An acidic aqueous solution containing a chelating agent and an acid, wherein the chelating agent is glutamic acid N,N-diacetic acid (GLDA) or a salt thereof, and wherein the amount of GLDA or the salt thereof is at least 10 wt %, based on the weight of the aqueous solution, and to the use thereof as an oilfield chemical, in descaling processes, or in processes in which highly concentrated aqueous acids are used, such as cleaning processes or plating processes.
|
11. A process comprising cleaning, plating or descaling with an acidic aqueous solution containing a chelating agent and an acid,
wherein the chelating agent is glutamic acid N,N-diacetic acid (GLDA) or a salt thereof and is dissolved in the acidic aqueous solution,
wherein the amount of GLDA or the salt thereof is at least 10 and up to 60 wt %, based on the weight of the aqueous solution, and
wherein the acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, lactic acid, malic acid, tartaric acid, maleic acid, boric acid, hydrogen sulfide, and a mixture of two or more of these acids.
22. An acidic aqueous solution containing a chelating agent, an acid, and an additive,
wherein the chelating agent is glutamic acid N,N-diacetic acid (GLDA) or a salt thereof and is dissolved in the acidic aqueous solution,
wherein the amount of GLDA or the salt thereof is at least 10 and up to 60 wt %, based on the weight of the aqueous solution, and
wherein the acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, lactic acid, malic acid, tartaric acid, maleic acid, boric acid, hydrogen sulfide, and a mixture of two or more of these acids and wherein the additive is selected from the group consisting of surfactants, builders, wetting agents, emulsifiers, and bleaching agents.
1. A process of using an acidic aqueous solution in an oil field in completion or stimulation, the process comprising at least one of acidizing, fracturing or descaling with the acidic aqueous solution,
wherein the acidic aqueous solution contains a chelating agent and an acid,
wherein the chelating agent is glutamic acid N,N-diacetic acid (GLDA) or a salt thereof and is dissolved in the acidic aqueous solution,
wherein the amount of GLDA or the salt thereof is at least 10 and up to 60 wt %, based on the weight of the aqueous solution, and
wherein the acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, lactic acid, malic acid, tartaric acid, maleic acid, boric acid, hydrogen sulfide, and a mixture of two or more of these acids.
3. The process of
5. The process of
7. The process of
12. The process of
14. The process of
16. The process of
20. The process of
24. The acidic aqueous solution of
25. The acidic aqueous solution of
|
This application is the U.S. National Phase of PCT/EP2008/063618 filed on Oct. 10, 2008 and claims the benefit of U.S. Provisional Application No. 61/019,913 filed on Jan. 9, 2008.
The present invention relates to acidic aqueous solutions containing a chelating agent and an acid and the use thereof.
Acidic aqueous solutions containing a chelating agent and their use in oil well stimulation are known from, e.g., SPE 63242, W. W. Frenier et al., “Use of Highly Acid-Soluble Chelating Agents in Well Stimulation Services”, 2000 SPE Annual Technical Conference, Dallas Tex., Oct. 1-4, 2000, which discloses stimulation acids that can be used in oil field chemical treatments to prevent precipitation of solids as the acid spends on the formation being treated and to prevent and remove scale. The acidic aqueous solutions disclosed contain, e.g., ethylenediamine tetraacetic acid (EDTA), hydroxyethyl ethylenediamine triacetic acid (HEDTA) or nitrilotriacetic acid (NTA) combined with hydrochloric acid. It is said that EDTA has a relatively low solubility in hydrochloric acid, but that NTA and HEDTA are more readily soluble and control precipitation of iron better.
U.S. 2007/281868 discloses acidic treatment fluids for treating subterranean formations. The fluids can comprise optional chelating agents such as EDTA or GLDA. However, this document neither provides any disclosure as to the amount of chelating agent to be added to the fluids, nor acknowledges the different solubilities of the several chelating agents in acidic fluids.
However, there is a need in the art for acidic aqueous solutions containing a chelating agent and an (other) acid that have a higher chelating agent content and a more acidic pH wherein the chelating agent remains in the dissolved state during storage and transport.
