIK
J693M2S2L-33Vk 349 EIVLTQSPDFQSVTPKEKVTITCRASQIIGTSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRSPPRTFGQG
TKVEIK
J693M2S2L-34Vk 350 EIVLTQSPDFQSVTPKEKVTITCRASQKIGTSLH
WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSGSPPPTFGQG
TKVEIK
J693M2S2L-35Vk 351 EIVLTQSPDFQSVTPKEKVTITCRASQTIGGSLH
WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSISPPPTFGQG
TKVEIK
J693M2S2L-36Vk 352 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSDLH
WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSCMSPSLTFGQG
TKVEIK
J693M2S2L-37Vk 353 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPNTTFGQG
TKVEIK
J693M2S2L-38Vk 354 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSILH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGRISPSSTFGQG
TKVEIK
J693M2S2L-39Vk 355 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNRLH
WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGSLPTLTFGQG
TKVEIK
J693M2S2L-3Vk 356 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
WYQQKPDQSPKLLIKHDSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSLPTHTFGQG
TKVEIK
J693M2S2L-40Vk 357 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH
WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPPSTFGQG
TKVEIK
J693M2S2L-41Vk 358 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNCSSPPPTFGQG
TKVEIK
J693M2S2L-44Vk 359 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYESQSDSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRRNSPPSTFGQG
TKVEIK
J693M2S2L-45Vk 360 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSRLH
WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNRGLPAPTFGQG
TKVEIK
J693M2S2L-46Vk 361 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNHTSPPPTFGQG
TKVEIK
J693M2S2L-47Vk 362 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGRLPPPTFGQG
TKVEIK
J693M2S2L-4Vk 363 EIVLTQSPDFQSVTPKEKVTITCRASQYIGKRLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNISPPPTFGQG
TKVEIK
J693M2S2L-51Vk 364 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG
TKVEIK
J693M2S2L-52Vk 365 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSLPPSTFGQG
TKVEIK
J693M2S2L-54Vk 366 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSSPAQTFGQG
TKVEIK
J693M2S2L-55Vk 367 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
WYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSLPLPTFGQG
TKVEIK
J693M2S2L-56Vk 368 EIVLTQSPDFQSVTPKEKVTITCRASQWIGSSLH
WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPQTFGQG
TKVEIK
J693M2S2L-58Vk 369 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
WYQQKPDQSPKLLIKYSSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSSPPPTFGQG
TKVEIK
J693M2S2L-59Vk 370 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRLPPSTFGQG
TKVEIK
J693M2S2L-5Vk 371 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNWSLPLPTFGQG
TKVEIK
J693M2S2L-62Vk 372 EIVLTQSPDFQSVTPKEKVTITCRASQRIGTSLH
WYQQKPDQSPKLLIKYASQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSCSPTPTFGQG
TKVEIK
J693M2S2L-64Vk 373 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH
WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRCVSPSPTFGQG
TKVEIK
J693M2S2L-65Vk 374 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGTLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPARTFGQG
TKVEIK
J693M2S2L-66Vk 375 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCGSSPLHTFGQG
TKVEIK
J693M2S2L-67Vk 376 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
WYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSTSSPPPTFGQG
TKVEIK
J693M2S2L-68Vk 377 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSGLPLPTFGQG
TKVEIK
J693M2S2L-69Vk 378 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSSPSPTFGQG
TKVEIK
J693M2S2L-6Vk 379 EIVLTQSPDFQSVTPKEKVTITCRASQRIGGNLH
WYQQKPDQSPKLLIKHESQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPSHTFGQG
TKVEIK
J693M2S2L-70Vk 380 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSSPSHTFGQG
TKVEIK
J693M2S2L-71Vk 381 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRNSPPTTFGQG
TKVEIK
J693M2S2L-72Vk 382 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRLH
WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG
TKVEIK
J693M2S2L-74Vk 383 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH
WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSLLPAPTFGQG
TKVEIK
J693M2S2L-75Vk 384 EIVLTQSPDFQSVTPKEKVTITCRASQIIGTTLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSNLPPSTFGQG
TKVEIK
J693M2S2L-76Vk 385 EIVLTQSPDFQSVTPKEKVTITCRASQNIGGNLH
WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSNLPPPTFGQG
TKVEIK
J693M2S2L-77Vk 386 EIVLTQSPDFQSVTPKEKVTITCRASQGIGGSLH
WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSACLPTRTFGQG
TKVEIK
J693M2S2L-78Vk 387 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
WYQQKPDQSPKLLIKYASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQIGSLPPPTFGQG
TKVEIK
J693M2S2R-13Vk 388 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSRLPPPTFGQG
TKVEIK
J693M2S2R-14Vk 389 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHNSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSSPPLTFGQG
TKVEIK
J693M2S2R-15Vk 390 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNLH
WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSRSPPSTFGQG
TKVEIK
J693M2S2R-16Vk 391 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSLPAPTFGQG
TKVEIK
J693M2S2R-17Vk 392 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRLPPQTFGQG
TKVEIK
J693M2S2R-18Vk 393 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSRLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRGRLPPRTFGQG
TKVEIK
J693M2S2R-19Vk 394 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSTSLPRLTFGQG
TKVEIK
J693M2S2R-20Vk 395 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPQQTFGQG
TKVEIK
J693M2S2R-21Vk 396 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG
TKVEIK
J693M2S2R-22Vk 397 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSLH
WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRRSSPRHTFGQG
TKVEIK
J693M2S2R-27Vk 398 EIVLTQSPDFQSVTPKEKVTITCRASQRIGRRLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSIGSPPLTFGQG
TKVEIK
J693M2S2R-29Vk 399 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRGLH
WYQQKPDQSPKLLIKYGSQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG
TKVEIK
J693M2S2R-2Vk 400 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCTSLPLPTFGQG
TKVEIK
J693M2S2R-30Vk 401 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSLH
WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSLPTPTFGQG
TKVEIK
J693M2S2R-31Vk 402 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSRLPPLTFGQG
TKVEIK
J693M2S2R-32Vk 403 EIVLTQSPDFQSVTPKEKVTITCRASQVIGGVLH
WYQQKPDQSPKLLIKYTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPRPTFGQG
TKVEIK
J693M2S2R-33Vk 404 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHSSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSNSPHRTFGQG
TKVEIK
J693M2S2R-36Vk 405 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRTLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSISPQPTFGQG
TKVEIK
J693M2S2R-37Vk 406 EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTLH
WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGSSPPPTFGQG
TKVEIK
J693M2S2R-39Vk 407 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYISQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSCGLPPPTFGQG
TKVEIK
J693M2S2R-3Vk 408 EIVLTQSPDFQSVTPKEKVTITCRASQNIGTRLH
WYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRISPPPTFGQG
TKVEIK
J693M2S2R-40Vk 409 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSRLPPPTFGQG
TKVEIK
J693M2S2R-44Vk 410 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSNLPSPTFGQG
TKVEIK
J693M2S2R-45Vk 411 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH
WYQQKPDQSPKLLIKHASQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPRPTFGQG
TKVEIK
J693M2S2R-46Vk 412 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSISSPSPTFGQG
TKVEIK
J693M2S2R-47Vk 413 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNCLPPPTFGQG
TKVEIK
J693M2S2R-48Vk 414 EIVLTQSPDFQSVTPKEKVTITCRASQSIGKSLH
WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQANSLPPPTFGQG
TKVEIK
J693M2S2R-4Vk 415 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSSPPSTFGQG
TKVEIK
J693M2S2R-52Vk 416 EIVLTQSPDFQSVTPKEKVTITCRASQIIGHSLH
WYQQKPDQSPKLLIKHASQSILGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSIKSPPATFGQG
TKVEIK
J693M2S2R-54Vk 417 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH
WYQQKPDQSPKLLIKHTSQSKSGVPSRFSGSGSG
TDFALTINSLEAEDAATYYCHQSSNSPRYTFGQG
TKVEIK
J693M2S2R-55Vk 418 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSHSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGGSPPWTFGQG
TKVEIK
J693M2S2R-56Vk 419 EIVLTQSPDFQSVTPKEKVTITCRASQGIGRSLH
WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSNRSPPPTFGQG
TKVEIK
J693M2S2R-5Vk 420 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTTLH
WYQQKPDQSPKLLIKHVSQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPHPTFGQG
TKVEIK
J693M2S2R-60Vk 421 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH
WYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSWSSPLMTFGQG
TKVEIK
J693M2S2R-61Vk 422 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG
TKVEIK
J693M2S2R-62Vk 423 EIVLTQSPDFQSVTPKEKVTITCRASQRIGICLH
WYQQKPDQSPKLLIKYASQSMSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGFSLPPATFGQG
TKVEIK
J693M2S2R-63Vk 424 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH
WYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSCSPTTTFGQG
TKVEIK
J693M2S2R-64Vk 425 EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTLH
WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGSSPPPTFGQG
TKVEIK
J693M2S2R-65Vk 426 EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSLH
WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRCSLPPPTFGQG
TKVEIK
J693M2S2R-68Vk 427 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH
WYQQKPDQSPKLLIKYASQSHSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCRISPRPTFGQG
TKVEIK
J693M2S2R-69Vk 428 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSGSG
TDFTLSINSLEAEDAATYYCHQTSRSPLHTFGQG
TKVEIK
J693M2S2R-6Vk 429 EIVLTQSPDFQSVTPKEKVTITCRASQNIGKNLH
WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPLSTFGQG
TKVEIK
J693M2S2R-70Vk 430 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYMSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRVLPPPTFGQG
TKVEIK
J693M2S2R-71Vk 431 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSISPRRTFGQG
TKVEIK
J693M2S2R-72Vk 432 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRKSSPTPTFGQG
TKVEIK
J693M2S2R-75Vk 433 EIVLTQSPDFQSVTPKEKVTITCRASQRIGRQLH
WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPQTFGQG
TKVEIK
J693M2S2R-77Vk 434 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQICRSPSPTFGQG
TKVEIK
J693M2S2R-78Vk 435 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSGSPAPTFGQG
TKVEIK
J693M2S2R-79Vk 436 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYSSQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQISSSPPPTFGQG
TKVEIK
J693M2S2R-7Vk 437 EIVLTQSPDFQSVTPKEKVTITCRASQTIGNSLH
WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTMTSPPPTFGQG
TKVEIK
J693M2S2R-80Vk 438 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPSPTFGQG
TKVEIK
J693M2S2R-81Vk 439 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRRWSPPPTFGQG
TKVEIK
J693M2S2R-82Vk 440 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQISCLPLPTFGQG
TKVEIK
J693M2S2R-83Vk 441 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSISLPPPTFGQG
TKVEIK
J693M2S2R-84Vk 442 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNLH
WYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTSTLPPQTFGQG
TKVEIK
J693M2S2R-85Vk 443 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRNSPQPTFGQG
TKVEIK
J693M2S2R-86Vk 444 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTRLH
WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSHSPPPTFGQG
TKVEIK
J693M2S2R-87Vk 445 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH
WYQQKPDQSPKLLIKHRSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQWSSSPPPTFGQG
TKVEIK
J693M2S2R-89Vk 446 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTSGSPSHTFGQG
TKVEIK
J693M2S2R-8Vk 447 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSLH
WYQQKPDQSPKLLIKYESQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG
TKVEIK
J693M2S2R-90Vk 448 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHDSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSSSPPTTFGQG
TKVEIK
J693M2S2R-91Vk 449 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRISSPPSTFGQG
TKVEIK
J693M2S2R-92Vk 450 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSCSSPPSTFGQG
TKVEIK
J693M2S2R-93Vk 451 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH
WYQQKPDQSPKLLIKYVSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTISSPLPTFGQG
TKVEIK
J693M2S2R-95Vk 452 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSCSPAHTFGQG
TKVEIK
J703M1S3-11Vk 453 EIVLTQSPDFQSVTPKEKVTITCRDSRCIGSNLH
WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCSSSPPPTFGQG
TKVEIK
J703M1S3-13Vk 454 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH
WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG
TKVEIK
J703M1S3-16Vk 455 EIVLTQSPDFQSVTPKEKVTITCRASQSIGDSLH
WYQQKPDQSPKLLIKHASQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGSTSPPRTFGQG
TKVEIK
J703M1S3-19Vk 456 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHGSQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSWSSPIPTFGQG
TKVEIK
J703M1S3-22Vk 457 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSNLPSPTFGQG
TKVEIK
J703M1S3-26Vk 458 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSGSSPPRTFGQG
TKVEIK
J703M1S3-29Vk 459 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRTSSPVRTFGQG
TKVEIK
J703M1S3-2Vk 460 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTLH
WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQKVSSPSPTFGQG
TKVEIK
J703M1S3-30Vk 461 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSRSSPPPTFGQG
TKVEIK
J703M1S3-33Vk 462 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPPSTFGQG
TKVEIK
J703M1S3-34Vk 463 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPSTTFGQG
TKVEIK
J703M1S3-57Vk 464 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH
WYQQKPDQSPKLLIKHESQSSSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRCTSPSPTFGQG
TKVEIK
J703M1S3-5Vk 465 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH
WYQQKPDQSPKLLIKHPSQSDSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNCSLPLPTFGQG
TKVEIK
J703M1S3-62Vk 466 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH
WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQGISSPPQTFGQG
TKVEIK
J703M1S3-69Vk 467 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHVSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQRSSSPSPTFGQG
TKVEIK
J703M1S3-71Vk 468 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSIRLPPSTFGQG
TKVEIK
J703M1S3-78Vk 469 EIVLTQSPDFQSVTPKEKVTITCRANQSIGGSLH
WYQQKPDQSPKLLIKHASQSKSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQDSRSPTRTFGQG
TKVEIK
J703M1S3-79Vk 470 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSGLH
WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSLPHPTFGQG
TKVEIK
J703M1S3-7Vk 471 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSSSPTPTFGQG
TKVEIK
J703M1S3-81Vk 472 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH
WYQQKPDQSPKLLIKYPSQSRSGVPSRFSGSGSG
TDLTLTINSLEAEDAATYYCHQNGSLPPPTFGQG
TKVEIK
J703M1S3-82Vk 473 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG
TKVEIK
J703M1S3-86Vk 474 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSALH
WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQSSILPRPTFGQG
TKVEIK
J703M1S3-90Vk 475 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH
WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQTRTSPPLTFGQG
TKVEIK
J703M1S3-93Vk 476 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSSLH
WYQQKPDQSPKLLIKYGSQSTSGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQCISLPTPTFGQG
TKVEIK
J703M1S3-94Vk 477 EIVLTQSPDFQSVTPKEKVAITCRASQRIGSSLH
WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG
TDFTLTINSLEAEDAATYYCHQNSSLPPPTFGQG
TKVEIK