It was surprisingly found that glutamic acid N,N-diacetic acid (GLDA) and the salts thereof have a higher solubility in aqueous acids over the whole of the concentration range these aqueous acids are available in than other chelating agents like NTA and HEDTA and that they remain dissolved in aqueous solutions having a more acidic pH besides.
The present invention provides acidic aqueous solutions containing a chelating agent and an acid wherein the chelating agent is glutamic acid N,N-diacetic acid or a salt thereof and wherein the amount of GLDA or the salt thereof is at least 10 wt %, based on the weight of the aqueous solution.
It has been found that compared to the other chelating agents, glutamic acid N,N-diacetic acid (GLDA), a biodegradable chelating agent, is highly soluble in a broad range of aqueous acids, such as aqueous hydrochloric acid, aqueous formic acid, and aqueous acetic acid.
The new solutions may be applicable in, e.g., acidizing, a process currently used to ensure increased production of an oil source by acid digestion of the smaller channels in oil formation for better oil flow. Currently, oil companies use solutions of NTA in aqueous HCl. The chelating agent has a dual function; it complexes iron released in the formation and it prevents the (re)precipitation of calcium that dissolves due to the use of the acid.
In its application as an oil field chemical, the acidic aqueous solution of the invention is capable of preventing iron precipitates and removing scale. Scale in general is a calcium, barium or strontium salt, like calcium carbonate or barium sulfate. The acidic aqueous solutions of the invention are particularly suitable for removing a calcium carbonate scale. Additionally, the acidic aqueous solution functions as a dissolution agent of carbonate formations in the well.
Accordingly, the present invention also relates to the use of the above solutions containing GLDA and another acid as an oil field chemical.
In this application, oil field chemical means a chemical used in the oil field industry such as in completions and stimulation by acidizing, fracturing, and descaling.
Additionally, the present invention also relates to the use of the above aqueous acidic solutions in processes, such as cleaning processes or plating processes, in which highly concentrated aqueous acids are used, for instance industrial cleaning, electroplating, and electroless plating.
Also the invention relates to the use of the above aqueous acidic solutions in descaling processes in industries other than the oil field industry.
It should be noted that JP2006/183079 discloses in Example 4 an electrolytic bath for bismuth plating containing both N,N-dicarboxymethyl L-glutamic acid and ethane sulfonic acid, as well as a respectable amount of bismuth-containing components. The amount of N,N-dicarboxymethyl L-glutamic acid in this Example 4 is 3 wt % and for the several solutions in the other Examples of the document wherein the chelating agent is not GLDA, the amount of chelating agent in the acidic aqueous solution is always below 10 wt %.
It should additionally be noted that JP 2006/117980, also related to bismuth plating, discloses in Example 17 the preparation of an acidic aqueous solution containing 10.1 g/L of GLDA, which corresponds to an acidic aqueous solution comprising about 1 wt % of GLDA. Further, this document neither discloses any acidic aqueous solution at all containing more than 10 wt % of a chelating agent, nor offers any disclosure regarding the solubility of chelating agents in acidic aqueous solutions at all.
Finally, JP 2004/315412 discloses a hydrogen-peroxide composition that contains (A) hydrogen peroxide, (B) inter alia, glutamic acid diacetates, (C) water, and (D) a compound chosen from phosphoric, citric, and hydroxyethane diphosphonic acid. In the Examples, compound (B) is used in an amount of only 0.1 wt %.
It is understood that an acidic solution additionally containing bismuth or any other metal is not suitable for use in oil well stimulation or cleaning processes and that bismuth is the least preferred metal in a plating process. Additionally, a person skilled in the art would not use a composition comprising hydrogen peroxide as a chemical in oil field chemistry or plating.
In consequence, in one embodiment the acidic aqueous solutions of the present invention do not contain a respectable amount of bismuth; preferably, they are substantially free of such metal. Also in a preferred embodiment, depending on the intended use of the solutions, they are substantially free of hydrogen peroxide.
If the solutions of the present invention are used for a plating process, in a preferred embodiment they contain aluminum-, nickel- or copper-containing components.
It has been found that the acidic aqueous solutions of the present invention have a better iron binding capacity than the state of the art acidic aqueous solutions containing a chelating agent. Also, the aqueous solutions of the present invention can have a more acidic pH, as GLDA will remain soluble even at a very acidic pH and in high concentrations. The combined low pH and high chelating agent content will give a combined higher iron binding capacity and digestion of oil formation and an improved scale prevention and removal besides.
In a preferred embodiment, the acidic aqueous solutions of the present invention have a pH of below 7, preferably a pH of below 3, and most preferably a pH of below 1. In one embodiment, the pH is above −5, preferably above −3, even more preferably above −1, most preferably above 0.
The acid in the acidic aqueous solutions of the present invention may be an acid that can be dissolved in an aqueous solution in a relatively high concentration as well known by a person skilled in the art. In one embodiment, the acid is selected from hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, lactic acid, malic acid, tartaric acid, maleic acid, boric acid, hydrogen sulfide, or a mixture of two or more of these acids. Also precursors of the acids can be used in the invention, an example thereof is ammonium bifluoride, a hydrofluoric acid precursor. Preferably, the acid is not a too expensive acid, such as ethane sulfonic acid. In a still more preferred embodiment, the acid is selected from the group of hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, or a mixture of two or more of these acids.
The acid is preferably present in the acidic aqueous solution in an amount of at least 5 wt %, preferably at least 10 wt %, even more preferably at least 15 wt %, most preferably at least 20 wt %. It is understood that each acid has a different maximum solubility in water; for example, hydrofluoric acid is commercially available in a concentration of 48 wt % in water. Preferably, however, the acid concentration is below 40 wt %, as such aqueous solutions are commercially available at a reasonable price and have proven to be sufficiently effective.
The GLDA is present in the acidic aqueous solution in an amount of at least 10 wt % and up to 60 wt %, based on the weight of the aqueous solution, preferably between 20 and 60 wt %, even more preferably between 30 and 60 wt %, most preferably between 40 and 60 wt %.
The aqueous solution of the invention may additionally contain other additives known to be suitable in the separate applications claimed, such as, e.g., surfactants, builders, wetting agents, emulsifiers, bleaching agents.
Acidic aqueous solutions were made on the basis of 15% acetic acid, 28% acetic acid (both prepared from acetic acid ex Fluka), 15% formic acid, 28% formic acid (both prepared from formic acid ex Fluka), 15% hydrochloric acid and 28% hydrochloric acid (both prepared from 37% HCl ex Fluka), 15% sulfuric acid and 28% sulfuric acid (both prepared from 96% H2SO4 Fluka) 15% phosphoric acid and 28% phosphoric acid (both prepared from 85% H3PO4 Fluka), 15% nitric acid and 28% nitric acid (both prepared from 65% HNO3Fluka).
To the above aqueous acidic solutions several chelating agents were added until the maximum solubility was reached. This was done by adding the chelating agent to the acidic aqueous solution until a saturated solution was achieved (which is established visually) and, subsequently, stirring for 3 days, after which any solid material present was allowed to settle. Solid material present in the solution could be due to material never having dissolved or to material solidifying during the 3-day stirring of the solution.
The amount of chelating agent of the clear liquid layer was determined by titrating with a metal cation (Cu for EDG and Fe for all other chelating agents), but not in the case of solutions where it was directly clear that the chelating agent was soluble in an amount of less than about 0.5 wt %.
The chelating agents used were the following acids:
The maximum solubility is represented in
The maximum solubility of the chelating agents was determined in the major part of the experiment by using the Fe-TSV method (a method well known in this industry in which Fe(III) ions are added to a known amount of chelate solution and in which the end point of the titration is noticed by the fact that an excess of Fe ions won't be sequestered by the chelate). The solubility of EDG was determined by using the Cu-TSV method (in this method Cu ions are added instead of Fe ions). The determination of the amount of EDG in the clear liquid layer of the aqueous acetic acid solution could not be done by titration with copper, as the buffering capability of acetic acid would hinder such titration. To be able to determine the amount of EDG in the aqueous acetic acid solution, small amounts of EDG were added to the said solution. After the addition of 1% of EDG the solution stayed clear and the addition of 2% of EDG resulted in a turbid mixture in which clearly some EDG was present in the solidified form. Therefore, it was concluded that the solubility of EDG in acetic acid is about 1.5 wt %. The same procedure was followed when determining the solubility of chelating agents in phosphoric acid as these solutions are also hard to titrate; again, there was a stepwise (1 wt % per step) addition of chelating agent to the acid until the chelating agent did not dissolve anymore.