TABLE 13
Amino acid residues observed in affinity matured AE11-5 antibodies
AE11-5 Heavy chain variable region (SEQ ID NO: 1073)
AE11-5VH 1234567890123456789012345678901234567890123456789012a345678901
EVQLVQSGAEVKKPGSSAKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPILGTANYAQ
                 V           NW TTT              WT   FRSPI
                             TY SV                M   TDAST
                             GI P                 L   I NGS
                             AN G                 V     P V
                              F                   N     I H
                              R                         V A
                              L                         K R
                                                        F M
                                                          L
234567890123456789012abc345678901234567890abc1234567890123
KFLGRVTITADESTSTVYMELSSLRSEDTAVYYCARGLYYDPTRADYWGQGTLVTVSS
  Q             A                   SVFFNTSWF
                                    WIVVEFASM
                                    TFP TRKP
                                    ARH IGRA
                                     Q  ADI
                                          Y
                                          V
                                          P
                                          N
                                          G
AE11-5 Light chain variable region (SEQ ID NO: 1074)
AE11-5VL 1234567890123456789012345678901234567890123456789012345678901
DIVMTQSPDFHSVTPKEKVTITCRASQSIGSSLHWYQQKPDQSPKLLIRHASQSISGVPSR
E  L      Q                R  RR                KYV   L
                           T  TT                  P   V
                           N  GN                  T   T
                           I  NC                  G   S
                           C  KG                  S   M
                           G  CI                  E   N
                           K  HK                  D   K
                           Y  VM                      F
                           W  PL                      R
                              LY
                               P
                               V
2345678901234567890123456789012345a67890123456a
FSGSGSGTDFTLTIHSLEAEDAATYYCHQSSSSPPPTFGQGTQVEIK
              N              RRRL LS      K
                             NGI  AR
                             GIC  SL
                             TCG  RT
                             CNN  TA
                             ITT  QQ
                              MK  HH
                                   V
                                   M

TABLE 14
Individual VH sequences from converted clones
Protein Sequence
region SEQ ID NO: 123456789012345678901234567890
J703M1S3 478 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#2 WYATSWVRQAPGQGLEWMGGITPILGSPIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDHRRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYATS
#2 of SEQ ID
VH NO.: 478
J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG
#2 of SEQ ID
VH NO.: 478
J703M1S3 CDR-H3 Residues 99-109 GVYYDHRRADY
#2 of SEQ ID
VH NO.: 478
J703M1S3 479 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#13 WYAISWVRQAPGQGLEWMGGITPILGAANY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDPKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#13 of SEQ ID
NO.: 479
J703M1S3 CDR-H2 Residues 50-66 GITPILGAANYAQKFQG
#13 of SEQ ID
VH NO.: 479
J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY
#13 of SEQ ID
VH NO.: 479
J703M1S3 480 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#26 WYAISWVRQAPGQGLEWMGGITPILGTANY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDPKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#26 of SEQ ID
VH NO.: 480
J703M1S3 CDR-H2 Residues 50-66 GITPILGTANYAQKFQG
#26 of SEQ ID
VH NO.: 480
J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY
#26 of SEQ ID
VH NO.: 480
J703M1S3 481 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#30 WYAISWVRQAPGQGLEWMGGITPILGSPIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDPKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#30 of SEQ ID
VH NO.: 481
J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG
#30 of SEQ ID
VH NO.: 481
J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY
#30 of SEQ ID
VH NO.: 481
J703M1S3 482 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#33 WYPISWVRQAPGQGLEWMGGITPILGAGIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDFKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYPIS
#33 of SEQ ID
VH NO.: 482
J703M1S3 CDR-H2 Residues 50-66 GITPILGAGIYAQKFQG
#33 of SEQ ID
VH NO.: 482
J703M1S3 CDR-H3 Residues 99-109 GVYYDFKRADY
#33 of SEQ ID
VH NO.: 482
J703M1S3 483 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#35 WYAISWVRQAPGQGLEWMGGITPILGSATY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGIYYDPKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#35 of SEQ ID
VH NO.: 483
J703M1S3 CDR-H2 Residues 50-66 GITPILGSATYAQKFQG
#35 of SEQ ID
VH NO.: 483
J703M1S3 CDR-H3 Residues 99-109 GIYYDPKRADY
#35 of SEQ ID
VH NO.: 483
J703M1S3 484 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#38 WYAISWVRQAPGQGLEWMGGITPILGTPIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDFKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#38 of SEQ ID
VH NO.: 484
J703M1S3 CDR-H2 Residues 50-66 GITPILGTPIYAQKFQG
#38 of SEQ ID
VH NO.: 484
J703M1S3 CDR-H3 Residues 99-109 GVYYDFKRADY
#38 of SEQ ID
VH NO.: 484
J703M1S3 485 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#69 WYAISWVRQAPGQGLEWMGGITPILGSPIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGIYYDPKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#69 of SEQ ID
VH NO.: 485
J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG
#69 of SEQ ID
VH NO.: 485
J703M1S3 CDR-H3 Residues 99-109 GIYYDPKRADY
#69 of SEQ ID
VH NO.: 485
J703M1S3 486 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS
#90 WYAISWVRQAPGQGLEWMGGITPILGSPIY
VH AQKFQGRVTITADESTSTVYMELSSLRSED
TAVYYCARGVYYDYKRADYWGQGTLVTVSS
J703M1S3 CDR-H1 Residues 31-35 WYAIS
#90 of SEQ ID
VH NO.: 486
J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG
#90 of SEQ ID
VH NO.: 486
J703M1S3 CDR-H3 Residues 99-109 GVYYDYKRADY
#90 of SEQ ID
VH NO.: 486

TABLE 15
Individual clones VL sequences
Protein Sequence
region 123456789012345678901234567890
J703M1S3 487 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#2 NTLHWYQQKPDQSPKLLIKHVSQSVSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
KVSSPSPTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQSIGNTLH
#2 of SEQ ID
VL NO.: 487
J703M1S3 CDR-L2 Residues 50-56 HVSQSVS
#2 of SEQ ID
VL NO.: 487
J703M1S3 CDR-L3 Residues 89-98 HQKVSSPSPT
#2 of SEQ
VL ID NO.: 487
J703M1S3 488 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#13 STLHWYQQKPDQSPKLLIKHASQSNSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
SSSLPPPTFGQGTKVEI
J703M1S3 CDR-L1 Residues 24-34 RASQSIGSTLH
#13 of SEQ ID
VL NO.: 488
J703M1S3 CDR-L2 Residues 50-56 HASQSNS
#13 of SEQ ID
VL NO.: 488
J703M1S3 CDR-L3 Residues 89-98 HQSSSLPPPT
#13 of SEQ
VL ID NO.: 488
J703M1S3 489 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#26 SRLHWYQQKPDQSPKLLIKHASQSTSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
SGSSPPRTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQSIGSRLH
#26 of SEQ ID
VL NO.: 489
J703M1S3 CDR-L2 Residues 50-56 HASQSTS
#26 of SEQ ID
VL NO.: 489
J703M1S3 CDR-L3 Residues 89-98 HQSGSSPPRT
#26 of SEQ
VL ID NO.: 489
J703M1S3 490 EIVLTQSPDFQSVTPKEKVTITCRASQRIG
#30 SSLHWYQQKPDQSPKLLIKHASQSVSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
SRSSPPPTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQRIGSSLH
#30 of SEQ ID
VL NO.: 490
J703M1S3 CDR-L2 Residues 50-56 HASQSVS
#30 of SEQ ID
VL NO.: 490
J703M1S3 CDR-L3 Residues 89-98 HQSRSSPPPT
#30 of SEQ
VL ID NO.: 490
J703M1S3 491 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#33 SSLHWYQQKPDQSPKLLIKHASQSTSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
SSSSPPSTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQSIGSSLH
#33 of SEQ ID
VL NO.: 491
J703M1S3 CDR-L2 Residues 50-56 HASQSTS
#33 of SEQ ID
VL NO.: 491
J703M1S3 CDR-L3 Residues 89-98 HQSSSSPPST
#33 of SEQ
VL ID NO.: 491
J703M1S3 492 EIVLTQSPDFQSVTPKEKVTITCRASQTIG
#35 SSLHWYQQKPDQSPKLLIKHASQSISGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
TSSLPTPTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQTIGSSLH
#35 of SEQ ID
VL NO.: 492
J703M1S3 CDR-L2 Residues 50-56 HASQSIS
#35 of SEQ ID
VL NO.: 492
J703M1S3 CDR-L3 Residues 89-98 HQTSSLPTPT
#35 of SEQ
VL ID NO.: 492
J703M1S3 493 EIVLTQSPDFQSVTPKEKVTITCRASQTIG
#38 SSLHWYQQKPDQSPKLLIKHASQSISGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
SSSSPPPTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQTIGSSLH
#38 of SEQ ID
VL NO.: 493
J703M1S3 CDR-L2 Residues 50-56 HASQSIS
#38 of SEQ ID
VL NO.: 493
J703M1S3 CDR-L3 Residues 89-98 HQSSSSPPPT
#38 of SEQ
VL ID NO.: 493
J703M1S3 494 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#69 SSLHWYQQKPDQSPKLLIKHVSQSLSGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
RSSSPSPTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQSIGSSLH
#69 of SEQ ID
VL NO.: 494
J703M1S3 CDR-L2 Residues 50-56 HVSQSLS
#69 of SEQ ID
VL NO.: 494
J703M1S3 CDR-L3 Residues 89-98 HQRSSSPSPT
#69 of SEQ
VL ID NO.: 494
J703M1S3 495 EIVLTQSPDFQSVTPKEKVTITCRASQSIG
#90 SNLHWYQQKPDQSPKLLIKHASQSISGVPS
VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ
TRTSPPLTFGQGTKVEIK
J703M1S3 CDR-L1 Residues 24-34 RASQSIGSNLH
#90 of SEQ ID
VL NO.: 495
J703M1S3 CDR-L2 Residues 50-56 HASQSIS
#90 of SEQ ID
VL NO.: 495
J703M1S3 CDR-L3 Residues 89-98 HQTRTSPPLT
#90 of SEQ
VL ID NO.: 495

TABLE 16
AE11-5 affinity matured scFv clones converted to full length IgG
Full length
ScFv IgG (protein)
clone name HC plasmid LC plasmid name
J703M1S3#2 pJP368; pHybE-hCg1,z,non- pJP369; pHybE-hCk V3- AE11-5 AM1
a,mut(234,235)-J703M1S3#2 J703M1S31#2
J703M1S3#13 pJP370; pHybE-hCg1,z,non- pJP371; pHybE-hCk V3- AE11-5 AM2
a,mut(234,235)-J703M1S3#13 J703M1S3#13
J703M1S3#26 pJP372; pHybE-hCg1,z,non- pJP373; pHybE-hCk V3- AE11-5 AM3
a,mut(234,235)-J703M1S3#26 J703M1S3#26
J703M1S3#30 pJP374; pHybE-hCg1,z,non- pJP375; pHybE-hCk V3- AE11-5 AM4
a,mut(234,235)-J703M1S3#30 J703M1S3#30
J703M1S3#33 pJP376; pHybE-hCg1,z,non- pJP377; pHybE-hCk V3- AE11-5 AM5
a,mut(234,235)-J703M1S3#33 J703M1S3#33
J703M1S3#35 pJP378; pHybE-hCg1,z,non- pJP379; pHybE-hCk V3- AE11-5 AM6
a,mut(234,235)-J703M1S3#35 J703M1S3#35
J703M1S3#38 pJP382; pHybE-hCg1,z,non- pJP383; pHybE-hCk V3- AE11-5 AM8
a,mut(234,235)-J703M1S3#38 J703M1S3#38
J703M1S3#69 pJP384; pHybE-hCg1,z,non- pJP385; pHybE-hCk V3- AE11-5 AM9
a,mut(234,235)-J703M1S3#69 J703M1S3#69
J703M1S3#90 pJP386; pHybE-hCg1,z,non- pJP387; pHybE-hCk V3- AE11-5 AM10
a,mut(234,235)-J703M1S3#90 J703M1S3#90

The following protocol is used to characterize the binding of TNF antibodies to biotinylated human or cyno TNF by enzyme-linked immunosorbent assay (ELISA). An ELISA plate was coated with 50 μl per well of goat anti human IgG-Fc at 2 μg/ml, overnight at 4° C. The plate was washed 3 times with PBS/Tween. 50 μl Mab diluted to 1 μg/ml in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at room temperature (RT). The plate was washed 3 times with PBS/Tween. 50 μl of serial diluted biotin-human TNF was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of streptavidin-HRP diluted 1:10,000 in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of TMB was added to appropriate wells and the reaction was allowed to proceed for 1 minute. The reaction was stopped with 50 μl/well 2N H2SO4 and the absorbance read at 450 nm. Results are shown in Table 17.

TABLE 17
EC50 in hTNF EC50 in cynoTNF
IgG Name ELISA (nM) ELISA (nM)
AE11-5-AM1 1.06 2.14
AE11-5-AM2 522.5 >845
AE11-5-AM3 1.57 1.55
AE11-5-AM4 18.32 750.3
AE11-5-AM5 17.7 2.2
AE11-5-AM6 1.37 >720
AE11-5-AM7 10.32 1.26
AE11-5-AM8 250.2 58.58
AE11-5-AM9 16.72 5.29
AE11-5-AM10 0.98 0.28

Human TNF was prepared at Abbott Bioresearch Center (Worcester, Mass., US) and received from the Biologics Pharmacy. Mouse TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rat TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rabbit TNF was purchased from R&D Systems. Rhesus/Macaque TNF (rhTNF) was purchased from R&D Systems. Actinomycin was purchased from Sigma Aldrich and resuspended at a stock concentration of 10 mg/mL in DMSO.

Assay Media: 10% FBS (Hyclone #SH30070.03), Gibco reagents: RPMI 1640 (#21870), 2 mM L-glutamine (#25030), 50 units/mL penicillin/50 μg/mL streptomycin (#15140), 0.1 mM MEM non-essential amino acids (#11140) and 5.5×10−5 M 2-mercaptoethanol (#21985-023).

L929 cells were grown to a semi-confluent density and harvested using 0.05% tryspin (Gibco #25300). The cells were washed with PBS, counted, and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells were seeded in a 96-well plate (Costar #3599) at a volume of 50 μL and 5E4 cells/well. Wells received 50 μL of assay media, bringing the volume to 100 μL.

A test sample was prepared as follows. The test and control IgG proteins were diluted to a 4× concentration in assay media and serial 1:3 dilutions were performed. TNF species were diluted to the following concentrations in assay media: 400 pg/mL huTNF, 200 pg/mL muTNF, 600 pg/mL ratTNF, and 100 pg/mL rabTNF. Antibody sample (200 μL) was added to the TNF (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.

To measure huTNF neutralization potency in this assay, the antibody/TNF solution was added to the plated cells at 100 μL for a final concentration at 375 nM-0.019 nM. The final concentration of TNF was as follows: 100 pg/mL huTNF, 50 pg/mL muTNF, 150 pg/mL ratTNF, and 25 pg/mL rabTNF. The plates were incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL was removed from the wells and 10 μL of WST-1 reagent (Roche cat #11644807001) was added. Plates were incubated under assay conditions for 3.5 hours, centrifuged at 500×g, and 75 μL of supernatant transferred to an ELISA plate (Costar cat #3369). The plates were read at OD 420-600 nm on a Spectromax 190 ELISA plate reader. The neutralization potency of selected TNF/IL-17 DVD-Ig binding proteins is shown in Table 18.

TABLE 18
hu TNF neutralization rhesus TNF neutralization IC50
IgG Name IC50 (nM) (nM)
AE11-5 AM1 0.439 0.251
AE11-5 AM2 1.241 0.756
AE11-5 AM3 0.291 0.165
AE11-5 AM4 0.259 0.109
AE11-5 AM5 0.968 0.613
AE11-5 AM6 2.029 0.652
AE11-5 AM7 0.049 0.104
AE11-5 AM8 1.356 3.040
AE11-5 AM9 0.391 0.123
AE11-5 AM10 0.678 0.140

The mouse anti-human TNF antibody MAK-195 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have cross-reactivity to cyno-TNF and improved affinity and binding kinetics against both human and cyno TNF.

To improve the affinity of hMAK195 to TNF, hypermutated CDR residues were identified from other human antibody sequences in the IgBLAST database that also shared high identity to germlines VH3-53 and IGKV1-39. The corresponding hMAK195 CDR residues were then subjected to limited mutagenesis by PCR with primers having low degeneracy at these positions to create three antibody libraries in the scFv format. The first library contained mutations at residues 31, 32, 33, 35, 50, 52, 53, 54, 56 and 58 in the VH CDR1 and 2 (Kabat numbering); the second library at residues 95 to 100, 100a, 101, and 102 in VH CDR3; and the third library at residues 28, 30, 31, 32, 50, 53, 92, 93, 94, and 95 in the three VL CDRs. To further increase the identity of hMAK195 to the human germline framework sequences, a binary degeneracy at VH positions 60 (D/A), 61 (S/D), 62 (T/S), 63 (L/V), and 65 (S/G) were introduced into the first library. Also, a binary degeneracy at VL positions 24 (K/R), 33 (V/L), 54 (R/L), 55 (H/Q), 56 (T/S), 91 (H/S) and 96 (F/Y) were introduced into the third library.

These hMAK195 variants were selected against a low concentration of biotinylated TNF for improved on-rate, off-rate, or both were carried out and antibody protein sequences of affinity-modulated hMAK195 were recovered for converting back to IgG for further characterization. All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 19 provides a list of amino acid sequences of VH and VL of the humanized MAK-195 which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH and VL sequence are indicated in bold.

TABLE 19
List of amino acid sequences of affinity matured hMAK195
VH variants
SEQ ID
Clone NO: VH
rHC1_B8 496 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGSTDYASTLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_H12 497 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E1 498 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK
GLEWVSIIWGDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A2 499 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMISSDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_H6 500 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_D7 501 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D9 502 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRDDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A10 503 EVQLVESGGGLVQPGGSLRLSCAASGETFSHIGVSWVRQAPGK
GLEWVSMISYAGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARLLHKGPIDYWGQGTLVTVSS
H1 + H2_A5 504 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWSDGSTDYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_F8 505 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D1 506 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSMIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARPSHHGLIDNWGQGTLVTVSS
rHC2_C2 507 EVQLVESGGGLVQPGGSLRLSCAASGFTFSELGVNWVRQAPGK
GLEWVSYISDVGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWHHGRFDYWGQGTLVTVSS
rHC1_G4 508 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F3 509 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWQHGPSVYWGQGTLVTVSS
rHC1_B4 510 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G3 511 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK
GLEWVSMIGADGYTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D7 512 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D5 513 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRSDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR
TEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E4 514 EVQLVESGGGLVQPGGSLRLSCAASGFTFSEYGVNWVRQAPGK
GLEWVSIIWHDGSTAYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E10 515 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSLIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B6 516 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVSWVRQAPGK
GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_B7 517 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRDDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS
H1 + H2_G8 518 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWAGGSTAYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_G5 519 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIGADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQYGPLAYWGQGTLVTVSS
H1 + H2_F1 520 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIEGDGGTHYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC19 521 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS
H1 + H2_A10 522 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAXGK
GLEWVSMISADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_B9 523 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRGDGTTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS
H1 + H2_F7 524 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVGWVRQAPGK
GLEWVSMIWGAGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B1 525 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFGVNWVRQAPGK
GLEWVSMIWADGTTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_H9 526 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSVIGGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_A12 527 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGX
GLEWVSMISSDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_G8 528 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWSDGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_B4 529 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK
GLEWVSTISDAGSTYYASSVKGRFTIIRINSKNTLYLQMNSLR
AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS
H1 + H2_G5 530 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGSTYYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_C6 531 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSMIRDDGSTSYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F5 532 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_B4 533 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK
GLEWVSMISGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_F6 534 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVTWVRQAPGK
GLEWVSNIWASGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_B6 535 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
H1 + H2_A3 536 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK
GLEWVSVIWGDGSTAYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D10 537 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC18 538 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
S4-18 539 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC2_E6 540 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D4 541 EVQLVESGGGLVQPGGSLRISCAASGFTFSAFGVSWVRQAPGK
GLEWVSMIWGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_F8 542 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDLGVNWVRQAPGK
GLEWVSTISDIGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWHNGRFDYWGQGTLVTVSS
rHC1_F10 543 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C12 544 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C11 545 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK
GLEWVSIIWGDGSTAYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_C4 546 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK
GLEWVSKIWADGSTDYADSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_E12 547 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSLIWGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C4 548 EVQLVESGGGLVQPGGSLRLSCAASGFTFSYFGVSWVRQAPGK
GLEWVSMIWGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F9 549 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRSDGSTDYADTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_B5 550 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSIIWSDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
S4-34 551 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_C2 552 EVQLVESGGGLVQPGGSLRLSCAASGFTFSEFGVNWVRQAPGK
GLEWVSMIWGNGATDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_F11 553 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWGDGTTAYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_E9 554 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B2 555 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E9 556 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAXGK
GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A6 557 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIGSDGFTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_C8 558 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQTPGK
GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C5 559 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVSWVRQAPGK
GLEWVSQIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_D5 560 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK
GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS
rHC1_C7 561 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWQHGPLGYWGQGTLVTVSS
H1 + H2_C3 562 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVHWVRQAPGK
GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_G7 563 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWQHGPIGYWGQGTLVTVSS
rHC1_A5 564 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_G9 565 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK
GLEWVSKIWGDGTTDYADTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E2 566 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIGGEGRTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_C9 567 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNLGVNWVRQAPGK
GLEWVSMIWDVGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWHHGLFDYWGQGTLVTVSS
rHC1_G6 568 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIMGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_C1 569 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRDDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC1_C2 570 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMISGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_C1 571 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B10 572 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGX
GLEWVSMIWADGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E3 573 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVCWVRQAPGK
GLEWVSMIWADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_H4 574 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWQHGPEGYWGQGTLVTVSS
rHC2_A1 575 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G11 576 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIRSDGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D8 577 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A3 578 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
S4-31 579 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSGIGADGSTAYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHSGLAYWGQGTLVTVSS
rHC36 580 EVQLVESGGGLVQPGGSLILSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNFKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC2_G3 581 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_C10 582 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIAADGSTAYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC14 583 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS
rHC1_D4 584 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_D11 585 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIISGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_E11 586 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDWGVHWMRQAPGK
GLEWVSTIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARHGHHGPFVYWGQGTLVTVSS
H1 + H2_E7 587 EVQLVESGGGLVQPGGSLRLSCAASXFTFSNFGVNWVRQAPGK
GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A8 588 EVQLVESGGGLVQPGGSLRLSCAASGFTFSVYGVNWVRQAPGK
GLEWVSMIGDEGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARHWHHGAVDYWGQGTLVTVSS
H1 + H2_B9 589 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWADGSTHYADSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
S4-19 590 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK
GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
S4-74 591 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC1_H2 592 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_E3 593 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGYTSYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC34 594 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPSAYWGQGTLVTVSS
H1 + H2_F2 595 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D9 596 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGTTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
H1 + H2_E6 597 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVHWVRQAPGK
GLEWVSMIWADGSTVYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_F3 598 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIGSDGSTYYADSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_G11 599 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS
H1 + H2_D3 600 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWGDGHTAYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B12 601 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWAHGATHYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B11 602 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSLIRDDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A8 603 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
S4-24 604 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_F11 605 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMISADGYTDYADSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_D10 606 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_D6 607 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIGADGYTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G4 608 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVSWVRQAPGK
GLEWVSMIWADGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D11 609 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E9 610 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGTTYYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC1_A12 611 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSRISGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A2 612 EVQLVESGGGLVQPGGSLRLSCAASGFSFSNFGVNWVRQAPGK
GLEWVSMIWADGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B7 613 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK
GLEWVSIISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_H8 614 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_F12 615 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIGADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E5 616 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRGDGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A11 617 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWGSGATDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D6 618 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMISADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC2_G10 619 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIAADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_H3 620 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSLIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_F10 621 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIRGDGSTAYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C7 622 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIWGDGNTGYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_A9 623 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_E5 624 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWGDGSTEYADTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC62 625 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
H1 + H2_F4 626 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVYWVRQAPGK
GLEWVSMIWDDGSTEYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_H8 627 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK
GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS
rHC2_F4 628 EVQLVESGGGLVQPGGSLRLSCAASGFTFSGPGVNWVRQAPGK
GLEWVSSIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCARHSHDGRFDYWGQGTLVTVSS
S4-50 629 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK
GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
H1 + H2_F12 630 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWGEGSTGYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E6 631 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRDDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F2 632 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIGGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
H1 + H2_G6 633 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK
GLEWVSMIWADGTTDYDDSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC2_F5 634 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSGISADGSTAYDSSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D6 635 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGK
GLEWVSLIRGDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A9 636 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK
GLEWVSMIWGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A1 637 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK
GLEWVSMIWADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC60 638 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS
rHC1_C8 639 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK
GLEWVSMIAGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
rHC44 640 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYADTLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_G9 641 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSIIGADGATDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS
H1 + H2_A6 642 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSGITGDGITAYASTLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G2 643 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMISGDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G7 644 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSNIWGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E10 645 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E2 646 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_A4 647 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK
GLEWVSMIWRDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_H3 648 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK
GLEWVSMIWGDGSTHYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_G1 649 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK
GLEWVSGISADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E8 650 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVNWVRQAPGK
GLEWVSMIGGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_C9 651 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F7 652 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSVISADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_F6 653 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIGADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
rHC22 654 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC2_G5 655 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_C12 656 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK
GLEWVSVIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
rHC3 657 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS
rHC1_F1 658 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK
GLEWVSRINGDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_E11 659 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIRSDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B8 660 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK
GLEWVSMIWVDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G1 661 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK
GLEWVSMIWGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_B3 662 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK
GLEWVSMIRSDGFTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D2 663 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMITGDGYTDYADTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
rHC1_E12 664 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRADGLTDYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_B5 665 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSLIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_D11 666 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS
H1 + H2_A7 667 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVIWVRQAPGK
GLEWVSMIGGDGSTYYDSSLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_G3 668 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK
GLEWVSMIGSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D5 669 EVQLVESGGGLVQPGGSLRLSCAASGFTFSYYGVHWVRQAPGK
GLEWVSGISGEGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_D1 670 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWVKGTLVTVSS
rHC1_E7 671 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSIIRGDGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
rHC1_E11 672 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIRADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
S4-55 673 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK
GLEWVSMIWADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS
H1 + H2_C10 674 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK
GLEWVSMIRGDGSTYYADTLKGRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
H1 + H2_G10 675 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK
GLEWVSMIWADGSTSYADSVKSRFTISRDNSKNTLYLQMNSLR
AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS

Table 20 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK195 Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 20
List of amino acid sequences of affinity
matured hMAK195 VL variants
SEQ
ID
Clone NO: VL
S3_92 676 DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYHTPYTFGQGTKLEIK
S3_79 677 DIQMTQSPSSLSASVGDRVTITCKASQAVSTEVAWYQQK
PGKAPKLLIYCASTRQTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQSYSAPYTFGQGTKLEIK
S3_68 678 DIQMTQSPSSLSASVGDRVTITCRASQVVSSAVAWYQQK
PGKAPKLLIYWASKRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_60 679 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S4-63 680 DIQMTQSPSSLSASVGDRVTITCKASQKVSSALAWYQQK
PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRPPFTFGQGTKLEIK
S3_5 681 DIQMTQSPSSLSASVGDRVTITCRASQGVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYTTPFTFGQGTKLEIK
S3_44 682 DIQMTQSPSSLSASVGDRVTITCRASQGVSRALAWYQQK
PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRAPFTFGQGTKLEIK
S3_53 683 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYHTPFTFGQGTKLEIK
S3_91 684 DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_59 685 DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPYTFGQGTKLEIK
S3_47 686 DIQMTQSPSSLSASVGDRVTITCKASQWVSSAVAWYQQK
PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRIPFTFGQGTKLEIK
S3_70 687 DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPYTFGQGTKLEIK
S3_56 688 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK
PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPYTFGQGTKLEIK
S3_37 689 DIQMTQSPSSLSASVGDRVTITCKASQGVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYNTPFTFGQGTKLEIK
S3_36 690 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_67 691 DIQMTQSPSSLSASVGDRVTITCKASQTVXRAVAWYQQK
PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQSYSTPFTFGQGTKLEIK
S3_40 692 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWSQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYTTPYTFGQGTKLEIK
S3_73 693 DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S4-50 694 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASALHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSSPYTFGQGTKLEIK
S4-6 695 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_19 696 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK
PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRSPFTFGQGTKLEIK
S3_83 697 DIQMTQSPSSLSASVGDRVTITCRASQAVSTALAWYQQK
PGKAPKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRSPFTFGQGTKLEIK
S3_78 698 DIQMTQSPSSLSASVGDRVTITCKASQYVGGAVAWYQQK
PGKAPKLLIYQASTLQTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHISKPFTFGQGTKLEIK
S4-19 699 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_58 700 DIQMTQSPSSLSASVGDRVTITCKASQSVNGALAWYQQK
PGKAPKLLIYRASTRQTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSIPFTFGQGTKLEIK
S4-31 701 DIQMTQSPSSLSASVGDRVTITCRASQGVSSALAWYQQK
PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSAPFTFGQGTKLEIK
S3_31 702 DIQMTQSPSSLSASVGDRVTITCKASQAVSSSVAWYQQK
PGKAPKLLIYGASTLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYNEPYTFGQGTKLEIK
S3_13 703 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK
PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPYTFGQGTKLEIK
S4-40 704 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFSFGQGTKLEIK
S3_26 705 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK
PGKAPKLLIYWASKRQTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYISPYTFGQGTKLEIK
S3_33 706 DIQMTQSPSSLSASVGDRVTITCKASQGVRSALAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQSYSAPYTFGQGTKLEIK
S3_28 707 DIQMTQSPSSLSASVGDRVTITCKASQTVSNAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S4-74 708 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_84 709 DIQMTQSPSSLSASVGDRVTITCKASQPVRSAVAWYQQK
PGKAPKLLIYSASTRQTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQSYSIPFTFGQGTKLEIK
S4-54 710 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYKTPFSFGQGTKLEIK
S3_23 711 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK
PGKAPKLLIYWASSRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_55 712 DIQMTQSPSSLSASVGDRVTITCKASQTVGRAVAWYQQK
PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQSYSTPFTFGQGTKLEIK
S4-34 713 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_76 714 DIQMTQSPSSLSASVGDRVTITCRASQKVSNAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYNSPFTFGQGTKLEIK
S4-12 715 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYKTPFTFGQGTKLEIK
S3_86 716 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYTTPYTFGQGTKLEIK
S3_61 717 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK
PGKAPKLLIYWASNRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_18 718 DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK
PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_72 719 DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRNPFTFGQGTKLEIK
S3_41 720 DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK
PXKAPKLLIYWASSRQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S4-24 721 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S4-17 722 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_90 723 DIQMTQSPSSLSASVGDRVTITCKASQPVSGAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRASYTFGQGTKLEIK
S3_87 724 DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPYTFGQGTKLEIK
S3_66 725 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYTTPYTFGQGTKLEIK
S4-18 726 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_4 727 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK
PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSSPYTFGQGTKLEIK
S3_64 728 DIQMTQSPSSLSASVGDRVTITCKASQPVSSAVAWYQQK
PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPFTFGQGTKLEIK
S3_62 729 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPYTFGQGTNLEIK
S3_29 730 DIQMTQSPSSLSASVGDIVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRTPYTFGQGTKLEIK
S3_65 731 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASMRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSSPFTFGQGTKLEIK
S3_81 732 DIQMTQSPSSLSASVGDRVTITCKASQTVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYRAPYTFGQGTKLEIK
S3_39 733 DIQMTQSPSSLSASVGDRVTITCKASQRVSSALAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_49 734 DIQMTQSPSSLSASVGDRVTITCRASQLVSNAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSSPFTFGQGTKLEIK
S3_85 735 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK
PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK
S3_82 736 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK
PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYTTPFTFGQGTKLEIK
S3_93 737 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK
PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQHYSTPFTFGQGTKLEIK

TABLE 21
Amino acid residues observed in affinity matured hMAK-195.
hMAK195 Heavy chain variable region (SEQ ID NO: 1075)
hMAK195VH EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGKGLEWVSMIWGDGSTD
                              NFS T              I RAG T A
                              HLN S              V GSE F H
                              YS  H              L SDA A V
                              IR  Q              R AEV Y S
                                  Y              K LVG W N
                                                 S  NY   G
YDSTLKSRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREWHHGPVAYWGQGTLVTVSS
 ADSV G                                HSQQRTLDS
                                       QLRPASGVF
                                       LCLLVQDGC
                                       YRYNWAETN
                                       DFPYEKW P
                                       NDARS R I
                                       TYVTP P H
                                       PPDDI A
                                       AICA  I
                                       SG C
                                       R
hMAK195 Light chain variable region (SEQ ID NO: 1076)
hMAK195VL DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQKPGKAPKLLIYWASTRHTG
                       R   S RRPL                S  SLQS
                           V TNT                 R  I T
                           G IGG                 L  L A
                           D NCV                 C  K E
                           T CTS                 Q  A F
                           P KIR                 G  R
VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHYSTPFTFGQGTKLEIK
                                 SNRSTY
                                  FGPR
                                  DTML
                                  GIIQ
                                  HCAA
                                     S

The tables below provide a list of humanized MAK-195 antibodies that were converted into IgG proteins for characterization.

TABLE 22
VH sequences of IgG converted clones
Protein
region SEQ ID NO: Sequence
123456789012345678901234567890
A8 738 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVNWVRQAPGKGLEWVSMIAADGFTDYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWHHGPVAYWGQGTLVTVSS
A8 CDR-H1 Residues 31-35 NYGVN
VH of SEQ ID
NO.: 738
A8 CDR-H2 Residues 50-65 MIAADGFTDYASSVKG
VH of SEQ ID
NO.: 738
A8 CDR-H3 Residues 98-106 EWHHGPVAY
VH of SEQ ID
NO.: 738
B5 739 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWHHGPVAYWGQGTLVTVSS
B5 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 739
B5 CDR-H2 Residues 50-65 LIRGDGSTDYASSLKG
VH of SEQ ID
NO.: 739
B5 CDR-H3 Residues 98-106 EWHHGPVAY
VH of SEQ ID
NO.: 739
rHC44 740 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
DTLKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC44 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 740
rHC44 CDR-H2 Residues 50-65 MIWADGSTHYADTLKS
VH of SEQ ID
NO.: 740
rHC44 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 740
rHC22 741 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC22 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 741
rHC22 CDR-H2 Residues 50-65 MIWADGSTDYADTVKG
VH of SEQ ID
NO.: 741
rHC22 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 741
rHC81 742 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DSVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
rHC81 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 742
rHC81 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS
VH of SEQ ID
NO.: 742
rHC81 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 742
rHC18 743 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC18 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 743
rHC18 CDR-H2 Residues 50-65 MIWSDGSTDYASSVKG
VH of SEQ ID
NO.: 743
rHC18 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 743
rHC14 744 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPAAYWGQGTLVTVSS
rHC14 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 744
rHC14 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG
VH of SEQ ID
NO.: 744
rHC14 CDR-H3 Residues 98-106 EWQHGPAAY
VH of SEQ ID
NO.: 744
rHC3 745 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC3 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 745
rHC3 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG
VH of SEQ ID
NO.: 745
rHC3 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 745
rHC19 746 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPAAYWGQGTLVTVSS
rHC19 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 746
rHC19 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 746
rHC19 CDR-H3 Residues 98-106 EWQHGPAAY
VH of SEQ ID
NO.: 746
rHC34 747 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC34 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 747
rHC34 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 747
rHC34 CDR-H3 Residues 98-106 EWQHGPSAY
VH of SEQ ID
NO.: 747
rHC83 748 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
rHC83 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 748
rHC83 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 748
rHC83 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 748
S4-19 749 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-19 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 749
S4-19 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 749
S4-19 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 749
S4-50 750 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-50 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 750
S4-50 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 750
S4-50 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 750
S4-63 751 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA
DTVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-63 CDR-H1 Residues 31-35 NYGVE
VH of SEQ ID
NO.: 751
S4-63 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS
VH of SEQ ID
NO.: 751
S4-63 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 751
S4-55 752 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA
STVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVGYWGQGTLVTVSS
S4-55 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 752
S4-55 CDR-H2 Residues 50-65 MIWADGSTDYASTVKG
VH of SEQ ID
NO.: 752
S4-55 CDR-H3 Residues 98-106 EWQHGPVGY
VH of SEQ ID
NO.: 752
S4-6 753 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-6 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 753
S4-6 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 753
S4-6 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 753
S4-18 754 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DSVKSRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-18 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 754
S4-18 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS
VH of SEQ ID
NO.: 754
S4-18 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 754
S4-31 755 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVQWVRQAPGKGLEWVSGIGADGSTAYA
SSLKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHSGLAYWGQGTLVTVSS
S4-31 CDR-H1 Residues 31-35 NYGVQ
VH of SEQ ID
NO.: 755
S4-31 CDR-H2 Residues 50-65 GIGADGSTAYASSLKG
VH of SEQ ID
NO.: 755
S4-31 CDR-H3 Residues 98-106 EWQHSGLAY
VH of SEQ ID
NO.: 755
S4-34 756 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-34 CDR-H1 Residues 31-35 NYGVS
VH of SEQ ID
NO.: 756
S4-34 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG
VH of SEQ ID
NO.: 756
S4-34 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 756
S4-74 757 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
DTVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPLAYWGQGTLVTVSS
S4-74 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 757
S4-74 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG
VH of SEQ ID
NO.: 757
S4-74 CDR-H3 Residues 98-106 EWQHGPLAY
VH of SEQ ID
NO.: 757
S4-12 758 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-12 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 758
S4-12 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 758
S4-12 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 758
S4-54 759 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-54 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 759
S4-54 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 759
S4-54 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 759
S4-17 760 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-17 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 760
S4-17 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 760
S4-17 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 760
S4-40 761 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-40 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 761
S4-40 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 761
S4-40 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 761
S4-24 762 EVQLVESGGGLVQPGGSLRLSCAASGFTFS
VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA
SSVKGRFTISRDNSKNTLYLQMNSLRAEDT
AVYYCAREWQHGPVAYWGQGTLVTVSS
S4-24 CDR-H1 Residues 31-35 NYGVT
VH of SEQ ID
NO.: 762
S4-24 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG
VH of SEQ ID
NO.: 762
S4-24 CDR-H3 Residues 98-106 EWQHGPVAY
VH of SEQ ID
NO.: 762

TABLE 23
VL sequences of IgG converted clones
Protein
region SEQ ID NO: Sequence
123456789012345678901234567890
hMAK195 763 DIQMTQSPSSLSASVGDRVTITCKASQAVS
VL.1 SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
VL RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
hMAK195 CDR-L1 Residues 24-34 KASQAVSSAVA
VL.1 of SEQ ID
VL NO.: 763
hMAK195 CDR-L2 Residues 50-56 WASTRHT
VL.1 of SEQ ID
VL NO.: 763
hMAK195 CDR-L3 Residues 89-97 QQHYSTPFT
VL.1 of SEQ ID
VL NO.: 763
S4-24 764 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-24 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 764
S4-24 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 764
S4-24 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 764
S4-40 765 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFSFGQGTKLEIKR
S4-40 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 765
S4-40 CDR-L2 Residues 50-56 WASTRHS
VL of SEQ ID
NO.: 765
S4-40 CDR-L3 Residues 89-97 QQHYRTPFS
VL of SEQ ID
NO.: 765
S4-17 766 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-17 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 766
S4-17 CDR-L2 Residues 50-56 WASTRHS
VL of SEQ ID
NO.: 766
S4-17 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 766
S4-54 767 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYKTPFSFGQGTKLEIKR
S4-54 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 767
S4-54 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 767
S4-54 CDR-L3 Residues 89-97 QQHYKTPFS
VL of SEQ ID
NO.: 767
S4-12 768 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYKTPFTFGQGTKLEIKR
S4-12 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 768
S4-12 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 768
S4-12 CDR-L3 Residues 89-97 QQHYKTPFT
VL of SEQ ID
NO.: 768
S4-74 769 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-74 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 769
S4-74 CDR-L2 Residues 50-56 WASARHT
VL of SEQ ID
NO.: 769
S4-74 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 769
S4-34 770 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-34 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 770
S4-34 CDR-L2 Residues 50-56 WASTRHT
VL of SEQ ID
NO.: 770
S4-34 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 770
S4-31 771 DIQMTQSPSSLSASVGDRVTITCRASQGVS
VL SALAWYQQKPGKAPKLLIYWASALHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSAPFTFGQGTKLEIKR
S4-31 CDR-L1 Residues 24-34 RASQGVSSALA
VL of SEQ ID
NO.: 771
S4-31 CDR-L2 Residues 50-56 WASALHS
VL of SEQ ID
NO.: 771
S4-31 CDR-L3 Residues 89-97 QQHYSAPFT
VL of SEQ ID
NO.: 771
S4-18 772 DIQMTQSPSSLSASVGDRVTITCRASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
S4-18 CDR-L1 Residues 24-34 RASQLVSSAVA
VL of SEQ ID
NO.: 772
S4-18 CDR-L2 Residues 50-56 WASTLHS
VL of SEQ ID
NO.: 772
S4-18 CDR-L3 Residues 89-97 QQHYSTPFT
VL of SEQ ID
NO.: 772
S4-6 773 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSTPFTFGQGTKLEIKR
S4-6 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 773
S4-6 CDR-L2 Residues 50-56 WASTRHT
VL of SEQ ID
NO.: 773
S4-6 CDR-L3 Residues 89-97 QQHYSTPFT
VL of SEQ ID
NO.: 773
S4-55 774 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-55 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 774
S4-55 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 774
S4-55 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 774
S4-63 775 DIQMTQSPSSLSASVGDRVTITCKASQKVS
VL SALAWYQQKPGKAPKLLIYWASALHSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRPPFTFGQGTKLEIKR
S4-63 CDR-L1 Residues 24-34 KASQKVSSALA
VL of SEQ ID
NO.: 775
S4-63 CDR-L2 Residues 50-56 WASALHS
VL of SEQ ID
NO.: 775
S4-63 CDR-L3 Residues 89-97 QQHYRPPFT
VL of SEQ ID
NO.: 775
S4-50 776 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASALHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYSSPYTFGQGTKLEIKR
S4-50 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 776
S4-50 CDR-L2 Residues 50-56 WASALHT
VL of SEQ ID
NO.: 776
S4-50 CDR-L3 Residues 89-97 QQHYSSPYT
VL of SEQ ID
NO.: 776
S4-19 777 DIQMTQSPSSLSASVGDRVTITCKASQLVS
VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
HYRTPFTFGQGTKLEIKR
S4-19 CDR-L1 Residues 24-34 KASQLVSSAVA
VL of SEQ ID
NO.: 777
S4-19 CDR-L2 Residues 50-56 WASTLHT
VL of SEQ ID
NO.: 777
S4-19 CDR-L3 Residues 89-97 QQHYRTPFT
VL of SEQ ID
NO.: 777

TABLE 24
Heavy and light chain pairs of hMAK195 affinity matured clones
Clone name HC LC Protein name
A8 hMAK195-A8 hMAK195 VL.1 hMAK195-AM11
B5 hMAK195-B5 hMAK195 VL.1 hMAK195-AM13
rHC3 hMAK195 rHC3 hMAK195 VL.1 hMAK195-AM14
rHC18 hMAK195 rHC18 hMAK195 VL.1 hMAK195-AM15
rHC19 hMAK195 rHC19 hMAK195 VL.1 hMAK195-AM16
rHC22 hMAK195 rHC22 hMAK195 VL.1 hMAK195-AM17
rHC34 hMAK195 rHC34 hMAK195 VL.1 hMAK195-AM18
rHC60 hMAK195 rHC60 hMAK195 VL.1 hMAK195-AM19
S4-6 hMAK195 S4-6 hMAK195 S4-6 hMAK195-AM20
S4-12 hMAK195 S4-12 hMAK195 S4-12 hMAK195-AM21
S4-17 hMAK195 S4-17 hMAK195 S4-17 hMAK195-AM22
S4-18 hMAK195 S4-18 hMAK195 S4-18 hMAK195-AM23
S4-19 hMAK195 S4-19 hMAK195 S4-19 hMAK195-AM24
S4-24 hMAK195 S4-24 hMAK195 S4-24 hMAK195-AM25
S4-34 hMAK195 S4-34 hMAK195 S4-34 hMAK195-AM26

TABLE 25
IgG Name EC50 in hTNFa ELISA (nM)
hMAK195-AM11 0.2
hMAK195-AM13 0.2
hMAK195-AM14 0.051
hMAK195-AM15 0.052
hMAK195-AM16 0.056
hMAK195-AM17 0.056
hMAK195-AM18 0.052
hMAK195-AM19 0.057
hMAK195-AM20 0.043
hMAK195-AM21 0.042
hMAK195-AM22 0.052
hMAK195-AM23 0.055
hMAK195-AM24 0.053
hMAK195-AM25 0.052
hMAK195-AM26 0.061

TABLE 26
hu TNF neutralization rhesus TNF neutralization
IgG Name IC50 (nM) IC50 (nM)
hMAK195-AM11 0.259 >25
hMAK195-AM13 1.218 4.64
hMAK195-AM14 0.0401 4.61
hMAK195-AM15 0.036 >150
hMAK195-AM16 0.0105 0.803
hMAK195-AM17 0.0031 >25
hMAK195-AM18 0.0145 0.4412
hMAK195-AM19 0.0126 1.206
hMAK195-AM20 0.0037 0.596
hMAK195-AM21 0.009 0.09
hMAK195-AM22 0.00345 0.2705
hMAK195-AM23 0.0468 2.627
hMAK195-AM24 0.015 0.557
hMAK195-AM25 0.0114 0.262
hMAK195-AM26 0.0061 0.2495

The mouse anti-human TNF antibody MAK-199 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have improved affinity and binding kinetics against both human and cyno TNF. Several libraries were made according to specifications below:

All four libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 27 provides a list of amino acid sequences of VH of the hMAK-199 antibody which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 27
List of amino acid sequences of affinity matured hMAK199
VH variants
Clone SEQ ID NO: VH
J644M2S1-10VH 778 EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGITWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-11VH 779 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-12VH 780 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVRQ
APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-13VH 781 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGIQWVRQ
APGQGLEWMGWINTYTGAPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-14VH 782 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-15VH 783 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ
APGQGLEWMGWINTYTGESTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-16VH 784 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGMTWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-17VH 785 EVQLVQSGAEVKKPGASVKVSCKASGYAFTDYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-18VH 786 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGEPAYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-1VH 787 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-22VH 788 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-23VH 789 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-24VH 790 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-25VH 791 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-27VH 792 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-28VH 793 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-2VH 794 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ
APGQGLEWMGWINTYXGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-31VH 795 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-33VH 796 EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-34VH 797 EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-35VH 798 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGITWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-36VH 799 EVQLVQSGAEVKKPGASVKVSCKASGYTFGNYGINWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-37VH 800 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-38VH 801 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ
APGQGLEWMGWINTYTGEPHYAQGFTGRVTMTTDTSTST
AYIELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-3VH 802 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-40VH 803 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-41VH 804 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-43VH 805 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGVPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-44VH 806 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIAWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-45VH 807 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGVPHYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-46VH 808 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ
APGQGLEWMGWINTYTGEPXYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-47VH 809 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-48VH 810 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-4VH 811 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGITWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-50VH 812 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGVPQYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-51VH 813 EVQLVQSGAEVKKPGASVKVSCKASGYTFQNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-53VH 814 EVQLVQSGAEVKKPGASVKVSCKASGYTFTQYGINWVRQ
APGQGLEWMGWINTYTGDPHYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-54VH 815 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-55VH 816 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYNGKPMYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-56VH 817 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ
APGQGLEWMGWINTYTGEPAYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-59VH 818 EVQLVQSGAEVKKPGASVKVSCKASGYTFNHYGINWVRQ
APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-5VH 819 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-60VH 820 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-64VH 821 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-65VH 822 EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGIIWVRQ
APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-66VH 823 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-67VH 824 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGMNWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-68VH 825 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-6VH 826 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-71VH 827 EVQLVQSGAEVKKPGASVKVSCKASGYTFDHYGMNWVRQ
APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-72VH 828 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ
APGQGLEWMGWINTYTGKPSYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-73VH 829 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-74VH 830 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGMNWVRQ
APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-75VH 831 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-76VH 832 EVQLVQSGAEVKKPGASVKVSCKASGYTFNSYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-77VH 833 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-79VH 834 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYNGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-7VH 835 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIIWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-81VH 836 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-82VH 837 EVQLVQSGAEVKKPGASVKVSCKASGYTFSDYGIQWVRQ
APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-83VH 838 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGISWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-84VH 839 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIQWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-85VH 840 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-87VH 841 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYSGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-88VH 842 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-8VH 843 EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-90VH 844 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGKTNYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-91VH 845 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGEPNYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-92VH 846 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ
APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-93VH 847 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-94VH 848 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGIPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-95VH 849 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-96VH 850 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYSGVPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J644M2S1-9VH 851 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-11VH 852 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFWRTVVGTDNAMDYWGQG
TTVTVSS
J647M2-12VH 853 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYSTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-13VH 854 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDSAMDYWGQG
TTVTVSS
J647M2-15VH 855 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFMTTMAVTDFAMDYWGQG
TTVTVSS
J647M2-16VH 856 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLTTVVATDNAMDYWGQG
TTVTVSS
J647M2-17VH 857 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVIVTDNAMDYWGQG
TTVTVSS
J647M2-19VH 858 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG
TTVTVSS
J647M2-1VH 859 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLMTTVVVTDHAMDYWGQG
TTVTVSS
J647M2-20VH 860 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKYLTTVVVTDSAMDYWGQG
TTVTVSS
J647M2-21VH 861 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFRSSVAVTDNAMDYWGQG
TTVTVSS
J647M2-22VH 862 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLFTTVVVTDSAMDYWGQG
TTVTVSS
J647M2-23VH 863 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYLMPVVVTDYAMDYWGQG
TTVTVSS
J647M2-24VH 864 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKLLDAVMVTDYAMDYWGQG
TTVTVSS
J647M2-26VH 865 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVVVNDYAMDYWGQG
TTVTVSS
J647M2-44VH 866 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLTTVAVTDYAMDYWGQG
TTVTVSS
J647M2-45VH 867 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLKTVVATDDAMDYWGQG
TTVTVSS
J647M2-47VH 868 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLNTAVVTDYAMDYWGQG
TTVTVSS
J647M2-48VH 869 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARRFLTTVDVTDNAMDYWGQG
TTVTVSS
J647M2-4VH 870 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYLTPVVATDFAMDYWGQG
TTVTVSS
J647M2-51VH 871 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKCMTTIVETDNAMDYWGQG
TTVTVSS
J647M2-52VH 872 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFMNTVDVTDNAMDYWGQG
TTVTVSS
J647M2-53VH 873 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLFTTVVVTDDAMDYWGQG
TTVTVSS
J647M2-54VH 874 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLMTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-55VH 875 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLPTVVVTDYAMDYWGQG
TTVTVSS
J647M2-56VH 876 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKLLTTVVVTDNAMDYWGQG
TTVTVSS
J647M2-58VH 877 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKILTTVVVTDNAMDYWGQG
TTVTVSS
J647M2-70VH 878 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKVMATEVVTDYAMDYWGQG
TTVTVSS
J647M2-71VH 879 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLVTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-72VH 880 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFRKPVSVTDYAMDYWGQG
TTVTVSS
J647M2-73VH 881 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLWTTVVVTDNAMDYWGQG
TTVTVSS
J647M2-74VH 882 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLTPVVVTDYAMDYWGQG
TTVTVSS
J647M2-75VH 883 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFRTTVVETDYCMDYWGQG
TTVTVSS
J647M2-76VH 884 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYFTTVAVTDYAMDYWGQG
TTVTVSS
J647M2-78VH 885 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARRFLTTVEVTDLAMDYWGQG
TTVTVSS
J647M2-79VH 886 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLRTEVMTDYAMDYWGQG
TTVTVSS
J647M2-7VH 887 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLSTVAVTDSAMDYWGQG
TTVTVSS
J647M2-80VH 888 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKVLNTVVVTDYAMDYWGQG
TTVTVSS
J647M2-83VH 889 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFMNTAMVTDYAMDYWGQG
TTVTVSS
J647M2-84VH 890 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFSTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-85VH 891 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYFTTVVVTDYAMDYWGQG
TTVTVSS
J647M2-86VH 892 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLNTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-12VH 893 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFMPTVVETDYAMDYWGQG
TTVTVSS
J647M2S1-13VH 894 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGNPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-14VH 895 EVQLVQSGAEVKKPGASVKVSCKASGYTFADYGMNWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-15VH 896 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVVVTDCAMDYWGQG
TTVTVSS
J647M2S1-17VH 897 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-18VH 898 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVVVTDNAMDYWGQG
TTVTVSS
J647M2S1-19VH 899 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLNTVVGTDYAMDYWGQG
TTVTVSS
J647M2S1-21VH 900 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKLLTTEAVTDYAMDYWGQG
TTVTVSS
J647M2S1-22VH 901 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKYSTPVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-23VH 902 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-26VH 903 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKCLNTVAVTEHRMDYWGQG
TTVTVSS
J647M2S1-28VH 904 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVVHTDYAMDYWGQG
TTVTVSS
J647M2S1-30VH 905 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-31VH 906 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-32VH 907 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-33VH 908 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFRTTVVLTDSAMDYWGQG
TTVTVSS
J647M2S1-35VH 909 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-36VH 910 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFQTPVVDTDYAMDYWGQG
TTVTVSS
J647M2S1-39VH 911 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFMKTRVVTDNAMDYWGQG
TTVTVSS
J647M2S1-40VH 912 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIVWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-41VH 913 EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGISWVRQ
APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-43VH 914 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-45VH 915 EVQLVQSGAEVKKPGASVKVSCKASGYTFTKYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-47VH 916 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKYLTTVVATDYAMDYWGQG
TTVTVSS
J647M2S1-48VH 917 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLNTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-65VH 918 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTPVVVTDCAMDYWGQG
TTVTVSS
J647M2S1-66VH 919 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGEPRYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-67VH 920 EVQLVQSGAEVKKPGASVKVSCKASGYTFRDYGINWVRQ
APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-69VH 921 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFWTTIVVTDYAMDYWGQG
TTVTVSS
J647M2S1-6VH 922 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKLLTTVSATDNAMDYWGQG
TTVTVSS
J647M2S1-70VH 923 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLNTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-72VH 924 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ
APGQGLEWMGWINTYNGEPSYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-75VH 925 EVQLVQSGAEVKKPGASVKVSCKASGYTFATYGIAWVRQ
APGQGLEWMGWINTYSGVPKYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-76VH 926 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFRTTAVPTDNAMDYWGQG
TTVTVSS
J647M2S1-77VH 927 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFLTTVVNTDSAMDYWGQG
TTVTVSS
J647M2S1-78VH 928 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGRG
TTVTVSS
J647M2S1-79VH 929 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLKTRVVTDYAMDYWGQG
TTVTVSS
J647M2S1-7VH 930 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-80VH 931 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLTTVVATDYAMDYWGQG
TTVTVSS
J647M2S1-84VH 932 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-85VH 933 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-87VH 934 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFFPTMVVTDYAMDYWGQG
TTVTVSS
J647M2S1-88VH 935 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKFVTTMVVTDYAMDYWGQG
TTVTVSS
J647M2S1-8VH 936 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG
TTVTVSS
J647M2S1-92VH 937 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYFCARKLLTTIVATDNAMDYWGQG
TTVTVSS
J647M2S1-93VH 938 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLMSTVVETDNAMDYWGQG
TTVTVSS
J647M2S1-94VH 939 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLFTVVQTDYAMDYWGQG
TTVTVSS
J647M2S1-96VH 940 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ
APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST
AYMELSSLRSEDTAVYYCARKLLNTVVDTDYAMDYWGQG
TTVTVSS
J662M2S3-14VH 941 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ
APGQGLEWMGWINTYTGEPHYAQKLQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFTVEDVTDCAMDYWGQG
TTVTVSS
J662M2S3-18VH 942 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ
APGQGLEWMGWINTYNGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFLVEAVTDYAMDYWGQG
TTVTVSS
J662M2S3-28VH 943 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFTTVDVTDNAMDYWGQG
TTVTVSS
J662M2S3-29VH 944 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYTGVPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG
TTVTVSS
J662M2S3-30VH 945 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYTGEPHYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFKTMAVTDAAMDYWGQG
TTVTVSS
J662M2S3-34VH 946 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFRNTVAVTDYAMDYWGQG
TTVTVSS
J662M2S3-3VH 947 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFNTVAVTDNAMDYWGQG
TTVTVSS
J662M2S3-41VH 948 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFFTEDVTDYAMDYWGQG
TTVTVSS
J662M2S3-45VH 949 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG
TTVTVSS
J662M2S3-55VH 950 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG
TTVTVSS
J662M2S3-5VH 951 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFTTMDVTDNAMDYWGQG
TTVTVSS
J662M2S3-65VH 952 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQKLQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFNTVDVTDNAMDYWGQG
TTVTVSS
J662M2S3-78VH 953 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ
APGQGLEWMGWINTYTGKPSYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG
TTVTVSS
J662M2S3-84VH 954 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ
APGQGLEWMGWINTYTGQPSYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKLFKTEAVTDYAMDYWGQG
TTVTVSS
J662M2S3-87VH 955 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYSGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG
TTVTVSS
J662M2S3-96VH 956 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ
APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST
AYMELSSLRSEDTAVYYCARKFFTTMAVTDNAMDYWGQG
TTVTVSS

Table 28 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK199 Amino acid residues of individual CDRs of each VL sequence are indicated in bold.

TABLE 28
List of amino acid sequences of affinity matured hMAK199
VL variants
Clone SEQ ID NO: VL
J644M2S1-11Vk 957 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J644M2S1-73Vk 958 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2-11Vk 959 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKTVKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2S1-10Vk 960 DIQMTQSPSSLSASVGDRVTITCRASQDIWNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNRYPPTFGQGTKLEIK
J647M2S1-16Vk 961 DIQMTQSPSSLSASVGDRVTITCRASQDICTYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNSPPPTFGQGTKLEIK
J647M2S1-1Vk 962 DIQMTQSPSSLSASVGDRVTITCRASQAIGNYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2S1-20Vk 963 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTRPPTFGQGTKLEIK
J647M2S1-24Vk 964 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTGPPTFGQGTKLEIK
J647M2S1-25Vk 965 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2S1-29Vk 966 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPATFGQGTKLEIK
J647M2S1-2Vk 967 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK
PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTPPPTFGQGTKLEIK
J647M2S1-34Vk 968 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J647M2S1-37Vk 969 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTMPTTFGQGTKLEIK
J647M2S1-38Vk 970 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYFASRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTPPTTFGQGTKLEIK
J647M2S1-3Vk 971 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPSTFGQGTKLEIK
J647M2S1-42Vk 972 DIQMTQSPSSLSASVGDRVTITCRASQVISNTLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNALPPTFGQGTKLEIK
J647M2S1-44Vk 973 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTPPPTFGQGTKLEIK
J647M2S1-46Vk 974 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J647M2S1-50Vk 975 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTAPPTFGQGTKLEIK
J647M2S1-52Vk 976 DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK
J647M2S1-56Vk 977 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2S1-59Vk 978 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTRPPTFGQGTKLEIK
J647M2S1-71Vk 979 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTQPPTFGQGTKLEIK
J647M2S1-74Vk 980 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNSQPPTFGQGTKLEIK
J647M2S1-78Vk 981 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK
PGKAPKLLIYNASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J647M2S1-7Vk 982 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNIWPPTFGQGTKLEIK
J647M2S1-9Vk 983 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-10Vk 984 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTFPPTFGQGTKLEIK
J652M2S1-13Vk 985 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J652M2S1-14Vk 986 DIQMTQSPSSLSASVGDRVTITCRASQDISNVLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-15Vk 987 DIQMTQSPSSLSASVGDRVTITCRASQDIYKYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTMPPTFGQGTKLEIK
J652M2S1-17Vk 988 DIQMTQSPSSLSASVGDRVTITCRASQEIFSYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNMGPPTFGQGTKLEIK
J652M2S1-18Vk 989 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTQPPTFGQGTKLEIK
J652M2S1-1Vk 990 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTWPPTFGQGTKLEIK
J652M2S1-22Vk 991 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTRPPTFGQGTKLEIK
J652M2S1-23Vk 992 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTFPPTFGQGTKLEIK
J652M2S1-25Vk 993 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTRPPTFGQGTKLEIK
J652M2S1-26Vk 994 DIQMTQSPSSLSASVGDRVTITCRASQDINNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J652M2S1-27Vk 995 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYASGLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTWPPTFGQGTKLEIK
J652M2S1-28Vk 996 DIQMTQSPSSLSASVGDRVTITCRASQDISRYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTQPPTFGQGTKLEIK
J652M2S1-29Vk 997 DIQMTQSPSSLSASVGDRVTITCRASQDIATYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK
J652M2S1-31Vk 998 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTFPPTFGQGTKLEIK
J652M2S1-33Vk 999 DIQMTQSPSSLSASVGDRVTITCRASQRIGNYLNWYQQK
PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-34Vk 1000 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNSQPPTFGQGTKLEIK
J652M2S1-35Vk 1001 DIQMTQSPSSLSASVGDRVTITCRASQDIANYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-37Vk 1002 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTFPPTFGQGTKLEIK
J652M2S1-38Vk 1003 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTQPPTFGQGTKLEIK
J652M2S1-3Vk 1004 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTPPPTFGQGTKLEIK
J652M2S1-40Vk 1005 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-41Vk 1006 DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTRPPTFGQGTKLEIK
J652M2S1-42Vk 1007 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTPPPTFGQGTKLEIK
J652M2S1-45Vk 1008 DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNMWPPTFGQGTKLEIK
J652M2S1-47Vk 1009 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK
J652M2S1-48Vk 1010 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-49Vk 1011 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK
J652M2S1-51Vk 1012 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTRPPTFGQGTKLEIK
J652M2S1-52Vk 1013 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNMRPPTFGQGTKLEIK
J652M2S1-53Vk 1014 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-55Vk 1015 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTGPPTFGQGTKLEIK
J652M2S1-56Vk 1016 DIQMTQSPSSLSASVGDRVTITCRASQNINNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK
J652M2S1-57Vk 1017 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTPPPTFGQGTKLEIK
J652M2S1-61Vk 1018 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTVPPTFGQGTKLEIK
J652M2S1-62Vk 1019 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSKLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNIFPPTFGQGTKLEIK
J652M2S1-64Vk 1020 DIQMTQSPSSLSASVGDRVTITCRASQGIYNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-67Vk 1021 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-69Vk 1022 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTGPPTFGQGTKLEIK
J652M2S1-6Vk 1023 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTPPPTFGQGTKLEIK
J652M2S1-71Vk 1024 DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTWPPTFGQGTKLEIK
J652M2S1-73Vk 1025 DIQMTQSPSSLSASVGDRVTITCRASQDIWKYLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTLPPTFGQGTKLEIK
J652M2S1-75Vk 1026 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTWPPTFGQGTKLEIK
J652M2S1-77Vk 1027 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTPPPTFGQGTKLEIK
J652M2S1-78Vk 1028 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNAPPPTFGQGTKLEIK
J652M2S1-79Vk 1029 DIQMTQSPSSLSASVGDRVTITCRASQDIYKFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-80Vk 1030 DIQMTQSPSSLSASVGDRVTITCRASQDIFNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-82Vk 1031 DIQMTQSPSSLSASVGDRVTITCRASQDISNTLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTLPPTFGQGTKLEIK
J652M2S1-84Vk 1032 DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J652M2S1-86Vk 1033 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNMPPPTFGQGTKLEIK
J652M2S1-87Vk 1034 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTVPPTFGQGTKLEIK
J652M2S1-8Vk 1035 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYFTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGNTQPPTFGQGTKLEIK
J652M2S1-90Vk 1036 DIQMTQSPSSLSASVGDRVTITCRASQDISKFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYYCQQGNTRPPTFGQGTKLEIK
J652M2S1-91Vk 1037 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTFPPTFGQGTKLEIK
J652M2S1-92Vk 1038 DIQMTQSPSSLSASVGDRVTITCRASQDIYNVLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGITLPPTFGQGTKLEIK
J652M2S1-93Vk 1039 DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTWPPTFGQGTKLEIK
J652M2S1-95Vk 1040 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTQPSTFGQGTKLEIK
J652M2S1-9Vk 1041 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J662M2S3-13Vk 1042 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNSWPPTFGQGTKLEIK
J662M2S3-15Vk 1043 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J662M2S3-21Vk 1044 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTWPPTFGQGTKLEIK
J662M2S3-22Vk 1045 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTWPPTFGQGTKLEIK
J662M2S3-34Vk 1046 DIQMTQSPSSLSASVGDRVTITCRASQDIYDVLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYYCQQGITLPPTFGQGTKLEIK
J662M2S3-3Vk 1047 DIQMTQSPSSLSASVGDRVTITCRASQDIENYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J662M2S3-41Vk 1048 DIQMTQSPSSLSASVGDRVTITCRASQNIENFLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTWPPTFGQGTKLEIK
J662M2S3-56Vk 1049 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTPPPTFGQGTKLEIK
J662M2S3-64Vk 1050 DIQMTQSPSSLSASVGDRVTITCRASQDIASYLNWYQQK
PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J662M2S3-78Vk 1051 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK
PGKVPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL
QPEDFATYFCQQGNTQPPTFGQGTKLEIK
J662M2S3-84Vk 1052 DIQMTQSPSSLSASVGDRVTITCRASQNIYNVLNWYQQK
PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL
QPEDFATYFCQQGNTMPPTFGQGTKLEIK

TABLE 29
Amino acid residues observed in affinity matured hMAK-199 antibodies
MAK199 Heavy chain variable region (SEQ ID NO: 1077)
MAK199VH.2a 1234567890123456789012345678901234567890123456789012a345678901
EIQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWINTYTGEPTYAD
 V                           ND  II                   N K S  Q
                             AH   T                   S V H
                             ST   Q                     Q N
                             RS   S                     R M
                             DQ   G                     L K
                             KK   A                     S A
                             P    V                     N R
                             Q                          I Q
                             M                          D D
                             G                          A
                             E
34567890123456789012abc345678901234567890abcdefg12345678901234
DFKGRFTFTLDTSTSTAYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQGTTVTVSS
GLT  V M T                      Y   RLFNPMDASENT
K Q                                 NYMKVEAEM SR
                                     IRSSAEMN CC
                                     VSRARSD  H
                                     CWL IMG  D
                                      QP QII  I
                                      VF GPQ  F
                                      ND D P  V
                                      GM   N  L
                                      CA   L  A
                                           H
Mak199 Light chain variable region (SEQ ID NO: 1078)
Mak199Vk.1a 1234567890123456789012345678901234567890123456789012345678901
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKTVKLLIYYTSRLQSGVPSR
                           N YQV          AP     FA L
                           E ESF          V      N  K
                           H AKT                    G
                           G TT
                           V WH
                           R GD
                           A NR
                             F
                             C
2345678901234567890123456789012345678901234567
FSGSGSGTDYTLTISSLQPEDFATYFCQQGNTLPPTFGQGTKLEIK
         F               Y    ISW T
                               MQ S
                               IP A
                               AM
                               RR
                                F
                                G
                                V
                                Y
                                A

TABLE 30
Individual hMAK-199 VII sequences from converted clones
Protein Sequence
region SEQ ID NO: 123456789012345678901234567890
J662M2S3 1053 EVQLVQSGAEVKKPGASVKVSCKASGYTFA
#10 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
10 VH of SEQ ID
NO.: 1053
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
10 VH of SEQ ID
NO.: 1053
J662M2S3# CDR-H3 Residues 99-112 RASQDISQYLN
10 VH of SEQ ID
NO.: 1053
J662M2S3# 1054 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
13 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKLQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFNTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
13 VH of SEQ ID
NO.: 1054
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKLQG
13 VH of SEQ ID
NO.: 1054
J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD
13 VH of SEQ ID
NO.: 1054
J662M2S3# 1055 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
15 VH NYGIIWVRQAPGQGLEWMGWINTYTGVPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFNTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
15 VH of SEQ ID
NO.: 1055
J662M2S3# CDR-H2 Residues 50-66 WINTYTGVPTYAQKFQG
15 VH of SEQ ID
NO.: 1055
J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD
15 VH of SEQ ID
NO.: 1055
J662M2S3# 1056 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
16 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFNTVAVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
16 VH of SEQ ID
NO.: 1056
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
16 VH of SEQ ID
NO.: 1056
J662M2S3# CDR-H3 Residues 99-112 KLFNTVAVTDNAMD
16 VH of SEQ ID
NO.: 1056
J662M2S3# 1057 EVQLVQSGAEVKKPGASVKVSCKASGYTFR
21 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTVDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
21 VH of SEQ ID
NO.: 1057
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
21 VH of SEQ ID
NO.: 1057
J662M2S3# CDR-H3 Residues 99-112 KLFTTVDVTDNAMD
21 VH of SEQ ID
NO.: 1057
J662M2S3# 1058 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
34 VH NYGINWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKFRNTVAVTDYAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIN
34 VH of SEQ ID
NO.: 1058
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
34 VH of SEQ ID
NO.: 1058
J662M2S3# CDR-H3 Residues 99-112 KFRNTVAVTDYAMD
34 VH of SEQ ID
NO.: 1058
J662M2S3# 1059 EVQLVQSGAEVKKPGASVKVSCKASGYTFR
36 VH NYGITWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIT
36 VH of SEQ ID
NO.: 1059
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
36 VH of SEQ ID
NO.: 1059
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
36 VH of SEQ ID
NO.: 1059
J662M2S3# 1060 EVQLVQSGAEVKKPGASVKVSCKASGYTFA
45 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
45 VH of SEQ ID
NO.: 1060
J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG
45 VH of SEQ ID
NO.: 1060
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
45 VH of SEQ ID
NO.: 1060
J662M2S3# 1061 EVQLVQSGAEVKKPGASVKVSCKASGYTFS
58 VH NYGINWVRQAPGQGLEWMGWINTYTGQPSY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYYCARKLFKTEAVTDYAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGIN
58 VH of SEQ ID
NO.: 1061
J662M2S3# CDR-H2 Residues 50-66 WINTYTGQPSYAQKFQG
58 VH of SEQ ID
NO.: 1061
J662M2S3# CDR-H3 Residues 99-112 KLFKTEAVTDYAMD
58 VH of SEQ ID
NO.: 1061
J662M2S3# 1062 EVQLVQSGAEVKKPGASVKVSCKASGYTFN
72 VH NYGIIWVRQAPGQGLEWMGWINTYSGKPTY
AQKFQGRVTMTTDTSTSTAYMELSSLRSED
TAVYFCARKLFTTMDVTDNAMDYWGQGTTV
TVSS
J662M2S3# CDR-H1 Residues 31-35 NYGII
72 VH of SEQ ID
NO.: 1062
J662M2S3# CDR-H2 Residues 50-66 WINTYSGKPTYAQKFQG
72 VH of SEQ ID
NO.: 1062
J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD
72 VH of SEQ ID
NO.: 1062

TABLE 31
Individual hMAK-199 clones VL sequences
Protein Sequence
region SEQ ID NO: 123456789012345678901234567890
J662M2S3# 1063 DIQMTQSPSSLSASVGDRVTITCRASQDIS
10 VL QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#10 CDR-L1 Residues 24-34 RASQDISQYLN
VL of SEQ ID
NO.: 1063
J662M2S3#10 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1063
J662M2S3#10 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 1063
J662M2S3#13 1064 DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNSWPPTFGQGTKLEIK
J662M2S3#13 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 1064
J662M2S3#13 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1064
J662M2S3#13 CDR-L3 Residues 89-97 QQGNSWPPT
VL of SEQ
ID NO.: 1064
J662M2S3#15 1065 DIQMTQSPSSLSASVGDRVTITCRASQDIY
VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#15 CDR-L1 Residues 24-34 RASQDIYNYLN
VL of SEQ ID
NO.: 1065
J662M2S3#15 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1065
J662M2S3#15 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 1065
J662M2S3#16 1066 DIQMTQSPSSLSASVGDRVTITCRASQDIE
VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#16 CDR-L1 Residues 24-34 RASQDIENYLN
VL of SEQ ID
NO.: 1066
J662M2S3#16 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1066
J662M2S3#16 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 1066
J662M2S3#21 1067 DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#21 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 1067
J662M2S3#21 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1067
J662M2S3#21 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 1067
J662M2S3#34 1068 DIQMTQSPSSLSASVGDRVTITCRASQDIY
VL DVLNWYQQKPGKAPKLLIYYASRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYYCQQ
GITLPPTFGQGTKLEIK
J662M2S3#34 CDR-L1 Residues 24-34 RASQDIYDVLN
VL of SEQ ID
NO.: 1068
J662M2S3#34 CDR-L2 Residues 50-56 YASRLQS
4 VL of SEQ ID
NO.: 1068
J662M2S3#34 CDR-L3 Residues 89-97 QQGITLPPT
VL of SEQ
ID NO.: 1068
J662M2S3#36 1069 DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#36 CDR-L1 Residues 24-34 RASQDISNYLN
VL of SEQ ID
NO.: 1069
J662M2S3#36 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1069
J662M2S3#36 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 1069
J662M2S3#45 1070 DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTWPPTFGQGTKLEIK
J662M2S3#45 CDR-L1 Residues 24-34 RASQDISQYLN
VL of SEQ ID
NO.: 1070
J662M2S3#45 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1070
J662M2S3#45 CDR-L3 Residues 89-97 QQGNTWPPT
VL of SEQ
ID NO.: 1070
J662M2S3#58 1071 DIQMTQSPSSLSASVGDRVTITCRASQNIY
VL NVLNWYQQKPGKAPKLLIYYASRLQSGVPS
RFSGSGSGTDFTLTISSLQPEDFATYFCQQ
GNTMPPTFGQGTKLEIK
J662M2S3#58 CDR-L1 Residues 24-34 RASQNIYNVLN
VL of SEQ ID
NO.: 1071
J662M2S3#58 CDR-L2 Residues 50-56 YASRLQS
VL of SEQ ID
NO.: 1071
J662M2S3#58 CDR-L3 Residues 89-97 QQGNTMPPT
VL of SEQ
ID NO.: 1071
J662M2S3#72 1072 DIQMTQSPSSLSASVGDRVTITCRASQDIS
VL NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS
RFSGSGSGTDYTLTISSLQPEDFATYFCQQ
GNTQPPTFGQGTKLEIK
J662M2S3#72 CDR-L1 Residues 24-34 RASQDISNFLN
VL of SEQ ID
NO.: 1072
J662M2S3#72 CDR-L2 Residues 50-56 YTSRLQS
VL of SEQ ID
NO.: 1072
J662M2S3#72 CDR-L3 Residues 89-97 QQGNTQPPT
VL of SEQ
ID NO.: 1072

TABLE 32
hMAK199 affinity matured scFv clones converted to full length IgG
ScFv Full length IgG
clone name HC plasmid LC plasmid (protein) name
J662M2S3#10 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM1
J662M2S3#10 M2S3#10
J662M2S3#13 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM2
J662M2S3#13 M2S3#13
J662M2S3#15 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM3
J662M2S3#15 M2S3#15
J662M2S3#16 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM4
J662M2S3#16 M2S3#16
J662M2S3#21 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM5
J662M2S3#21 M2S3#21
J662M2S3#34 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM6
J662M2S3#34 M2S3#34
J662M2S3#36 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM7
J662M2S3#36 M2S3#36
J662M2S3#45 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM8
J662M2S3#45 M2S3#45
J662M2S3#58 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM9
J662M2S3#58 M2S3#58
J662M2S3#72 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM10
J662M2S3#72 M2S3#72

TABLE 33
hMAK199 affinity matured full length IgG
IgG Name EC50 in hTNFa ELISA(nM)
hMAK199-AM1 0.016
hMAK199-AM2 0.016
hMAK199-AM3 0.019
hMAK199-AM4 0.050
hMAK199-AM5 0.078
hMAK199-AM6 0.035
hMAK199-AM7 0.100
hMAK199-AM8 0.219
hMAK199-AM9 0.032
hMAK199-AM10 0.014

TABLE 34
hu TNF neutralization rhesus TNF neutralization
IgG Name IC50 (nM) IC50 (nM)
hMAK199-AM1 0.054 0.012
hMAK199-AM2 0.029 0.010
hMAK199-AM3 0.051 0.019
hMAK199-AM4 0.028 0.005
hMAK199-AM5 0.087 0.020
hMAK199-AM6 0.033 0.004
hMAK199-AM7 0.095 0.051
hMAK199-AM8 0.247 0.204
hMAK199-AM9 0.163 0.089
hMAK199-AM10 0.048 0.034

TABLE 35
Reagent for Biacore Analyses
Antigen Vendor Designation Vendor Catalog #
TNFα Recombinant Human TNF- R&D 210-TA
α/TNFSF1A systems

BIACORE Methods:

The BIACORE assay (Biacore, Inc. Piscataway, N.J.) determines the affinity of binding proteins with kinetic measurements of on-rate and off-rate constants. Binding of binding proteins to a target antigen (for example, a purified recombinant target antigen) is determined by surface plasmon resonance-based measurements with a Biacore® 1000 or 3000 instrument (Biacore® AB, Uppsala, Sweden) using running HBS-EP (10 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM EDTA, and 0.005% surfactant P20) at 25° C. All chemicals are obtained from Biacore® AB (Uppsala, Sweden) or otherwise from a different source as described in the text. For example, approximately 5000 RU of goat anti-mouse IgG, (Fcγ), fragment specific polyclonal antibody (Pierce Biotechnology Inc, Rockford, Ill., US) diluted in 10 mM sodium acetate (pH 4.5) is directly immobilized across a CM5 research grade biosensor chip using a standard amine coupling kit according to manufacturer's instructions and procedures at 25 μg/ml. Unreacted moieties on the biosensor surface are blocked with ethanolamine. Modified carboxymethyl dextran surface in flowcell 2 and 4 is used as a reaction surface. Unmodified carboxymethyl dextran without goat anti-mouse IgG in flow cell 1 and 3 is used as the reference surface. For kinetic analysis, rate equations derived from the 1:1 Langmuir binding model are fitted simultaneously to association and dissociation phases of all eight injections (using global fit analysis) with the use of Biaevaluation 4.0.1 software. Purified antibodies are diluted in HEPES-buffered saline for capture across goat anti-mouse IgG specific reaction surfaces. Antibodies to be captured as a ligand (25 μg/ml) are injected over reaction matrices at a flow rate of 5 μl/minute. The association and dissociation rate constants, kon (M−1s−1) and koff (s−1), are determined under a continuous flow rate of 25 μl/minute. Rate constants are derived by making kinetic binding measurements at different antigen concentrations ranging from 10-200 nM. The equilibrium dissociation constant (M) of the reaction between antibodies and the target antigen is then calculated from the kinetic rate constants by the following formula: KD=koff/kon. Binding is recorded as a function of time and kinetic rate constants are calculated. In this assay, on-rates as fast as 106 M−1s−1 and off-rates as slow as 10−6 s−1 can be measured.

The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.

L929 cells are grown to a semi-confluent density and harvested using 0.25% trypsin (Gibco #25300). The cells are washed with PBS, counted and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells are seeded in a 96-well plate (Costar #3599) at a volume of 100 μL and 5E4 cells/well. The binding proteins and control IgG are diluted to a 4× concentration in assay media and serial 1:4 dilutions are performed. The huTNF-α is diluted to 400 pg/mL in assay media. Binding protein sample (200 μL) is added to the huTNF-α (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.

The binding protein/human TNF-α solution is added to the plated cells at 100 μL for a final concentration of 100 pg/mL huTNF-α and 150 nM-0.0001 nM binding protein. The plates are incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL is removed from the wells and 10 μL of WST-1 reagent (Roche cat #11644807001) is added. Plates are incubated under assay conditions for 3.5 hours. The plates are read at OD 420-600 nm on a Spectromax 190 ELISA plate reader.

The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.

A patient requiring treatment with a TNF-α binding protein may have a disease with immune and inflammatory elements, such as autoimmune diseases, particularly those assocated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.

Administration of the TNF-α binding protein may occur by subcutaneous injection. If the patient has rheumatoid arthritis, psoratic arthritis, or ankylosing spondyitis, the patient may receive 40 mg every other week as a starting dose and 40 mg every week, if necessary to achieve treatment goals. If the patient has juvenile idiopathic arthritis and weighs from 15 kg to <30 kg, the patient may receive 20 mg every other week, and if ≧30 kg, 40 mg every other week. If the patient has Crohn's disease, the patient may receive an initial dose of 160 mg (four 40 mg injections in one day or two 40 mg injections per day for two consecutive days) followed by 80 mg two weeks later, and another two weeks later begin a maintenance dose of 40 mg every other week. If the patient has plaque psoriasis, the patient may receive an 80 mg initial dose, followed by 40 mg every other week starting one week after initial dose.

The binding protein may be provided in a single-use prefilled pen (40 mg/0.8 mL), a single-use prefilled glass syringe (40 mg/0.8 mL or 20 mg/0.4 mL).

The contents of all cited references (including literature references, patents, patent applications, and websites) that are cited throughout this application are hereby expressly incorporated by reference in their entirety, as are the references cited therein. The practice disclosed herein will employ, unless otherwise indicated, conventional techniques of immunology, molecular biology and cell biology, which are well known in the art.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.

Hsieh, Chung-ming, Kutskova, Yuliya, Zhong, Suju, Clabbers, Anca, Benatuil, Lorenzo, Perez, Jennifer, Memmott, John, Goodreau, Carrie

Patent Priority Assignee Title
10988543, Nov 11 2015 OPI VI - IP HOLDCO LLC Humanized anti-tumor necrosis factor alpha receptor 2 (anti-TNFR2) antibodies and methods of use thereof to elicit an immune response against a tumor
Patent Priority Assignee Title
5231024, Sep 13 1986 BASF Aktiengesellschaft Monoclonal antibodies against human tumor necrosis factor (TNF), and use thereof
5624821, Mar 18 1987 SB2 INC Antibodies with altered effector functions
5648260, Mar 18 1987 SB2 INC DNA encoding antibodies with altered effector functions
7612181, Aug 19 2005 AbbVie Inc Dual variable domain immunoglobulin and uses thereof
8735546, Aug 03 2010 AbbVie Inc Dual variable domain immunoglobulins and uses thereof
8779101, Mar 05 2009 AbbVie, Inc. IL-17 binding proteins
8835610, Mar 05 2009 AbbVie Inc IL-17 binding proteins
8877194, Dec 08 2010 AbbVie Inc TNF-α binding proteins
8999331, Oct 24 2011 AbbVie Inc Immunobinders directed against sclerostin
9481735, Mar 05 2009 AbbVie Inc. IL-17 binding proteins
9481736, Mar 05 2009 AbbVie, Inc. IL-17 binding proteins
9493560, Aug 03 2010 AbbVie Inc. Dual variable domain immunoglobulins and uses thereof
20060024308,
20090239259,
20090311253,
20100266531,
20110250130,
20120034160,
20120230911,
20130171096,
20140079705,
20140161804,
20140170152,
20140219912,
20140220019,
20140234208,
20140271457,
20140335564,
20140343267,
20140348834,
20140348856,
20140356909,
WO2004050683,
WO2005014650,
WO2006119107,
WO2008061013,
WO2008115732,
WO2008133722,
WO2009047356,
WO2009091912,
WO2009149189,
WO2010102251,
WO2011059755,
WO2011127141,
WO2012018790,
WO9729131,
WO2004063335,
WO2012078878,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 24 2012AbbVie Inc.(assignment on the face of the patent)
Dec 03 2012HSIEH, CHUNG-MINGAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 03 2012BENATUIL, LORENZOAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 03 2012KUTSKOVA, YULIYAAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 03 2012PEREZ, JENNIFERAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 03 2012CLABBERS, ANCAAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 04 2012MEMMOTT, JOHNAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 04 2012ZHONG, SUJUAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Dec 04 2012GOODREAU, CARRIEAbbVie IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0299460042 pdf
Date Maintenance Fee Events
Jun 21 2021REM: Maintenance Fee Reminder Mailed.
Dec 06 2021EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 31 20204 years fee payment window open
May 01 20216 months grace period start (w surcharge)
Oct 31 2021patent expiry (for year 4)
Oct 31 20232 years to revive unintentionally abandoned end. (for year 4)
Oct 31 20248 years fee payment window open
May 01 20256 months grace period start (w surcharge)
Oct 31 2025patent expiry (for year 8)
Oct 31 20272 years to revive unintentionally abandoned end. (for year 8)
Oct 31 202812 years fee payment window open
May 01 20296 months grace period start (w surcharge)
Oct 31 2029patent expiry (for year 12)
Oct 31 20312 years to revive unintentionally abandoned end. (for year 12)