The solubility of MGDA was only tested in a limited number of aqueous acids. MGDA appeared to be reasonably soluble in aqueous 15% HCl solutions in the first instance, but a quite high amount of the chelating agent solidified in the acidic solution 3 days after being added thereto. The same happened with the aqueous solution of DTPA and 15% nitric acid, here as well a significant amount of chelating agent solidified after 3 days.
GLDA actually is even more soluble than was found in the experiments, but the increasing viscosity meant that adding more GLDA to the solution would make further stirring too complicated.
The solubility of HEDTA and EDG in nitric acid cannot be determined as the combination of these chelating agents with nitric acid will lead to a hazardous decomposition, because nitric acid is a potential oxidizing medium.
de Wolf, Cornelia Adriana, LePage, James N., Bemelaar, Johanna Hendrika
Patent | Priority | Assignee | Title |
10815766, | Feb 27 2015 | Schlumberger Technology Corporation | Vertical drilling and fracturing methodology |
10876043, | Apr 28 2018 | PetroChina Company Limited | Chelating agent for reservoir acidification and stimulating injection and its preparation method and application |
11193332, | Sep 13 2018 | Schlumberger Technology Corporation | Slider compensated flexible shaft drilling system |
11203901, | Jul 10 2017 | Schlumberger Technology Corporation | Radial drilling link transmission and flex shaft protective cover |
11407933, | Oct 28 2019 | KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS | Location and orientation control by acid etching process |
11466549, | Jan 04 2017 | Schlumberger Technology Corporation | Reservoir stimulation comprising hydraulic fracturing through extended tunnels |
11486214, | Jul 10 2017 | Schlumberger Technology Corporation | Controlled release of hose |
11840909, | Sep 12 2016 | Schlumberger Technology Corporation | Attaining access to compromised fractured production regions at an oilfield |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 10 2008 | Akzo Nobel Chemicals International B.V. | (assignment on the face of the patent) | / | |||
Apr 28 2010 | LEPAGE, JAMES N | Akzo Nobel N V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024659 | /0598 | |
Apr 29 2010 | DE WOLF, CORNELIA ADRIANA | Akzo Nobel N V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024659 | /0598 | |
May 03 2010 | BEMELAAR, JOHANNA HENDRIKA | Akzo Nobel N V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024659 | /0598 | |
Aug 07 2017 | Akzo Nobel N V | AKZO NOBEL CHEMICALS INTERNATIONAL B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043227 | /0299 | |
Oct 01 2018 | AKZO NOBEL CHEMICALS B V | WILMINGTON TRUST LONDON LIMITED, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047231 | /0001 | |
Oct 01 2018 | Akzo Nobel Surface Chemistry LLC | WILMINGTON TRUST LONDON LIMITED, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047231 | /0001 | |
Oct 01 2018 | STARFRUIT US MERGER SUB 2 LLC | WILMINGTON TRUST LONDON LIMITED, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047231 | /0001 | |
Oct 01 2018 | STARFRUIT US MERGER SUB 1 LLC | WILMINGTON TRUST LONDON LIMITED, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047231 | /0001 | |
Oct 01 2018 | AKZO NOBEL CHEMICALS INTERNATIONAL B V | WILMINGTON TRUST LONDON LIMITED, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047231 | /0001 | |
Jun 01 2019 | AKZO NOBEL CHEMICALS INTERNATIONAL B V | NOURYON CHEMICALS INTERNATIONAL B V | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 050426 | /0671 |
Date | Maintenance Fee Events |
Apr 30 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 31 2020 | 4 years fee payment window open |
May 01 2021 | 6 months grace period start (w surcharge) |
Oct 31 2021 | patent expiry (for year 4) |
Oct 31 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 31 2024 | 8 years fee payment window open |
May 01 2025 | 6 months grace period start (w surcharge) |
Oct 31 2025 | patent expiry (for year 8) |
Oct 31 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 31 2028 | 12 years fee payment window open |
May 01 2029 | 6 months grace period start (w surcharge) |
Oct 31 2029 | patent expiry (for year 12) |
Oct 31 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |