A catheter system utilizing one or more sensors is described. The catheter can be used as part of an embolic coil system, guidewire system, or combined embolic coil/guidewire system where the devices interact with the catheter system. A variable detachment embolic coil system and guidewire system are also described.

Patent
   9808599
Priority
Dec 20 2013
Filed
Dec 19 2014
Issued
Nov 07 2017
Expiry
May 25 2035
Extension
157 days
Assg.orig
Entity
Large
189
267
window open
1. An embolic coil delivery system comprising:
a catheter including a first contact and a second contact;
an embolic coil including two segments separated by a link; the link including a proximal conductive sleeve, a distal conductive sleeve, and a monofilament between the proximal and the distal conductive sleeves;
wherein a circuit is completed when the catheter's first and second contacts are aligned in electrical communication with the link's proximal and distal conductive sleeves, and wherein the monofilament is degradable in response to the circuit being completed such that the two segments of the embolic coil detach from each other in response to the monofilament degrading.
10. An embolic coil delivery system comprising:
a catheter comprising an interior passage;
a distal electrical contact and a proximal electrical contact that are both located within the interior passage of the catheter and near a distal end of the catheter; the distal electrical contact and the proximal electrical contact being in electrical communication with a proximal end of the catheter;
an embolic coil comprising a first coil segment and a second coil segment;
a coil link connected between the first coil segment and the second coil segment; the coil link comprising:
a first coil electrical contact exposed on an outer surface of the coil link;
a second coil electrical contact exposed on an outer surface of the coil link;
a heater connected to the first coil electrical contact and the second coil electrical contact; and,
a filament fixed to a distal portion of the coil link and to a proximal portion of said coil link;
wherein the first coil electrical contact and the second coil electrical contact are spaced apart so as to contact the distal electrical contact and the proximal electrical contact, respectively, simultaneously; and
wherein applying current through the first coil electrical contact, the distal electrical contact, the second coil electrical contact, and the proximal electrical contact increases the temperature of the heater to break the filament and thereby sever the coil link.
2. The embolic coil delivery system of claim 1, wherein the first contact and second contact have opposing polarities.
3. The embolic coil delivery system of claim 1, wherein the link includes a heater.
4. The embolic coil delivery system of claim 3, wherein the heater is a heater coil.
5. The embolic coil delivery system of claim 3, wherein the monofilament passes through the heater.
6. The embolic coil delivery system of claim 3, where a spring is disposed over the monofilament.
7. The embolic coil delivery system of claim 1, further comprising a user interface, wherein a video or audio cue is produced from the user interface when the first contact and the second contact of the catheter are aligned with the proximal conductive sleeve and the distal conductive sleeve of the link.
8. The embolic coil delivery system of claim 1, further comprising a user interface wherein a button of the user interface, once actuated, initiates a detachment sequence to cause the two segments of the embolic coil to detach from each other.
9. The embolic coil delivery system of claim 1, wherein the link includes an insulating sleeve between the proximal and distal conductive sleeves.
11. The embolic coil delivery system of claim 10, wherein the heater is a heater coil.
12. The embolic coil delivery system of claim 11, wherein the heater coil is located within an insulating sleeve.
13. The embolic coil delivery system of claim 10, further comprising a first spring located on a distal end of the coil link and a second spring located on a proximal end of the coil link.
14. The embolic coil delivery system of claim 13, wherein the first spring tapers in a distal direction and the second spring tapers in a proximal direction.
15. The embolic coil delivery system of claim 13, wherein the filament is fixed to the first spring and to the second spring.
16. The embolic coil delivery system of claim 15, wherein the filament is in tension between the first spring and the second spring.
17. The embolic coil delivery system of claim 10, wherein the first coil electrical contact and the second coil electrical contact are both cylindrical sleeves.
18. The embolic coil delivery system of claim 10, further comprising a user interface connected to the delivery system that creates a signal when the first coil electrical contact and the second coil electrical contact are respectively aligned and contacting the distal electrical contact and the proximal electrical contact.

This application claims priority to U.S. Provisional Application Ser. No. 61/919,669 filed Dec. 20, 2013 entitled Device Delivery System, which is hereby incorporated herein by reference in its entirety.

Vessel occlusion is often necessary in a variety of cases including but not limited to treatment of aneurysms, atrial septal defects, patent foramen ovale, left atrial appendage occlusion, patent ductus arteriosis, fistula, arterio-venous malformations, fallopian tube occlusion for the purposes of sterilization, and occlusion in the peripheral vasculature. One method of vessel occlusion involves filling the vessel or malformation or aneurysm with coils for the purposes of embolization. Such coils may be called embolic coils. Typical embolic coil technologies utilize a set length of coil so the coils may be introduced in various stages. If the coil is too short to sufficiently pack the vessel/malformation/aneurysm multiple coils may need to be introduced, which can lengthen procedure time. If the coil is too long for the space there is a danger of the coil protruding out of the vessel/malformation/aneurysm. The use of a variable length detachable coil would allow a precise amount of embolic coil to be placed within the vessel/malformation/aneurysm.

Guidewires are typically used to track a delivery device to a particular target area within the vasculature. Navigation through tortuous anatomy can be difficult. A guidewire that could manipulate its shape within the vasculature to aid in navigation and tracking would thus be beneficial.

A catheter sensor system may be used to interact with an embolic coil in order to detach the embolic coil at one or more points along the coil. The catheter sensor system may also be used with other devices such as a guidewire. The guidewire may bend in response to an impulse conveyed via electrical contact with the one or more catheter sensors.

In one embodiment an embolic coil detachment system comprises a heater and an embolic coil with degradable links between segments of the embolic coil.

In another embodiment an embolic coil detachment system comprises a catheter with electrical contacts and an embolic coil with degradable links between segments of the embolic coil.

In another embodiment an embolic coil detachment system comprises a catheter with electrical contacts and an embolic coil with detachable links between segments of the embolic coil.

In one embodiment an embolic coil includes degradable links between segments of the embolic coil.

In another embodiment an embolic coil includes detachable links between segments of the embolic coil. The detachable links may include a degradable portion.

In another embodiment an embolic coil includes coil segments comprising the same type of coil.

In another embodiment an embolic coil includes coil segments comprising various types of coil.

In another embodiment a guidewire steering system comprises a bimetallic guidewire and a catheter with electrical contacts.

In another embodiment a guidewire steering system comprises a bimetallic guidewire and heater coil.

In another embodiment a combined embolic coil detachment and guidewire steering system comprises a catheter with electric contacts used to interface with an embolic coil and/or guidewire.

In another embodiment a microcatheter includes electrical contacts which interact with devices placed through the microcatheter.

In another embodiment, an embolic chain comprises a plurality of spheres fixed on a monofilament. The spheres can include a hollow lumen filed with a material such as a drug that can be distributed through an aperture to the lumen. The embolic chain can be detached by applying electric current (e.g., from contact within a catheter) between two adjacent spheres, causing the spheres to heat and thereby breaking the monofilament.

In another embodiment, an embolic coil is in electric communication with one terminal of a power supply and a contact on a catheter is in electric communication with another terminal of a power supply. When the catheter's contact aligns with a joint on the embolic coil and the power supply is activated, the joint breaks, releasing a portion of the embolic coil.

In another embodiment, an embolic coil is in electric communication with one terminal of a power supply and a contact on a catheter is in electric communication with another terminal of a power supply. When the power supply is activated, an electrolytically severable joint positioned outside of the catheter is degraded, severing the embolic coil. The catheter is further filled with a non-conducting fluid to prevent any joints still within the catheter from also degrading.

In another embodiment, a catheter includes a heating coil formed by laser cutting a metal hypotube or a thin, flat, metal sheet. Several heating coils can be arranged in overlapping layers within each other, axially in series along the catheter's length, or in parallel, adjacent to each other.

FIG. 1 illustrates an embolic coil used in an embolic coil detachment system.

FIG. 2 illustrates an embolic coil detachment system utilizing the embolic coil of FIG. 1.

FIG. 2a shows the heater of the embolic coil detachment system of FIG. 2.

FIG. 3 illustrates another embolic coil used in an embolic coil detachment system.

FIGS. 4-7 illustrate an embolic coil detachment system utilizing the embolic coil of FIG. 3.

FIG. 8 illustrate another embolic coil detachment system utilizing the embolic coil of FIG. 3.

FIGS. 9-12 illustrate an embolic coil utilizing a detachable link used in an embolic coil detachment system.

FIGS. 13-16 illustrate an embolic coil detachment system utilizing the embolic coil of FIGS. 9-12.

FIGS. 17-20 illustrate a contact that can be used in an embolic coil detachment system.

FIGS. 21-22 illustrate an embolic chain of spheres.

FIG. 23 illustrates a severable joint for an embolic coil.

FIG. 24 illustrates an embolic coil with a plurality of joints that can be severed by electrical contact with a catheter's electrode.

FIG. 25 illustrates a catheter that breaks an electrolytic joint on an embolic coil.

FIG. 26 illustrates a catheter used in a guidewire steering system

FIGS. 27-28 illustrate the catheter from FIG. 26 with a guidewire being delivered through the catheter

FIG. 29 illustrates a catheter used in a combined embolic coil detachment and guidewire steering system

FIG. 30 illustrates the catheter from FIG. 29 used with an embolic coil

FIGS. 31-32 illustrate the catheter from FIG. 29 used with a guidewire

FIGS. 33-34 illustrate a bendable guidewire within the vasculature.

FIG. 35 illustrates a heater coil for a catheter system.

FIG. 36 illustrates a flat, laser cut sheet of material that can be used to form the heater coil of FIG. 35.

FIGS. 37-39 illustrate various configurations of multiple heaters from FIG. 35 within a catheter.

FIG. 40 illustrates another embodiment of an embolic device having a detachable joint.

FIG. 41 illustrates another embodiment of an embolic device having a detachable joint.

FIGS. 42-45 illustrates various components of the detachment system of the embolic device of FIG. 9.

FIG. 46 illustrates another embodiment of an embolic device having a detachable joint.

FIG. 47 illustrates a heater coil of the detachment system of FIG. 46.

FIG. 48 illustrates another embodiment of an embolic device having a detachable joint.

FIGS. 49-50 illustrate another embodiment of an embolic device having a detachable joint.

FIG. 51 illustrates a piston member of the detachment system of the catheter from FIGS. 49-50.

FIG. 52 illustrates another embodiment of an embolic device having a detachable joint.

FIGS. 53-54 illustrate cross sectional views of the detachment system of FIG. 20.

FIG. 55 illustrates another embodiment of an embolic device having a detachable joint.

FIGS. 56-65 illustrate various components of the detachment system from the catheter of FIG. 55.

FIG. 66 illustrates another embodiment of an embolic device having a detachable joint.

FIGS. 67-68 illustrate another embodiment of an embolic device having a detachable joint.

FIGS. 69-70 illustrate another embodiment of an embolic device having a detachable joint.

Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.

Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

U.S. Pat. No. 8,182,506 and US20060200192, which describe a detachment system, are hereby incorporated by reference in their entirety. The user interface described later may utilize the principles mentioned in these references.

Please note with respect to FIGS. 1-8 elements on the left side of the drawings are considered distal relative to the elements on the right side of the drawings (and, consequently, elements on the right side of the drawings are considered proximal relative to the elements on the left side of the drawings).

An embolic coil detachment system includes an embolic coil and a detachment system. FIG. 1 illustrates a coil 10 used in an embolic coil detachment system. The coil 10 includes a plurality of coil segments 12 separated by links 14 between the segments. The links 14 are degradable and, when the links are degraded sufficiently, the coil segment 12 detaches from the rest of coil 10.

A proximal pusher 20 (e.g., an elongated member attached to the coil 10 so as to push the coil 10 out of a catheter) is connected to a proximal end of the coil 10 and may optionally include another link 14 between the proximal-most coil segment and the pusher. In one example, the links 14 of FIG. 1 are thermolytically degradable. Links 14 may be made of a material which has a lower melting point than the material comprising the coil. In one example, a polymer is used for links 14. Though links 14 are shown as being a plurality of strands, a thicker solid link (such as that shown in link 14 of FIG. 3), a single strand, or a tubular member may also be used.

FIG. 2 illustrates a detachment system that can be used with the embolic coil 10 of FIG. 1. The detachment system includes a heater 16 which is located at a distal end of wire track member 18, which is preferably sized to locate the heater 16 near a distal end of a catheter. As previously discussed, the heater 16 can melt or degrade the links 14 to cause detachment between two of the various coil segments 12 from coil 10.

A proximal portion of the wire track member 18 can be located within a passage through pusher 20, thus allowing one to push or pull pusher 20 independently of any movement of wire track member 18. The material for the wire track member 18 could be any variety of metal or polymer including but not limited to stainless steel, nitinol, polyethylene, polyimide, or any combination of such materials. The wire track member 18 preferably includes negative and positive electrical current lines 19 to transfer current to the heater 16. The proximal end of the wire track member 18 can be connected to a battery or voltage source with a positive and negative terminal and a mechanism to selectively activate the power supply.

Heater 16 can be a wire coil and is preferably made of a high electrical resistive material, such as platinum or tantalum. The outer diameter of wire track member 18 and heater 16 are preferably small enough to allow the inner diameter of coil 10 to slide there over, while still fitting within a typical microcatheter. For example, for a microcatheter with a lumen that is about 0.017″, the maximum outer diameter of the coil 10 may be about 0.016″. Assuming a relatively large filar diameter of 0.003″, the wire track member 18 may have an outer diameter less than or equal to about 0.008″. The optimal size of the wire track may be as large as possible while not sacrificing the flexibility of the system. In one example, the wire track member 18 could range from 0.003″ to 0.012″ in outer diameter.

FIG. 2a shows a closer view of the heater 16 and wire track member 18. One of the current lines 19 connects to the proximal part of the heater 16 and another current line 19 connects to the distal part of the heater 16 to provide an outgoing and incoming flow path for the current. In this respect, the current can be selectively applied to the heater 16, generating heat. When the heater 16 is aligned with one of the links 14 of the coil 10, the heater 16 heats the link 14 from an inside of the coil 10, causing the two adjacent coil segments 12 to disconnect from each other.

The coil 10 comprising the coil segments may be made of a radiopaque biocompatible material. In one example it is made from 92/8 ratio platinum/tungsten material. For the coil shown in FIG. 1, the coil segments 12 may be connected with links 14 where the links are a monofilament made of a material such as PET (polyethylene terephthalate), Engage polymer, or PTFE (polytetrafluoroethylene). These monofilament junctions become severed by the heat generated by heater 16 when the junction is aligned correctly with the heater and when the appropriate energy is supplied to the heater. Alternatively, the links may have a tubular form where the heat generated from the heater 16 melts the linkages. In another alternate embodiment, the links 14 can be completely solid (i.e., a filled, cylindrical shape) as seen in FIG. 3.

Pusher 20 may be comprised of a hypotube of similar dimensions to the coil 10 to allow easy tracking over the wire track 18 and easy tracking within the delivery device (e.g., microcatheter). The pusher 20 can be made of a metal such as stainless steel or Nitinol, or a polymer such as polyethylene or polyimide.

FIG. 3 illustrates another coil 11 which can be used in another detachment system. The solid links 15 are shown as being thicker than the monofilament links 14 shown in FIG. 1. The coil links 15 may be interchangeable with the links 14 (i.e. both of the links shown in FIG. 1 and FIG. 3 can be used on a single coil 10, 11) depending on the properties of the coil detachment system. The figures are shown as representations of the coil embodiments and coil detachment system embodiments. Since the links 14 are preferably completely solid (or alternately cylindrical with a hollow passage), it may not be desirable to use them with the wire track member 18 and heater 16 of FIG. 2a. Therefore, it may be desirable to use a heating mechanism via a microcatheter disposed over the coil 11.

FIG. 4 illustrates a microcatheter 22 used in a coil detachment system to check or determine alignment of the embolic coil 11. The detachment system includes a microcatheter 22 with electrical contacts 26 near the distal end of the catheter 22. In FIG. 4 these contacts are shown as a pair of current carrying elements made of any electrically conductive material (one at a more proximal and one at a more distal location). Each of these contacts 26 can be rings extending around the interior circumference of the catheter's inner passage or can be one or more points or arcs that only contact a small portion of the coil 11. Other electrical contacts (a heater coil, electrodes, etc.) can also be used.

The detachment system may be used to not only check the alignment of the embolic coil 11, but initiate a detachment operation if the alignment is correct. For example, the alignment may be determined by measuring a value such as resistance, capacitance, resonant frequency, and/or metal detection between the proximal contact 26A and the distal contact 26. The contacts 26 are connected to a control system at the proximal end of the device via wires 28. The wires 28 extend between the proximal set of contacts 26A to the control system, and the distal set of contacts 26B, back to the control system. The control system can measure the correct alignment (discussed further below), as well as initiate a detachment sequence (i.e. heating to sever the linkage).

FIGS. 5-7 show the catheter 25 of FIG. 4 used to check the appropriate alignment of the embolic coil 26. Since the embolic coil 10 is composed of a series of segments 12 interconnected by links 14, the axial alignment is determined based on the measured values (e.g., resistance) between the two sets of electrical contacts 26.

For example, in FIG. 5, only one portion of the coil segment 12 contacts both the proximal contact 26A and distal contact 26B, allowing measurement of a first resistance value based on the material properties of the coil segment 12. In FIG. 6, linkage 14 contacts the distal contact 26B, while segment 12 contacts the proximal contact 26A, and therefore a second resistance value is measured based on the material properties of link 14. In FIG. 7, the distal contact 26B contacts the linkage 14 and the proximal contact 26A contacts the segment 12, therefore providing a third resistance measurement.

In one example, the desired axial alignment within the catheter 25 is shown in FIG. 6 (e.g., detected by the second resistance value), where degradation of link 14 could be initiated to separate the coil segment 12 from the rest of the coil 11. In one example, when desired alignment is measured, a signal could be relayed to the user (i.e. a light and/or sound on a user interface device). The user could interact with the interface (e.g., press a button) to initiate detachment.

In one example, contacts 26 can also relay heat to sever link 14 when desired. In another example, an alternate heat system (e.g., a heater coil within the catheter 25) coupled to the control system can be used to sever link 14 when desired. Once the user presses the button, detachment is automatically initiated once the proper resistance valued is measured based on the position of the embolic coil 11 relative to the contacts 26. In addition to thermolytic detachment, electrolytic or other detachment mechanism could also be used to sever link 14.

Contacts 26, in addition to measuring a value (e.g., resistance) to check the proper alignment of the coil components, can also transmit or cause heat to initiate detachment via degradation of links 14. For example, the contacts 26 can supply sufficient current to heat up two segments 12 on each side of a link 14, causing the segments 12 melt the link 14. Specifically, the circuit extends between the control system, through one wire 28, through one set of contacts 26, through a portion of the embolic coil (that portion which contacts between the two wires), through the other set of contacts 26, through the other wire 28, and back to the control system. One of the wires 28 can be attached to a positive terminal in a voltage source in the control system, whereas the other wire 28 can be attached to a negative terminal of the voltage source in the control system to complete the circuit. In another embodiment, each of the contacts can be connected to additional wires that selectively cause each of the contacts to themselves generate heat.

FIG. 8 illustrates a catheter 27 similar to the catheter 25 shown in FIG. 4, except the contacts 26C and 26D comprise a parallel plate capacitor. Specifically, contact 26C and 26D are each a plate, arc, circular point shape or similar shape, and are preferably located immediately across from each other within the lumen of the catheter 27. The contacts 26C and 26D are coupled via wires 28 to positive and negative terminals of a control system similar to the one described earlier, allowing capacitance to be measured. Depending on the dielectric constant of the material passing between the parallel contacts 26C and 26D, the capacitance will vary. Thus one capacitance value will be observed for the coil segment 12, while another dielectric constant value will be observed for the link 14, since they are made of different materials. When a particular capacitance value is measured by the control system based on the measured dielectric constant of link 14, a detachment sequence similar to the one described earlier can be initiated.

Please note with respect to FIGS. 9-16 elements on the right side of the drawings are considered distal relative to the elements on the left side of the drawings (and, consequently, elements on the left side of the drawings are considered proximal relative to the elements on the right side of the drawings).

FIG. 9 illustrates a detachment system utilizing a detachable link 30 that connects two adjacent coil segments 12. The detachable link 30 comprises a capsule-like portion containing a degradable element.

FIG. 10 shows a closer view of link 30, while FIG. 11 offers an exploded view of the link 30 shown in FIG. 10. Link 30 includes an insulating sleeve 36 which can be made of any biocompatible non-conductive material. Polymer, such as polyimide, or a ceramic are examples of materials that can be used for the insulating sleeve.

Two conductive cylinders or sleeves 34 and 35 are mated respectively to the proximal and distal ends of insulating sleeve 36 via adhesive or glue. The conductive sleeves 34, 35 are composed of a conductive material, such as a 92/8 ratio platinum/tungsten material.

Heater 40, which can be a coil of wire, spans the area between the proximal and distal conductive sleeves 34, 35, connecting its ends 42 (e.g., ends of its wire or a flared coil portion) to grooves or recesses 44 in each of the sleeves 34 and 35. Since the sleeves 34, 35 are conductive, the current can pass between the two conductive sleeves 34. 35 and through heater 40, causing the heater 40 generate heat. In one example, heater 40 is positioned over insulating sleeve 36 and in another example, heater 40 is located within insulating sleeve 36. In both examples the heater 40 would preferably not have significant contact with the insulating sleeve 36 so as to not dissipate the heat that can build up within heater 40. The heater is preferably made of a biocompatible material which also has high electrical resistance. In one example the heater is made of a 92/8 ratio platinum/tungsten material and is a coil.

Cap 32 is located distal of distal conductive sleeve 35 and is affixed to a distally located coil segment 12. In one example, the cap 32 may also be made of a 92/8 ratio platinum/tungsten material. Another embolic coil segment 12 is affixed proximal to the proximal conductive sleeve 34, and, in one example, the distal coil segment is welded to the cap 32 and the proximal coil segment is welded to the proximal conductive sleeve 34.

Spring 38 is located distal of cap 32, while another spring 37 is located proximal to the proximal conductive sleeve 34 to provide flexible connection points for a monofilament 50. The monofilament wire 50, which can be composed of a polymer (e.g., PTFE or Engage), preferably tied to a proximal part of the proximal spring 37 and a distal part of the distal spring 38, though any type of connection can be used. Preferably there is minimal slack or even some tension in the monofilament 50 when it is tied between the two springs 37, 38.

FIG. 12 shows another embodiment of a detachable link 31 used in a coil detachment system, which is similar to that discussed with regard to FIGS. 10-11, but includes a single spring 46 instead of two springs. Spring 46 spans the entire link 31 and is locate within the heater 40. Instead of the monofilament 50 spanning between the two springs, it extends within and through spring 46. In one example, the monofilament may be tied to a proximal part of spring 46 and the distal coil segment (which connects to distal cap 32). In another example, spring 46 is located externally of the heater 40.

The detachment operations utilizing link 30 or 31 will now be explained. Link 30 (or 31) sits between each embolic coil segment 12. FIG. 13 shows the embolic coil comprised of various embolic coil segments 12 and links 31 (though link 30 could also be used) between said segments. The number of segments 12 and links 31 shown in the figures are for illustrative purposes only. The links 30 include proximal conductive sleeve 34, distal conductive sleeve 35, and heater 40—among other components. The coil is delivered through a microcatheter or delivery device 22.

The delivery device includes contacts 52 and 54, similar to the previously described contacts. The contacts are connected to a control system to polarize the contacts via the wires shown; one contact has a positive polarity and the other has a negative polarity. The contacts may be connected to a control system with a voltage source where one contact is connected to the positive terminal of the voltage source and the other connected to the negative terminal of the voltage source. Alternatively, other voltage sources such as an alternating-current system can be used. As an example, contact 52 has a positive polarity and contact 54 has a negative polarity.

As seen in FIG. 13, when contact 52 aligns with proximal conductive sleeve 34 and contact 54 aligns with distal conductive sleeve 34, the circuit is completed, allowing the current to flow through positive contact 52, through proximal conductive sleeve 34, through heater coil 40, through distal conductive sleeve 35, through contact 54 and back to the control system/voltage source. In one example a user interface may house the control system/voltage source that interfaces with the system described. A visual or audio cue (i.e. a light and/or sound) can be provided when proper alignment between contacts 52, 54 and conductive sleeves 34, 35 is achieved. The user may then depress a button to initiate detachment, depressing the button provides an impulse to the system.

Heater 40 will heat up as current flows through it. Referring to FIG. 11, this heat will initially cause the monofilament wire 50 to stretch, in turn increasing tension between springs 37 and 38. When the springs 37, 38 and the filament 50 reach a sufficient tension, wire 50 will break, resulting in distal cap 32 and distal coil 38 detaching into the vasculature, as seen in FIG. 14. Note, the distal cap 32 is preferably mechanically affixed (e.g., via adhesive) to the distal conductive sleeve 35 to prevent it from detaching into the vasculature on its own. The components proximal to the cap 32 and distal coil (i.e. conductive sleeves 34 and 35, insulating sleeve 36) remain affixed with the remaining proximal embolic coil segments due to the bonding components placed between all the proximal link components, as described earlier.

If another detachment sequence is initiated at another location of the embolic coil, these other components (i.e. distal conductive sleeve 35, insulating sleeve 36, proximal conductive sleeve 34, etc.) will then detach into the vasculature when the next detachment sequence initiates. This sequence is illustrated in FIGS. 13-16. In FIG. 13, the first detachment sequence is initiated, thus separating distal cap 32 and the distal coil segment 12 from the rest of the coil as shown in FIG. 14. In FIG. 15 the coil is pushed until the next detachment zone or link 31 is lined up with the contacts 52, 54. The detachment sequence is then initiated again and the next grouping is then detached as shown in FIG. 16.

Preferably, all the link components are biocompatible, either being comprised of polymers (monofilament 50, insulating sleeve 36) or a biocompatible metal (heater 42, conductive sleeves 35 and 35, springs 37 and 38, cap 32, coil segment 12). For the link embodiment 31 shown in FIG. 12, the heat generated from heater 40 causes the monofilament wire 50 to expand and causes the unitary spring 46 which the wire is housed in to stretch until said wire breaks. Where the distal end of monofilament 50 is attached to the distal embolic coil segment 12, the distal embolic coil segment 12 will then detach.

In another embodiment, another system can be utilized to energize heater 40. This system can be coupled with the same user interface. This parallel system could utilize another set of circuitry to provide heat to heater 40 and promote detachment. In one example, the detachment system provides a cue to the user when the link is aligned appropriate with the contact. The user could then take an action (i.e. press a button on the user interface) which would engage the parallel system to heat heater 40 and detach the coil segment.

In another embodiment no cue is provided to the user when the link is appropriately aligned. Instead, the user may take an action (i.e. press a button on the user interface) when detachment is desired. Then when the link is appropriately aligned the detachment sequence will commence. The heating of heater 40 could, as described earlier, be part of a parallel or integrated system.

The coil detachment systems shown in FIGS. 4-7, 8, 13-16 illustrate a type of intelligent microcatheter, where microcatheter 22 has means near the distal end of the microcatheter to read the embolic coil position via contacts. Other embodiments of the various systems described could utilize a hypotube, smaller microcatheter, or other delivery device delivered through a microcatheter. The coil would be delivered through this hypotube/smaller microcatheter/inner delivery device, where the hypotube/smaller microcatheter/inner delivery device would have the contacts to read the embolic coil position.

FIGS. 17 and 18 show one embodiment of contacts 52, 54 in which the contacts 52, 54 are ring or cylindrically shaped. The contacts 52, 54 can be made of nitinol, spring steel, stainless steel, or similar materials and have conductive tips 56 comprised of a conductive material such as gold and are best seen in the top, profile view of FIG. 18. As the embolic coil passes by, the tips 56 contact different areas, providing electrical communication with the rings 52, 54.

For the correct detachment alignment, the tips 56 line up with conductive sleeves 34, 35 to complete the circuit. Detachment can then be initiated by the user if desired. The contacts are connected to the control system which can include positive and negative voltage terminals on the voltage source to appropriately polarize the contacts. Thus contact 52 can be positive and contact 54 can be negative, or vice-versa.

FIG. 19 shows contacts 52, 54 being located within a microcatheter 22. In this figure the contacts 52, 54 are embedded in the region between the inner and outer diameters of the microcatheter (i.e., within the microcatheter wall), near the distal end of said microcatheter. The necessary circuitry can also run lengthwise along this region, through the microcatheter. Alternatively, a conductive element besides wires (i.e. a conductive sleeve or conductive trace) could run lengthwise through a particular region of the microcatheter to connect back to the control system. In another example these contacts may be located on the outside of the microcatheter. In another example these contacts may be located at the periphery of the inner lumen region.

FIG. 20 shows the system as an embolic coil passes through. The contacts 52, 54 are embedded within the microcatheter and are connected to a voltage source at the other end (one contact to a positive and another contact to a negative terminal). Alternatively, other voltage sources such as an alternating-current system can be used. As described earlier, when the coil passes through, the circuit will be completed when the detachment zones are lined up correctly with the contacts 52, 54 and the tips 56. Thus when the conductive sleeves 34, 35 line up correctly with contacts 52, 54 the circuit will be complete and detachment can be initiated if desired in the manner described earlier.

In one embodiment, the coil segments 12 that make up the embolic coil (e.g., 10 or 11) may utilize various types of coil. For example, often when filling aneurysms a relatively firmer framing coil is deployed first to frame the periphery of the aneurysm. A relatively softer filling coil is then used to fill the space within the aneurysm. An even softer finishing coil is finally used to fill the small spaces left within the space of the aneurysm.

An embolic coil used in the embolic coil detachment system could utilize some segments of the embolic coil as framing coils, some segments as filling coils, and some segments as finishing coils. In one example, the distal most coil segment would be a framing coil, the next-distal most segment would be a filling coil, and the most proximal segment would be a finishing coil. In another example, the distal most coil segment would be would be a framing coil and the next segment would be a filling coil. In another example, the distal most coil segment would be a filling coil and the next segment would be a finishing coil. Alternatively, various combinations of framing, filling, and finishing coils could be used as coil segments of the embolic coil. Operation time could be sped up considerably by having one embolic coil with various coil segments comprising the different types of coils necessary for aneurysm/malformation treatment.

In another embodiment the coil segments comprising the embolic coil may utilize the same type of coil. In one example one of the embolic coils could be comprised of only framing coils, another only of filling, another only of finishing coils. The ability to detach the coil at various points would customize the coil length to the specific aneurysm/malformation volume, at which time the next type of coil could be introduced if necessary. In one example, a first embolic coil utilizes framing coil segments. This is introduced first, and then detached at the appropriate detachment zone when desired. A second embolic coil utilizing filling coil segments is then used and detached at the appropriate detachment zone when desired. Finally, a third embolic coil utilizing finishing coil segments is then used and detached at the appropriate detachment zone when desired.

Various methods of delivering and/or utilizing an embolic coil and/or an embolic coil detachment system are also contemplated. A method of delivering an embolic coil may utilize providing an embolic coil with detachment regions, delivering such a coil through a delivery device, and initiating a detachment sequence utilizing the detachment system to detach all or a portion of the coil in the vasculature. A method of utilizing the detachment system may involve providing a coil with variable detachment regions, then utilizing a detachment sequence when appropriate to detach all or a portion of the coil within the vasculature. Indication means may optionally be provided to alert the user when the detachment regions are properly aligned.

Other methods contemplated include providing an embolic coil having multiple coil segments wherein each segment comprises a unique type of coil (i.e. framing, filling, or finishing coils), delivering this coil through a delivery device, and selectively detaching each of the coil types utilizing the detachment system. Another method could include providing various embolic coils where each coil is comprised of a different type of coil (i.e. one coil having only framing coil segments, another coil having only filling coil segments, another coil having only finishing coil segments). The first coil is delivered through the delivery device, and a detachment sequence is initiated when desired. The next coil is then delivered through the delivery device, and a detachment is initiated when desired, and so-forth.

The methods discussed are not intending to be limiting and only highlight examples of how the devices, techniques, and embodiments described above could also utilize various methods of operation.

FIGS. 21 and 22 illustrate an embodiment of a detachable embolic sphere chain 100 that can be used similarly to the previously discussed embolic coils. Preferably, each sphere 102 includes a passage 106 that extends there through, allowing a monofilament or tether member 108 to pass through. In one embodiment, the spheres 102 can be anchored to the monofilament 108 by injecting adhesive 112 through passage 104, which opens to the monofilament passage 106 and thereby binds to both the sphere 102 and monofilament 108. Preferably, a plurality of spheres 102 are fixed on a monofilament 108, adjacent and in contact with each other.

As best seen in FIG. 22, the spheres 102 are hollow, forming an internal cavity or lumen 102A which can contain hydrogels, foams, and/or drugs that can be released in a patient via aperture 110. Various aspects of the aperture 110 can be adjusted so as to increase or decrease the speed that the materials are released at. For example, the diameter and depth of the aperture 110 can be adjusted to allow surface tension and capillary action to be the primary mechanism of dispersing material. In this respect, decreasing the aperture size or increasing the aperture depth (i.e., the thickness of the walls of the sphere 102 around the aperture 110) may decrease the rate of delivery of the material. In another example, the aperture 110 can be designed so that at normal atmospheric pressure the material (e.g., drug) is stable within the sphere 102 but when the sphere 102 enters the vasculature of the patient, a gradient is formed that drives the drug out of the sphere 102. In yet another example, a bio-absorbable or biodegradable plug (e.g., PGLA) can be placed into the aperture 110 and can have various thicknesses, depending on the length of time desired for drug delivery to begin (e.g., minutes, hours, days, or even months).

The spheres 102 may be composed of a metal, such as platinum, palladium, Nitinol, tantalum, or stainless steel. Alternately, the spheres 102 may be composed of a polymer that is plated with a conductive material. For example, where a 0.017′ catheter lumen is used, spheres of 0.013″-0.016″ diameter may be used. However, this is only offered as an illustrative example and various sizes are contemplated and can be used with various sizes of catheters.

Generally, the sphere chain 100 can be used with any catheter that includes electrical contacts within its lumen, such as any of the catheter embodiments discussed in this specification. In one embodiment, the monofilament 108 is made of a metal or conductively-plated polymer (e.g., polyimide plated with gold), which allows current to be conducted between two or more spheres 102 (e.g. when the electrical contacts are axially spaced inside the catheter lumen). Hence, current conducts through one sphere 102, into the monofilament 108, though an adjacent sphere 102, and out through a second contact, thereby heating up the monofilament 108, melting the polymer, and separating the two spheres 102.

In another embodiment, a non-plated polymer monofilament 108 can be used to connect the spheres 102. In this respect, current would pass from one sphere 102 directly to an adjacent sphere 102 via their contact with each other. This current would cause the two spheres 102 to heat up, melting and breaking the monofilament 108.

Though the term sphere is used to describe elements 102 of the chain 100, other shaped members could alternately be used. For example, cylinders, cubes, hollow saddle shapes, or similar multi-sided shapes. Thus, the term spheres is not meant to be limited to only spherically shaped elements 102.

In one embodiment, the monofilament 108 is tensioned between spheres 102 so as to maintain contact between each of the spheres 102. In another embodiment, the monofilament 108 is not under tension between the spheres 102.

While the monofilament passage 106 is shown as being straight, a curved passage is also possible. In this regard, the openings of the passage 106 would not be parallel to each other. It is further contemplated that several spheres 102 with curved passages 106 can be used to impart a secondary shape to the chain 100.

In another embodiment, the spheres 102 may further have a wire coil disposed over its outside surface. For example, a single coil may cover the entire chain 100, or a plurality of smaller coils may each cover one or more of the spheres 102.

FIG. 23 illustrates another embodiment of an embolic coil having a joint 120 that can be selectively released to separate two coil segments 12 from each other. The joint 120 includes a fuse link 124 that is connected to two contact bands 122. In one embodiment, the fuse link 122 extends through an aperture of the contact bands 122 and forms a knot 124 to maintain tension between the contacts. In one example, the fuse link 124 is composed of a polyimide monofilament or hypotube that is plated with gold or a similar conducting material. When the contact bands 122 become aligned with electrical contacts within a catheter (e.g., such as any of the previously described catheters within the present specification), electrical current flows through the fuse link 124, fracturing the plating and breaking the polyimide. Hence, the joint 120 separates, disconnecting one segment 12 from another. As with other embodiments described in this specification, a microcoil may have several of the joints attaching multiple coil segments 12, which allow the operator the option of detaching portions of the coil

FIG. 24 illustrates yet another embodiment of a microcoil 130 having a plurality of electrolytically detachable joints 134. The joints 134 preferably include a conductive ring 136 connected to the end of each coil segment 12 and an electrolytic link 138 that couples two of the rings 136 together. The microcoil 130 is preferably connected to a power source at the proximal end of the pusher 120, while contact 137 is connected to a different polarity terminal of the same power source. When the microcoil 130 is aligned so that electrical contacts 137 contact a distal ring 136 of the joint 134, a circuit is created. Specifically, a circuit path begins at a proximal end of the pusher 120, passes through the coil segments 12, through a proximal ring 136, through the electrolytic link 138, through the distal ring 136, through contact 137, and back to the power source. When voltage is applied to this circuit, the electrolytic link begins to electrolytically degrade, thereby releasing the portion of the microcoil 130 that is distal of the joint 134.

In one embodiment, the microcoil 130 and pusher 120 can be plated in gold or other high conductivity plating material to enhance electrical conductivity. In another embodiment, instead of an electrolytic link 138, other types of links can be used, such as thermal, thermal-mechanical, RF, mechanical, and optical.

As seen in FIG. 25, the microcoil 130 can also be used with a somewhat different catheter 144 in which the catheter's electrical contact 146 is located at the distal end of the catheter 144, creating a circuit between the contact 146, through the blood of the patient, and into the microcatheter 130. To prevent all of the links 138 still within the catheter 144 from electrolytically degrading, a purge fluid 140 that does not conduct electricity (e.g., a fluid with about 0 parts-per-million of salts or ions) is pumped into the catheter's lumen. To prevent this non-conducting fluid from interfering with degrading the joint 134 that is immediately distal of the catheter's end, purge holes 142 (or alternately slits or similar shapes) connecting to the catheter's lumen are positioned proximal to contact 146. In this respect, the non-conducting purge fluid 140 exits the catheter 144 proximally of the contact 146, allowing conductivity between the joint 134 and the contact 146. In one example, the non-conducting fluid 140 can be iodine, which also allows a user to view the fluid under X-rays and can be more viscous so as to better remain in the catheter. Generally, this embodiment decreases or eliminates the need for precise alignment of and contact between the joint 134 and the contacts within the catheter, since the patient's blood carries a majority of the current. In one example, the electrolytic link 138 is composed of stainless steel and the coil segments are composed of platinum.

FIG. 26 illustrates an embodiment of a catheter 150 used for a guidewire delivery system. The catheter includes a proximal electrical contact 58 and a distal electrical contact 54, which are oppositely polarized from a proximal power and control system. There may be a user interface (i.e. a button) which the user can use to interface with the control system (e.g., similar to control/power systems described with regard to other embodiment of this specification). Though contact 54 is shown as having a positive polarity and contact 58 is shown as negative, these can be reversed. The contacts can be similar in design to contacts of FIGS. 17-18.

FIGS. 27-28 show the catheter used with a guidewire 60. The guidewire 60 is preferably made of a bimetal composite such that the guidewire 60 may bend when exposed to a sufficiently high temperature. In one example, half of the guidewire 60 (i.e., half circle of the guidewire's cross section) is composed of a first metal, while the other half is composed of a second metal with a different coefficient of expansion. When current is applied to the guidewire 60 via contacts 54 and 58, the guidewire 60 increases in temperature. Since the metals expand at different rates, the guidewire bends in one direction. This bending can be used to help steer the guidewire 60 and catheter through the vasculature by bending the guidewire 60, rotating the guidewire 60 towards a desired direction, and further advancing the guidewire. In one example, only a distal portion of the guidewire 60 is composed of two metals on each side. In another example, the entire guidewire 60 comprises two halves that each are different metals.

In one method of use example, the catheter 150 may reach a bifurcation in a vessel and the steering system can be enabled (via the user interface) to cause the distal end of the guidewire 60 to bend. The user can then torque or rotate the catheter 150 and guidewire 60 so the bend is directed in the direction he or she desires to steer the catheter (see FIGS. 33-34). In order to create a sufficiently high temperature increase to cause the guidewire to bend, the contacts are preferably spaced out to allow a higher current flow path to increase heat transmission. In one example, this spacing is from about 0.5 to 3 cm. Factors such as the materials used and electrical impulse utilized can affect the required spacing between the contacts.

FIG. 29 shows a catheter 152 used in a combined guidewire-embolic coil system. The catheter utilizes three contacts 52, 54, 58. The more distal contacts 52, 54 are used with the embolic coil detachment system (e.g., any of the embolic coils discussed in the present specification) while contacts 54, 58 are used with the guidewire 60. Contacts 52, 58 preferably have the same polarity while the distal-most contact 54 has an opposing polarity. Though contact 54 is shown as being positively polarized and 52, 58 are shown as being negatively polarized, it could be switched such that 54 has a negative polarity and 52, 58 have a positive polarity. In one example, a user interface could have two buttons to interact with the guidewire system or the embolic coil detachment system. The contacts 52, 54, 58 are similar to the contacts shown in FIGS. 17-18.

In another embodiment a catheter/delivery device (i.e. sheath, hypotube, microcatheter, or catheter) utilizes electrical contacts. The catheter can be thought of as an intelligent catheter since it comprises electrical contacts which interact with devices placed through said catheter. The contacts are connected to an electric system to polarize the contacts. The contacts can be used to interact with devices which pass through the catheter (i.e. the embolic coil(s) and/or guidewire previously described). The user may have an interface to initiate a sequence (i.e. embolic coil detachment or guidewire manipulation) via the user interface previous described. In one example, for a combined embolic coil detachment and steerable guidewire system the user interface would have two buttons, one to detach the coil and another to bend the guidewire to aid in steering the delivery system. Hitting one button would send an impulse through the circuitry of the embolic coil detachment system, hitting the other button would send an impulse through the circuitry of the guidewire system. The intelligent microcatheter could utilize any of the contact structures shown and described in FIGS. 4, 8, 13, 21, 24.

FIG. 30 shows the combined system used with an embolic coil. Contacts 52, 54 are used to interact with the coil and cause the coil segments to detach when the user desires so.

FIG. 31 shows the combined system used with a guidewire. Contacts 54, 58 are used to interact with the guidewire. In one example, the guidewire is almost as thick as the inner diameter of the delivery device/microcatheter to hit contact tips 56. In another example, the guidewire has enlarged diameter regions at selective areas in order to interface with the contact tips.

In another embodiment, contacts 52, 54 can be used in a combined guidewire-embolic coil system without the inclusion of the other proximal contact 58. In this embodiment, the guidewire would not need such a lengthy current flow path within the distal portion of the guidewire to cause the guidewire to bend, such that the additional proximal contact 56 is not necessary. The materials used in the bimetal composite and impulse used to generate the current are properties that could minimize the current flow path needed through the guidewire to cause the distal end of the guidewire to bend, which would be useful in this particular embodiment.

In another embodiment in lieu of a contact system, the guidewire itself could have a heater coil placed over the distal end of said guidewire. One end of the coil would have a positive polarity, the other end would have a negative polarity. A user interface would be coupled to the proximal end of the system, and a user could interact with the system to generate an impulse to send current through the heater coil to heat the distal tip of the guidewire to cause it to deflect. The user could then torque proximal end of the system to align the guidewire in a desired direction to aid in navigating the catheter through the vasculature. Alternatively, the guidewire has a heater coil placed over the distal end of the guidewire and the heater coil may electrically interact with a contact system built into the catheter (as described earlier) in order to heat the coil to cause deflection of the distal end of the guidewire. The heater coil would contact the electrical contacts of the catheter, the contacts are coupled to a user interface so the user could send an impulse through the system when desired. When the impulse is sent, the guidewire deflects in response to the heat generated via the heater coil, and the bent guidewire is then used to navigate the catheter.

In another embodiment in lieu of the heater coil placed over the distal tip of the guidewire, the microcatheter could have an integrated heater coil within the distal portion of the microcatheter. One end of the integrated heater coil would have a positive polarity, the other end would have a negative polarity. The coil could be integrated into a user interface coupled to the proximal end of the system, and a user could interact with the system to generate an impulse to send current through the heater coil. The heater coil could sit in close proximity to, or have direct contact with, the guidewire. When the guidewire sits at the distal end of the catheter, the user could heat the heater coil which causes the distal tip of the guidewire to deflect. The user could then torque proximal end of the system to align the guidewire in a desired direction to aid in navigating the catheter through the vasculature.

FIG. 35 illustrates an embodiment of a heater coil 160 comprised of a plurality of adjacent straight segments 160B that are connected to each other by a plurality of 180 degree curves. The pattern terminates with ends 160A that are connected to wires or similar conducting members that ultimately connect to a power supply and control system.

In one embodiment, a hypotube composed of a high resistivity metal, such as platinum, can be laser cut to this “zig-zag” pattern. In another embodiment, a thin sheet of metal can be laser cut in this pattern, then curved into a cylindrical shape. Preferably, the heater 160 is coated with an insulating material such as polyimide, polyethylene, Teflon, of paralyne. By creating the heating coil 160 by these techniques, the coil can have a relatively small thickness (e.g., such as 0.009″) while still generating a significant amount of electrical resistance.

Since the heater coil 160 is relatively thin, one embodiment of a catheter could include a dual layer heater assembly 162 including the coil 160 and a second, small, inner coil 163 located within it, as seen in FIG. 37. Such an assembly 162 would allow the heater assembly 162 to provide a greater amount of heat to a catheter and/or provide redundancy. Other embodiments may include 3, 4, 5, 6, or more layers of heater coils. The layers of heater coils can each have independent electrical wires to supply power or each of the coils can be chained together in series. Alternatively, a single hypotube (FIG. 36) can be rolled into a multiple layer configuration where each successive roll of the hypotube becomes a new layer of the heater. With this configuration, only one set of wires would be needed to heat the whole system since the heater coil is comprised of the same hypotube pattern.

FIG. 38 illustrates another embodiment of a catheter heater assembly 169 that has a plurality of heater coils staggered along its length to create a plurality of independently operable heater zones. Specifically, the catheter 164 includes a proximal heater coil 165, a middle heater coil 166, and a distal heater coil 167, all of which are similar in design to coil 160. While three coils are shown, such a catheter could include any number coils (e.g., between 1 and 100 coils). The addition of different, discreet heater coils provides redundancy, temperature control, and/or user targeting of a detachment joint of an embolic coil.

FIG. 39 illustrates a cross sectional view of yet another embodiment in which a catheter 168 has a plurality of heater coils 160 (e.g., 3 coils) that are positioned parallel to each other. Preferably, the coils 160 are each located within its own catheter lumen passage, thereby allowing several different devices to be used from the same catheter and heated (e.g., for detaching an implant or bending a guidewire as previously described).

As discussed in greater detail below, FIGS. 40-70 disclose various additional link or joint embodiments that connect various segments of an embolic device together and that can be selectively separated by a user. While coil portions 12 are described with regard to these embodiments, it should be understood that any embolic device described in this specification could be used in connection with these joints, such as spheres 102.

Turning to FIG. 40, another embodiment of a detachment joint 252 that connects two portions of an embolic device, such as between coil portions 12. The detachment joint 52 is held together with a bond material 254 that can degrade (chemically or otherwise) when exposed to liquid such as blood, contrast, saline, or other commonly injected interventional fluids. For example, the bond material 254 may include a salt such as NaCl or similar salts that can dissociate into solution when exposed to liquid.

In one example, the bond material 254 can be selectively exposed to liquid via an outer electrically controlled membrane 256. When current is applied via any of the catheter embodiments described in this specification, the membrane allows fluid to enter the joint 252, allowing the bond material 254 (e.g., NaCl) to go into solution and the coil portions 12 to separate from each other. In one example, the outer membrane 256 operates via the Cassie-Wenzel wetting transitions effect, which is described in Bormashenko, Edward, Roman Pogreb, Sagi Balter, and Doron Aurbach. “Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions.” Scientific Reports 3 (2013), the contents of which are hereby incorporated herein by reference.

In another example, outer membrane portion 256 can be a layer of hydrogel that, when an electric current is passed through via the catheter, causes the hydrogel to give off fluid itself and shrink. Once sufficiently shrunken, the hydrogel will allow fluid from outside the embolic device (e.g., saline from inside the catheter) to enter the joint 252 and degrade the bond material 254. In one embodiment, the hydrogel alone is used. In another embodiment, the hydrogel has a permeable film or layer over it.

In another example, the outer membrane 256 may be a thin film that melts or degrades when current from the catheter is applied to it. For example, this film could be composed of a polymer such as polyurethane or polyolefin with a melting point sufficient to melt via activation of the heater.

In alternate embodiments, the inner surface 255 of the joint 252 could be configured to selectively allow passage of fluid (e.g., saline or contrast) from the inner passage 253 to the bond material 254. This selective passage of fluid can be accomplished via any of the mechanisms discussed with regard to outer member 256, and can be used alone or in addition to the outer membrane 256 (i.e., both membranes can selectively allow passage of fluid).

FIGS. 41-45 illustrate various aspects of an embolic device 270 having coil portions 12 that are detachable from each other via joint 272. Generally, the joint 272 includes a plurality of heating elements 274 attached to a distal end of a coil portion 12 that, when activated, melt adhesive members 284, thereby releasing the adjacent coil portion 12.

As best seen in FIG. 42, the adhesive members 284 are located within a groove 282A of a distal ring 282, which is fixed to a proximal end of another coil portion 12. The heating elements 274 are also positioned in the groove 282A, such that the adhesive members 284 fix or secure the heating elements 274 to the distal ring 282, thereby maintaining the two adjacent coil portions 12 together.

In one embodiment, the heating elements 274 form a plurality of generally rectangular shapes, though a variety of different shapes are possible, such as a single square or a plurality of circular loops.

Electrical current is distributed to each of the heating elements 74 via a distal conductive ring 280 and a proximal conductive ring 276 (both of which are separated by insulating layer 278). Each of the rings 280 and 276 can be contacted by current supplying elements within the catheter (described elsewhere in this specification).

The heating elements 274 preferably have a first end 274A that makes electrical contact with only the distal ring 280 and second end 274B that makes electrical contact with only the proximal ring 276. As seen in FIGS. 44 and 45, this arrangement can be accomplished by the first end 274A having a relatively small length that permits entry into only one of the apertures 280A of the distal ring 280, and the second end 274B having a relatively long length that extends through aperture 280, through the apertures of the insulating layer 278, and into one of the apertures 276A of the proximal ring 276. Insulating members 281 can be further located on portions of the second end 274B located within the aperture 280A of the distal ring 280, thereby preventing electrical contact that would otherwise prevent current from flowing completely through the heating element 274.

FIG. 46 illustrates another embodiment of a segmented embolic device 290 with a plurality of joints 292 between adjacent coil segments 12. The joint 292 is held together by a plurality of tethers or monofilaments 296 located axially and circumferentially around the wall of the device 290. Each tether 296 is anchored under tension to both coil portions 12 via anchors 98. The anchors can be an adhesive, bonding agent, a distinct element that the tether 296 can be tied to, or similar fastening mechanisms.

The tethers 296 are preferably broken by a resistive heater 294 located near each of the tethers 296. For example, FIGS. 46 and 47 illustrate a resistive heater ring 294 that is composed of a plurality of coiled portions 294A connected by adjacent curved regions 294B, so as to form a ring shape. Each of the coiled portions 294A are preferably coiled around one of the tether members 296, so as to allow efficient heat transfer to the tether members 296. Finally, electric wires 60 and 61 are connected to portions of the heater 294 and each to an electrical contact ring 295 and 297. When the rings 295 and 297 align with electrical contact in a catheter (such as those described elsewhere in this specification) and current is applied by the user, the coils 294A heat up and melt or break the tether members 296 and release the coil portions 12 of the device 290 from each other, thereby releasing a portion of the device into the patient.

FIG. 48 illustrates another embodiment of an embolic device 300 (e.g., a microcoil) having a plurality of electrolytic joints 102 that connect a plurality of coil segments 12, such that the device 300 can be selectively detached at a plurality of different locations. Specifically, the joint 302 preferably contains a proximal ring 304 and a distal ring 306 that are in contact with a middle sacrificial anode ring 308. A proximal end of a pusher (which is connected to a proximal end of the device 300) is connected to a power supply so as to provide positive current to the ring 304, while negative current is supplied via fluid from within the catheter 300 or through the patient's blood via an electrode in contact with the patient. The rings 304, 306 and the middle sacrificial anode ring 308 are selected so as to cause rapid galvanic corrosion of the anode ring 308 (i.e., the anode ring 308 acts as an anode and the rings 304, 306 act as a cathode). Once the anode ring 308 has sufficiently corroded, the distal coil portion 12 of the device 300 (including ring 106) disconnect from the proximal coil portion 12.

FIGS. 49-51 illustrate another embodiment of an embolic device 310 having a plurality of mechanical release mechanisms that can selectively detach and release the device 310 at various locations along the device 310. Specifically, the device 310 includes one or more pistons 314 having a pin 316 that moves outward to disengage the mechanical release mechanism. In one example, the mechanical release mechanism includes a hook portion 316A on the distal end of the pin 316 that can be moved from a latched position (FIG. 49) to an unlatched position (FIG. 50). However, it should be understood that a variety of different latching mechanisms can be used with the piston 314.

FIG. 19 illustrates one possible embodiment of the piston 314 in which a pressure-resistant housing 322 and cap 320 contain a material 324 that expands when heated. The material 324 can be any wax, oil, or similar material with a high enough coefficient of expansion to cause movement of the piston 314. In another example, the material 324 can be mercury, ethanol, or other materials with relatively high coefficients of expansion. When the heater coil 312 is activated, it heats up the pistons 314, causing the material 324 to expand within the housing 322, thereby pushing the pin 316 at least partially out of the housing 322.

FIGS. 52-54 illustrate another embodiment of an embolic device 330 having a plurality of mechanical release mechanisms 332 connecting a plurality of coil segments 12. Specifically, the release mechanism 332 includes a proximal ring 334 and a distal ring 336 that are positioned against each other and are connected or held together via a plurality of tether members or filaments 338. As best seen in the cross sectional view of the ring in FIG. 53, the rings 334 and 336 initially have a generally concave shape relative to each other (e.g., forming a cross sectional oval between each other). However, when the rings 334 and 336 are heated, either by direct application of current to the rings (e.g., a previously described catheter) or by an adjacent heater coil in a catheter, the rings 334 and 336 bend in opposite directions to form convex shapes (FIG. 54). This shape change generally increases the distance of the ends of the rings from each other, where the tether members 338 are connected, thereby fracturing or breaking the tether members 338 and allowing the distal coil portion 12 of the device 330 to be disconnected from the proximal coil portion 12.

In one embodiment, the temperature bending behavior of the rings 334 and 336 can be created by using a bi-metal design (i.e., a first metal on a first side of the rings and a second, different metal on the second sides of the rings). In another embodiment, the bending behavior of the rings 334 and 336 can be created by using a material capable of Martensite/Austenite transitions. For example, the rings 334, 336 can be composed of Nitinol having a relatively high Austenite finish temperature, such that when current is applied to the rings or a heater coil is activated, the rings 334, 336 transition to their Austenite phase, thereby changing shape, as well.

FIGS. 55-65 illustrate another embodiment of an embolic device 340 (e.g., a microcoil) having a plurality of mechanical release mechanisms 342 that connect a plurality of coil portions 12 to each other. The mechanical release mechanism 342 preferably includes a heat-activated spring member 346 that maintains the mechanism 342 in a locked state during normal, operational temperatures (e.g., body temperature), but changes shape when heated, either by direct application of current or via an adjacent heater coil, to cause the mechanism 342 to unlock, thereby disconnecting adjacent coil portions 12 and releasing a portion of the embolic device 340 into the patient.

In one embodiment, the temperature bending behavior of the spring member 146 can be created by using a bi-metal design (i.e., a first metal on a first side of the spring member 346 and a second, different metal on the second side of the spring 346). In another embodiment, the shape-changing behavior of the spring member 346 can be created by using a material capable of Martensite/Austenite transitions. For example, the spring member 346 can be composed of Nitinol having a relatively high Austenite finish temperature, such that when current is applied to the spring or a heater coil is activated, the spring member 346 transitions to its Austenite phase, thereby changing shape, as well.

The spring member 346 of the mechanical release mechanism 342 is located on and around a base portion 350. The spring member 346 is further anchored in place on the base portion 350 by a first elongated anchor member 346A at one of its ends, extending into aperture 350A (best seen in FIG. 58). The spring member 346 also includes a second elongated anchor member 346B that extends into an aperture within the locking ring 348 (best seen in FIGS. 58 and 59). In this respect, the spring member 346 maintains the locking ring 348 in a first rotational position relative to the base portion 150 during normal operating temperatures (e.g., body temperature) and rotates the locking ring 348 when heated (via applied current or heater coil).

The base portion 350, spring member 346, and locking ring 348 are all preferably contained within an outer housing member 352, which helps maintain the axial positions of these members relative to each other. As best seen in FIG. 61, the outer housing member 352 includes a plurality of apertures 352A which allow passage of locking pins 344A on the ring 144.

As best seen in FIGS. 63-65, the locking pins 344A pass through apertures 352A and into slots 348B on the locking ring 348. As best seen in FIG. 65, one end of each of the slots 348B include an overhanging portion or lip 348C that is sized and shaped to engage the distal ends of the pins 344A. Specifically, the distal ends of the locking pins 344A have an enlarged diameter relative to the remaining, proximal portions, allowing this distal end to catch on the lip 348C and therefore prevent withdrawal of the pins 344A. Preferably, the spring member 346 is configured to maintain the locking ring 348 in a rotational position that maintains the lip 348C over distal end of the locking pins 344A.

At the opposite end of the slot 348B is a ramped surface 148A which assists in pushing the locking pins 344A out of the slot 348B. Specifically, the ramp 348A is inclined towards the ring 344, such that as the locking ring 348 rotates, the ramp 348A pushes the locking pins 344A axially outward of the housing 352. In this respect, when the spring member 346 is heated, the locking ring 348 rotates to disengage the locking pins 344A with the lip 348C and pushes the pins 344A outward. Since ring 344 and base portion 350 are each attached to either the proximal coil portion 12 or distal coil portion 12 of the device 340, unlocking the mechanism 342 separates the portions 12 from each other, detaching and releasing a portion of the device 340 from the remaining portion.

Alternately, rotation of the locking ring 344 of the mechanical release mechanism 342 can be performed via a different mechanism. For example, the previously described piston 314 could be fixed to the base 350 or housing 352, as well as the locking ring 344 so as to rotate the ring 344 when heat activates the piston 314.

Preferably, the locking ring 344 can be activated by locating the ring 344 near a heater coil of a catheter (as previously described) and activating the heater so as to cause detachment. Alternately, the catheter could provide current (e.g., see previously described catheter embodiments) to each side of the ring 344 when aligned with electrodes inside the catheter, causing the ring 344 to heat up when current is activated.

FIG. 66 illustrates another embodiment of an embolic device 360 having a plurality of fuse release mechanisms 142 that releasably connect a plurality of coil segments 12. Specifically, the coil portions 12 can be held together by one or more (e.g., a plurality) of fuse members 362 located near the circumference of the catheter 360.

The fuse members 362 are preferably connected to a proximal ring 364 and a distal ring 366. The proximal ring 364 is connected to the distal ring 366 via the fuse members 362. Preferably, the fuse member 162 is composed of a material that can be fractured or broken without causing enough heat to damage surrounding tissue in a patient (this breaking value is sometimes referred to as the “clearing l2t” value). In one example, the fuse can be composed of an elongated hypotube of gold plated polyimide material.

When the rings 364 and 366 are aligned with electrodes within a catheter (e.g., see previous catheter embodiments) and current is activated, the current passes through effuse members 362, thereby fracturing the members 362 and releasing a portion of the device 360.

FIGS. 67 and 68 illustrate another embodiment of a releasable joint 380 for an embolic device having a plurality of coil segments 12. Adjacent coil segments 12 are maintained together via a monofilament or tether member 388 (e.g., via tying or via adhesives at each end of the tether 388). As seen best in FIG. 67, a heating coil 386 is located around the tether 384. A first end of the heating coil 386 is connected to a first conductive housing member 382 while a second end of the heating coil 386 is connected to a second conductive housing member 384. When the housing members 382 and 384 are aligned with positive electrode 26C and negative electrode 26D (e.g., each housing member is contacting a different electrode), current passes through the heating coil 386, generating heat, and breaking or melting the tether 388 to release the portion of the device distal of the joint 380. To prevent the housing from shorting out the electrical system, an insulating layer 390 is disposed between the two housing members 382 and 384. In one embodiment, the embolic device and catheter may be keyed or otherwise shaped to maintain a desired rotational orientation so that the housing members 382, 384 properly align with electrical contacts 26C and 26D.

The embodiment of FIGS. 67-68 could also be used in the capsule system of FIGS. 11-12, that is the joint 380 could utilize a spring at both ends of the joint or one spring spanning the entirety of the joint. Monofilament 388 would either be tied to both springs, or tied to two ends of one spring as shown in FIG. 12. When heat is generated, the spring would expand causing the monofilament to break, similar to the embodiments of FIGS. 11-12.

FIGS. 69 (exploded view) and 70 (assembled view) illustrate another embodiment of a releasable joint 400 for an embolic device having a plurality of coil segments. Specifically, the proximal coil segment 402 is releasably connected to the distal coil segment 406 by an intermediate coil segment 404 and a fuse release mechanism 408. The fuse release mechanism 408 includes a proximal capsule member 416 that includes a fuse member 414 and a distal capsule member 410 which includes a fixed loop 412 through which the fuse member 414 passes through to interlock the capsule members 410 and 416 together.

Preferably, the capsule members 410 and 416 are composed of a material that tolerates relatively high temperatures but does not conduct electricity, such as ceramic. The proximal capsule member 416 preferably has a conductive element 416A (e.g., platinum) insert molded into the member 416, serving as a connection point for the end of the fuse member 414 and as a connection point to the intermediate coil 404 (e.g., by welding). The proximal capsule member 416 is preferably welded near the distal end of the intermediate coil 404 so as to make an electrical connection with the coil 404. Similarly, the distal capsule member 410 includes metal elements 410A and loop 412 press molded into it, allowing the metal elements 410A to be welded to the inside of the distal coil segment 406.

The proximal coil segment 402 preferably includes an insulated portion 402A along its distal portion, such as a ceramic based or titanium based coating. Similarly, the intermediate coil segment 404 includes an insulated portion 404A along its proximal portion. In an assembled state (e.g., FIG. 70), only the insulated portions 402A and 404A are intertwined with each other, so that the proximal segment 402 and the intermediate segment 404 become mechanically connected to each other, but not electrically connected. Finally, a fuse link 418 is connected to the fuse 414 and to the uninsulated portion of the proximal segment 402 (e.g., via welding at location 418A).

In operation, the embolic coil is advanced within a catheter, such as any of the catheters described in this specification (e.g., the catheter of FIG. 4). The uninsulated portion of the intermediate segment 404 is aligned with a first electrical contact 26A within the catheter 22 and the uninsulated portion of the proximal segment 402 is aligned with a second electrical contact 26B. At this time, a circuit is completed through the second electrical contact 26B, the fuse link 418, into the fuse 414, through conductive element 416A, into the intermediate coil segment 404, and finally into the first electrical contact 26A. A power supply and interface device can sense alignment via completion of the circuit (e.g., via application of a low level of current). When the user wishes to detach the distal segment 406, a high level of current is applied from the power supply and interface device, causing the fuse 414 to break, thereby releasing the distal capsule member 410 and the distal coil segment 406. Since the fuse 414 is broken, the interface and power supply can detect a break in the circuit and can thereby confirm that detachment has occurred.

Preferably, the components of the releasable joint 400 are all composed of material that can withstand about 700 degrees Celsius for 45 minutes (e.g., insulating ceramic materials and titanium based coatings). This allows an entire embolic device to be created with one or more of the releasable joints 400, then heat set into secondary shapes without damaging the components of the joints 400. Additionally, since the non-coil components are located within the coil segments, there may be less friction or ratcheting between the joints and the catheter and/or catheter's electrical contacts.

Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Tsukashima, Ross, Bowman, Heath

Patent Priority Assignee Title
10265086, Jun 30 2014 Neuravi Limited System for removing a clot from a blood vessel
10278717, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10278848, Aug 06 2018 DEPUY SYNTHES PRODUCTS, INC Stent delivery with expansion assisting delivery wire
10285709, Sep 05 2008 PULSAR VASCULAR, INC Systems and methods for supporting or occluding a physiological opening or cavity
10292851, Sep 30 2016 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
10357265, Mar 14 2013 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
10499927, Oct 19 2005 PULSAR VASCULAR, INC Methods and systems for endovascularly clipping and repairing lumen and tissue defects
10561509, Mar 13 2013 DEPUY SYNTHES PRODUCTS, INC Braided stent with expansion ring and method of delivery
10582939, Jul 22 2008 Neuravi Limited Clot capture systems and associated methods
10588648, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10588649, Mar 09 2011 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10603157, Mar 13 2013 DEPUY SYNTHES PRODUCTS, INC Braid implant delivery and retraction device with distal engagement
10610246, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10639043, Sep 19 2014 DePuy Synthes Products, Inc. Vasculature occlusion device detachment system with tapered corewire and heater activated fiber detachment
10646361, Jul 30 2018 DEPUY SYNTHES PRODUCTS, INC Systems and methods of manufacturing and using an expansion ring
10653425, May 21 2019 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
10667833, Jun 08 2018 Neuravi Limited Guidewire with an atraumatic clot-circumventing configured distal end for use in an endovascular medical system
10675045, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10743884, Feb 23 2017 DePuy Synthes Products, Inc. Aneurysm device and delivery system
10743894, Mar 09 2011 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
10751065, Dec 22 2017 DEPUY SYNTHES PRODUCTS, INC Aneurysm device and delivery system
10751066, Feb 23 2017 DePuy Synthes Products, Inc. Aneurysm device and delivery system
10799243, Aug 08 2014 DePuy Synthes Products, Inc. Embolic coil delivery system with retractable mechanical release mechanism
10806461, Apr 27 2018 DEPUY SYNTHES PRODUCTS, INC Implantable medical device detachment system with split tube
10806462, Dec 21 2017 DEPUY SYNTHES PRODUCTS, INC Implantable medical device detachment system with split tube and cylindrical coupling
10813780, Aug 08 2018 DePuy Synthes Products, Inc. Intraluminal implant delivery system and method
10821008, Aug 25 2016 DePuy Synthes Products, Inc. Expansion ring for a braided stent
10821010, Aug 27 2014 DePuy Synthes Products, Inc. Method of making a multi-strand implant with enhanced radiopacity
10842498, Sep 13 2018 Neuravi Limited Systems and methods of restoring perfusion to a vessel
10881497, Jan 26 2017 DePuy Synthes Products, Inc. Composite vascular flow diverter
10893963, Aug 06 2018 DEPUY SYNTHES PRODUCTS, INC Stent delivery with expansion assisting delivery wire
10898216, Jun 13 2018 DEPUY SYNTHES PRODUCTS, INC Vasculature obstruction capture device
10905430, Jan 24 2018 DEPUY SYNTHES PRODUCTS, INC Aneurysm device and delivery system
10905431, Aug 03 2018 DePuy Synthes Products, Inc. Spiral delivery system for embolic braid
10905853, Jan 17 2017 DePuy Synthes Products, Inc. System and method for delivering a catheter
10918390, Mar 30 2018 DEPUY SYNTHES PRODUCTS, INC Helical balloon assist device and method for using the same
10939915, May 31 2018 DEPUY SYNTHES PRODUCTS, INC Aneurysm device and delivery system
10952760, Mar 09 2011 Neuravi Limited Clot retrieval device for removing a clot from a blood vessel
11039944, Dec 27 2018 DePuy Synthes Products, Inc. Braided stent system with one or more expansion rings
11051823, Jun 01 2016 DePuy Synthes Products, Inc. Endovascular detachment system with flexible distal end and heater activated detachment
11051825, Aug 08 2018 DePuy Synthes Products, Inc. Delivery system for embolic braid
11051928, Apr 11 2019 Neuravi Limited Floating carotid filter
11058430, May 25 2018 DEPUY SYNTHES PRODUCTS, INC Aneurysm device and delivery system
11076860, Mar 31 2014 DEPUY SYNTHES PRODUCTS, INC Aneurysm occlusion device
11076861, Oct 12 2018 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
11076876, Jun 30 2014 Neuravi Limited System for removing a clot from a blood vessel
11083872, Feb 21 2017 MicroVention, Inc. Electrical catheter
11090175, Jul 30 2018 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
11103264, Mar 14 2013 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
11109939, Jun 14 2019 DePuy Synthes Products, Inc. Intravascular devices with radiopaque body markers
11123077, Sep 25 2018 DePuy Synthes Products, Inc. Intrasaccular device positioning and deployment system
11129738, Sep 30 2016 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
11134953, Feb 06 2019 DePuy Synthes Products, Inc. Adhesive cover occluding device for aneurysm treatment
11147562, Dec 12 2018 DePuy Synthes Products, Inc. Systems and methods for embolic implant detachment
11147572, Sep 06 2016 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
11154302, Mar 31 2014 DEPUY SYNTHES PRODUCTS, INC Aneurysm occlusion device
11185333, Sep 05 2008 PULSAR VASCULAR, INC. Systems and methods for supporting or occluding a physiological opening or cavity
11185334, Mar 28 2019 DEPUY SYNTHES PRODUCTS, INC Single lumen reduced profile occlusion balloon catheter
11207494, Jul 03 2019 DePuy Synthes Products, Inc. Medical device delivery member with flexible stretch resistant distal portion
11246612, Oct 22 2010 Neuravi Limited Clot engagement and removal system
11253265, Jun 18 2019 DePuy Synthes Products, Inc. Pull wire detachment for intravascular devices
11253278, Nov 26 2014 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
11253287, Oct 04 2018 Neuravi Limited Retrograde blood flow occlusion flushing device
11259824, Mar 09 2011 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
11266426, Jul 10 2019 DEPUY SYNTHES PRODUCTS, INC Streamlined treatment of clot removal, angioplasty and prevention of restenosis using a single integrated intravascular device
11266427, Jul 10 2019 Neuravi Limited Self-expanding intravascular medical device
11272939, Dec 18 2018 DePuy Synthes Products, Inc. Intrasaccular flow diverter for treating cerebral aneurysms
11273285, Feb 07 2019 DePuy Synthes Products, Inc. Ancillary device for detaching implants
11278292, May 21 2019 DePuy Synthes Products, Inc. Inverting braided aneurysm treatment system and method
11311304, Mar 04 2019 Neuravi Limited Actuated clot retrieval catheter
11337706, Mar 27 2019 DePuy Synthes Products, Inc. Aneurysm treatment device
11344311, Jun 03 2011 PULSAR VASCULAR, INC. Aneurysm devices with additional anchoring mechanisms and associated systems and methods
11357648, Aug 06 2018 DePuy Synthes Products, Inc. Systems and methods of using a braided implant
11376013, Nov 18 2019 DePuy Synthes Products, Inc. Implant delivery system with braid cup formation
11382633, Mar 06 2019 DePuy Synthes Products, Inc. Strut flow diverter for cerebral aneurysms and methods for preventing strut entanglement
11395667, Aug 17 2016 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
11395669, Jun 23 2020 Neuravi Limited Clot retrieval device with flexible collapsible frame
11395675, Jul 11 2019 DePuy Synthes Products, Inc. Clot retriever cleaning for reinsertion
11406392, Dec 12 2018 DePuy Synthes Products, Inc. Aneurysm occluding device for use with coagulating agents
11406403, Jun 14 2019 Neuravi Limited Visibility of mechanical thrombectomy device during diagnostic imaging
11406416, Oct 02 2018 Neuravi Limited Joint assembly for vasculature obstruction capture device
11413046, May 21 2019 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
11426174, Oct 03 2019 DePuy Synthes Products, Inc. Medical device delivery member with flexible stretch resistant mechanical release
11432822, Feb 14 2020 DePuy Synthes Products, Inc. Intravascular implant deployment system
11439403, Sep 17 2019 DePuy Synthes Products, Inc. Embolic coil proximal connecting element and stretch resistant fiber
11439418, Jun 23 2020 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11446045, Jun 13 2014 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
11452623, Mar 13 2013 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
11457922, Jan 22 2020 DePuy Synthes Products, Inc.; DEPUY SYNTHES PRODUCTS, INC Medical device delivery member with flexible stretch resistant distal portion
11457923, Oct 05 2011 PULSAR VASCULAR, INC. Devices, systems and methods for enclosing an anatomical opening
11457926, Dec 18 2019 DePuy Synthes Products, Inc. Implant having an intrasaccular section and intravascular section
11484328, Mar 11 2014 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
11497504, May 21 2019 DePuy Synthes Products, Inc. Aneurysm treatment with pushable implanted braid
11497638, Jul 30 2018 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
11517340, Dec 03 2019 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
11523831, Apr 30 2020 DEPUY SYNTHES PRODUCTS, INC Intrasaccular flow diverter
11529157, Jul 22 2008 Neuravi Limited Clot capture systems and associated methods
11529249, Mar 13 2013 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
11529495, Sep 11 2019 Neuravi Limited Expandable mouth catheter
11547414, Aug 03 2018 DePuy Synthes Products, Inc. Spiral delivery system for embolic braid
11547427, Mar 14 2013 Neuravi Limited Clot retrieval devices
11571553, May 09 2019 Neuravi Limited Balloon guide catheter with thermally expandable material
11583282, May 21 2019 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
11583288, Aug 08 2018 DePuy Synthes Products, Inc. Delivery of embolic braid
11589874, Mar 30 2018 DePuy Synthes Products, Inc. Split balloon assist device and method for using the same
11590007, Sep 20 2018 DePuy Synthes Products, Inc. Stent with shaped wires
11596412, May 25 2018 DePuy Synthes Products, Inc.; DEPUY SYNTHES PRODUCTS, INC Aneurysm device and delivery system
11602350, Dec 05 2019 DePuy Synthes Products, Inc. Intrasaccular inverting braid with highly flexible fill material
11607226, May 21 2019 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device with corrugations
11607531, May 09 2019 Neuravi Limited Balloon catheter with venting of residual air in a proximal direction
11628282, Nov 25 2019 Neuravi Limited No preparation balloon guide catheter
11633191, Oct 12 2018 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
11633198, Mar 05 2020 Neuravi Limited Catheter proximal joint
11642145, Jun 08 2018 Neuravi Limited Guidewire with an atraumatic clot-circumventing configured distal end for use in an endovascular medical system
11648375, Jan 17 2017 DePuy Synthes Products, Inc. System and method for delivering a catheter
11672540, Jan 24 2018 DePuy Synthes Products, Inc. Aneurysm device and delivery system
11672542, May 21 2019 DePuy Synthes Products, Inc. Aneurysm treatment with pushable ball segment
11672543, Feb 23 2017 DePuy Synthes Products, Inc. Aneurysm method and system
11712231, Oct 29 2019 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
11712256, Nov 26 2014 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
11717308, Apr 17 2020 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
11730501, Apr 17 2020 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
11737771, Jun 18 2020 Neuravi Limited Dual channel thrombectomy device
11744992, Dec 20 2013 MicroVention, Inc. Segmented embolic system
11751881, Nov 26 2021 DePuy Synthes Products, Inc. Securement wire withstanding forces during deployment of implantable intravascular treatment device using a delivery and detachment system
11759217, Apr 07 2020 Neuravi Limited Catheter tubular support
11779364, Nov 27 2019 Neuravi Limited Actuated expandable mouth thrombectomy catheter
11779736, Oct 23 2019 Imam Abdulrahman Bin Faisal University Adjustable neck catheter
11786698, Dec 08 2020 DEPUY SYNTHES PRODUCTS, INC Catheter with textured surface
11812981, Jun 13 2018 DePuy Synthes Products, Inc. Vasculature obstruction capture device
11819214, Mar 30 2018 DePuy Synthes Products, Inc. Helical balloon assist device and method for using the same
11826051, Dec 21 2017 DePuy Synthes Products, Inc. Implantable medical device detachment system with split tube and cylindrical coupling
11826520, Dec 08 2020 DePuy Synthes Products, Inc. Catheter designs for enhanced column strength
11839392, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11839725, Nov 27 2019 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
11844490, Dec 30 2021 DEPUY SYNTHES PRODUCTS, INC Suture linkage for inhibiting premature embolic implant deployment
11844527, Jun 01 2016 DePuy Synthes Products, Inc. Endovascular detachment system with flexible distal end and heater activated detachment
11844538, Oct 26 2016 DePuy Synthes Products, Inc. Multi-basket clot capturing device
11857210, Nov 26 2014 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11864781, Sep 23 2020 BIOSENSE WEBSTER ISRAEL LTD Rotating frame thrombectomy device
11871931, Aug 08 2014 DePuy Synthes Products, Inc. Embolic coil delivery system with retractable mechanical release mechanism
11871945, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11871946, Apr 17 2020 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11871949, Oct 22 2010 Neuravi Limited Clot engagement and removal system
11872119, Jan 26 2017 DePuy Synthes Products, Inc. Composite vascular flow diverter
11872354, Feb 24 2021 Neuravi Limited Flexible catheter shaft frame with seam
11878096, Oct 23 2019 Imam Abdulrahman Bin Faisal University Articulable catheter for channeling body fluids and objects
11878129, Feb 07 2019 DePuy Synthes Products, Inc. Ancillary device for detaching implants
11883043, Mar 31 2020 DePuy Synthes Products, Inc. Catheter funnel extension
11883046, Jul 10 2019 Neuravi Limited Self-expanding intravascular medical device
11890020, Feb 23 2017 DEPUY SYNTHES PRODUCTS, INC Intrasaccular aneurysm treatment device with varying coatings
11925772, Feb 21 2017 MicroVention, Inc. Electrical catheter
11931522, May 09 2019 Neuravi Limited Inflation lumen kink protection and balloon profile
11937824, Dec 30 2021 DEPUY SYNTHES PRODUCTS, INC Implant detachment systems with a modified pull wire
11937825, Mar 02 2022 DePuy Synthes Products, Inc. Hook wire for preventing premature embolic implant detachment
11937826, Mar 14 2022 DePuy Synthes Products, Inc. Proximal link wire for preventing premature implant detachment
11937835, Mar 14 2013 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
11937836, Jun 22 2020 Neuravi Limited Clot retrieval system with expandable clot engaging framework
11937837, Dec 29 2020 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
11937839, Sep 28 2021 Neuravi Limited Catheter with electrically actuated expandable mouth
11944327, Mar 05 2020 Neuravi Limited Expandable mouth aspirating clot retrieval catheter
11944333, Jun 30 2014 Neuravi Limited System for removing a clot from a blood vessel
11951026, Jun 30 2020 DePuy Synthes Products, Inc. Implantable medical device detachment system with flexible braid section
11957354, Feb 10 2020 DePuy Synthes Products, Inc. Aneurysm implant support device
11957855, May 09 2019 Neuravi Limited Balloon guide catheter with positive venting of residual air
11963693, Oct 02 2018 Neuravi Limited Joint assembly for vasculature obstruction capture device
11969180, Mar 04 2019 Neuravi Limited Actuated clot retrieval catheter
11974764, Jun 04 2021 Neuravi Limited Self-orienting rotating stentriever pinching cells
11980379, Nov 26 2014 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
11992241, Jan 31 2020 DEPUY SYNTHES PRODUCTS, INC System to assist delivery of a mechanical intravascular treatment device
11998213, Jul 14 2021 DePuy Synthes Products, Inc. Implant delivery with modified detachment feature and pull wire engagement
11998223, Mar 09 2011 Neuravi Limited Clot retrieval device for removing a clot from a blood vessel
12059164, Mar 09 2012 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
12064130, Mar 18 2021 Neuravi Limited Vascular obstruction retrieval device having sliding cages pinch mechanism
12064363, Sep 30 2016 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
12076037, Mar 09 2011 Neuravi Limited Systems and methods to restore perfusion to a vessel
12127744, Sep 17 2019 DePuy Synthes Products, Inc. Embolic coil proximal connecting element and stretch resistant fiber
12133657, Sep 06 2016 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
12137915, Mar 03 2022 DePuy Synthes Products, Inc. Elongating wires for inhibiting premature implant detachment
12138409, Oct 23 2019 Imam Abdulrahman Bin Faisal University Spring-tensioned articulable catheter
D959659, May 10 2019 DePuy Synthes Products, Inc. Implant release handle
ER3312,
ER4178,
ER4446,
ER5577,
ER570,
ER6055,
ER6837,
ER8340,
Patent Priority Assignee Title
2548602,
3021834,
3470876,
3726269,
3769981,
3773034,
4033331, Jul 17 1975 Cardiac catheter and method of using same
4141364, Mar 18 1977 Expandable endotracheal or urethral tube
4195637, Oct 21 1977 Schneider Medintag AG Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element
4215703, May 16 1977 Variable stiffness guide wire
4230108, Mar 13 1979 Apparatus and method for sealing esophageal entrance to trachea above and below
4248234, Mar 08 1979 KABUSHIKI KAISHA TOSHIBA, A CORP OF JAPAN Catheter with variable flexural modulus and method of using same
4498473, Dec 07 1982 PRECISION TECHNOLOGIES, INC Variable stiffness tracheal tube
4535757, Mar 12 1982 CORDIS WEBSTER, INC Autoinflatable catheter
4554928, Sep 16 1983 CORDIS WEBSTER, INC Electrophysiological switching unit
4570354, Aug 03 1984 BEN WADE OAKES DICKINSON III; ROBERT WAYNE DICKINSON Radius of curvature transducer
4573470, May 30 1984 Advanced Cardiovascular Systems, Inc. Low-profile steerable intraoperative balloon dilitation catheter
4576177, Feb 18 1983 Catheter for removing arteriosclerotic plaque
4582181, Aug 12 1983 Advanced Cardiovascular Systems, Inc.; ADVANCED CARDIOVASCULAR SYSTEMS INC , A CA CORP Steerable dilatation catheter
4586923, Jun 25 1984 Cordis Corporation Curving tip catheter
4601705, Oct 31 1983 BRIAN GLASGOW MEMORIAL FOUNDATION, THE, A CHARITABLE TRUST; CATHETER RESEARCH, INC , AN IN CORP Steerable and aimable catheter
4616652, Oct 19 1983 ADVANCED CARDIOVASCULAR SYSTEMS, INC , 1500 SALADO DRIVE, STE 101, MOUNTAIN VIEW, CA 94043, A CORP OF CA Dilatation catheter positioning apparatus
4662404, May 15 1981 DEVICE DEVELOPMENT, INC Flexible tubing
4676249, May 19 1986 Nihon Gijutsu Kaihatsu Kabushiki Kaisha Multi-mode guidewire
4685473, Feb 22 1985 MEDICORP RESEARCH LABORATORIES CORPORATION, 1200 NORTH FEDERAL HIGHWAY, SUITE 200-06, BACA RATON, FLORIDA 3343 A CORP OF FLORIDA Orientable cardiovascular sound
4758222, Oct 31 1983 BRIAN GLASGOW MEMORIAL FOUNDATION, THE, A CHARITABLE TRUST; CATHETER RESEARCH, INC , AN IN CORP Steerable and aimable catheter
4822345, Aug 14 1986 Controllable flexibility catheter
4898577, Sep 28 1988 BADGER, RODNEY S Guiding cathether with controllable distal tip
4921482, Jan 09 1989 SCOPE MEDICAL, INC Steerable angioplasty device
4944727, Oct 31 1983 BRIAN GLASGOW MEMORIAL FOUNDATION, THE, A CHARITABLE TRUST; CATHETER RESEARCH, INC , AN IN CORP Variable shape guide apparatus
4957481, Oct 01 1987 MEDIMMUNE ONCOLOGY, INC Photodynamic therapeutic technique
4960134, Nov 18 1988 WEBSTER LABORATORIES, INC Steerable catheter
4976691, Jan 23 1989 Topless catheters
4989608, Jul 02 1987 RATNER, ADAM V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
5025799, May 13 1987 ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED; Abbott Laboratories Vascular Enterprises Limited Steerable memory alloy guide wires
5037391, Jan 09 1989 SCOPE MEDICAL, INC Steerable angioplasty device
5057092, Apr 04 1990 CORDIS WEBSTER, INC Braided catheter with low modulus warp
5065761, Jul 12 1989 DIASONICS, INC , 280 UTAH AVE , SAN FRANCISCO, CA 94080, A CORP OF DE Lithotripsy system
5073168, Aug 10 1988 DANFORTH BIOMEDICAL, INC A CA CORP Y-adaptor and percutaneous sheath for intravascular catheters
5078714, Mar 02 1990 Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
5090958, Nov 23 1988 Boston Scientific Scimed, Inc Balloon catheters
5114402, Oct 31 1983 Catheter Research, Inc. Spring-biased tip assembly
5122115, Dec 08 1989 MARKS, LLOYD A Multilumen angiography catheter
5122136, Mar 13 1990 BLOSSOM FLOWER INC Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5143093, Oct 05 1990 Methods of angioplasty treatment of stenotic regions
5147377, Nov 23 1988 SAHOTA, HARVINDER Balloon catheters
5160321, Oct 05 1990 Boston Scientific Scimed, Inc Balloon catheters
5166875, Nov 21 1988 Kabushiki Kaisha Toshiba Reconstructing two and three dimensional images by two and three dimensional Fourier transforms in an MRI system
5168864, Sep 26 1991 Clarus Medical, LLC Deflectable endoscope
5174297, Nov 22 1989 S.L.T. Japan Co., Ltd. Diagnostic apparatus for living tissues and medical treatment apparatus with diagnostic apparatus
5195968, Feb 02 1990 Catheter steering mechanism
5199950, Dec 07 1990 Willy Rusch AG Medical instrument
5203776, Oct 09 1992 STRASBURGER & PRICE, L L P Catheter
5211165, Sep 03 1991 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
5211183, May 13 1987 Abbott Laboratories Vascular Enterprises Limited; ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED Steerable memory alloy guide wires
5217484, Jun 07 1991 Retractable-wire catheter device and method
5267960, Mar 19 1990 Advanced Cardiovascular Systems, INC Tissue engaging catheter for a radioactive source wire
5267982, Apr 29 1988 Medtronic Ave, Inc Variable shaped catheter system and method for catheterization
5290266, Aug 14 1992 General Electric Company Flexible coating for magnetic resonance imaging compatible invasive devices
5291890, Aug 29 1991 Insightec Ltd Magnetic resonance surgery using heat waves produced with focussed ultrasound
5295484, May 19 1992 Arizona Board of Regents for and on Behalf of the University of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
5295486, May 03 1989 Silicon Valley Bank Transesophageal echocardiography device
5306263, May 01 1992 Catheter
5320605, Jan 22 1993 Multi-wire multi-balloon catheter
5322064, Feb 15 1991 BIOCARDIA, INC Torquable catheter and method
5327905, Jul 07 1992 Biplanar deflectable catheter for arrhythmogenic tissue ablation
5328467, Nov 08 1991 EP Technologies, Inc Catheter having a torque transmitting sleeve
5348536, Aug 02 1993 Covidien AG Coextruded catheter and method of forming
5354295, Mar 13 1990 STRYKER EUROPEAN HOLDINGS III, LLC In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5360441, Oct 30 1992 Medtronic, Inc. Lead with stylet capture member
5368564, Dec 23 1992 LIGHTWAVE ABLATIOIN SYSTEMS Steerable catheter
5368592, Apr 13 1992 EP Technologies, Inc. Articulated systems for cardiac ablation
5370617, Sep 17 1993 Blood perfusion balloon catheter
5373849, Jan 19 1993 Boston Scientific Scimed, Inc Forward viewing imaging catheter
5383923, Oct 20 1990 CORDIS WEBSTER, INC Steerable catheter having puller wire with shape memory
5385148, Jul 30 1993 Regents of the University of California, The Cardiac imaging and ablation catheter
5386741, Jun 07 1993 Robotic snake
5389072, Jun 05 1992 PercuSurge, INC Mechanism for manipulating a tool and flexible elongate device using the same
5391199, Jul 20 1993 Biosense, Inc Apparatus and method for treating cardiac arrhythmias
5401258, Jan 23 1991 KATETRY KFT Coronary guide catheter
5403291, Aug 02 1993 Covidien AG Catheter with elongated side holes
5411025, Jun 30 1992 CORDIS WEBSTER, INC Cardiovascular catheter with laterally stable basket-shaped electrode array
5423321, Feb 11 1993 Stryker Corporation Detection of anatomic passages using infrared emitting catheter
5423882, Dec 26 1991 CORDIS WEBSTER, INC Catheter having electrode with annular recess and method of using same
5431168, Aug 23 1993 CORDIS WEBSTER, INC Steerable open-lumen catheter
5445625, Jan 23 1991 KATETRY KFT Angioplasty guide catheter
5450846, Jan 08 1993 PRESSURE PRODUCTS MEDICAL SUPPLIES, INC Method for spatially specific electrophysiological sensing for mapping, pacing and ablating human myocardium and a catheter for the same
5451206, Aug 02 1993 Sherwood Services AG Triple lumen catheter
5478330, Dec 01 1992 Boston Scientific Scimed, Inc Steerable catheter with adjustable bend location and/or radius and method
5487757, Jul 20 1993 Medtronic CardioRhythm Multicurve deflectable catheter
5489278, Aug 02 1993 Sherwood Services AG Catheter with elongated side openings
5497784, Nov 11 1991 Avantec Vascular Corporation Flexible elongate device having steerable distal extremity
5500012, Jul 15 1992 LIGHTWAVE ABLATIOIN SYSTEMS Ablation catheter system
5522836, Jun 27 1994 STRYKER EUROPEAN HOLDINGS III, LLC Electrolytically severable coil assembly with movable detachment point
5522873, Dec 26 1991 CORDIS WEBSTER, INC Catheter having electrode with annular recess and method of using same
5531721, Jul 02 1992 Boston Scientific Scimed, Inc Multiple member intravascular guide catheter
5540680, Mar 13 1990 STRYKER EUROPEAN HOLDINGS III, LLC Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5555883, Feb 24 1992 Loop electrode array mapping and ablation catheter for cardiac chambers
5556390, Mar 07 1995 Covidien AG Catheter with oval or elliptical lumens
5558093, May 18 1990 Boston Scientific Scimed, Inc Guidewire with imaging capability
5569220, Jan 24 1991 CORDIS WEBSTER, INC Cardiovascular catheter having high torsional stiffness
5569245, Mar 13 1990 The Regents of the University of California Detachable endovascular occlusion device activated by alternating electric current
5588432, Mar 21 1988 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
5596989, Dec 28 1993 Olympus Optical Co., Ltd. Ultrasonic probe
5624449, Nov 03 1993 STRYKER EUROPEAN HOLDINGS III, LLC Electrolytically severable joint for endovascular embolic devices
5626136, Apr 28 1993 Cordis Webster, Inc.; CORDIS WEBSTER, INC Electrophysiology catheter with pre-curved circular tip
5628313, Jun 30 1992 CORDIS WEBSTER, INC Cardiovascular catheter with laterally stable basket-shaped electrode array
5647361, Dec 18 1992 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
5662116, Sep 12 1995 Toshiba Medical Systems Corporation Multi-plane electronic scan ultrasound probe
5733248, Nov 29 1995 Boston Scientific Scimed, Inc Universal guide catheter
5743905, Jul 07 1995 Regents of the University of California, The; Target Therapeutics, Inc Partially insulated occlusion device
5759161, Apr 26 1996 Kaneka Medix Corporation Medical wire and method for leaving implanted devices
5772590, Jun 30 1992 Cordis Webster, Inc.; CORDIS WEBSTER, INC Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire
5782239, Jun 30 1992 Cordis Webster, Inc.; CORDIS WEBSTER, INC Unique electrode configurations for cardiovascular electrode catheter with built-in deflection method and central puller wire
5797870, Jun 07 1995 Advanced Research & Technology Institute Pericardial delivery of therapeutic and diagnostic agents
5797960, Feb 22 1993 Heartport, Inc Method and apparatus for thoracoscopic intracardiac procedures
5799661, Jul 28 1994 Edwards Lifesciences, LLC Devices and methods for port-access multivessel coronary artery bypass surgery
5800393, Mar 07 1997 Wire perfusion catheter
5800497, Jul 17 1997 Medtronic, Inc Medical electrical lead with temporarily stiff portion
5820592, Jul 16 1996 Angiographic and/or guide catheter
5823956, Feb 22 1993 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
5824031, Feb 28 1996 Cardio Source Apparatus and method for deflecting a tip of a lead or catheter
5829447, Feb 22 1993 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
5830196, Sep 19 1996 Mozarc Medical US LLC Tapered and reinforced catheter
5851206, Mar 13 1990 The Regents of the University of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
5855578, Mar 13 1990 Regents of the University of California, The Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5855614, Feb 22 1993 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
5860914, Oct 05 1993 Asahi Kogaku Kogyo Kabushiki Kaisha Bendable portion of endoscope
5868700, May 01 1992 Preformed coronary artery guide catheter
5885247, Sep 12 1997 Medtronic, Inc Radial guiding catheter curve
5885259, Jan 19 1996 Boston Scientific Scimed, Inc Increasing radius curve catheter
5902287, Aug 20 1997 Medtronic Ave, Inc Guiding catheter and method of making same
5904657, Feb 26 1997 System for guiding devices in body lumens
5941872, Jan 19 1996 Boston Scientific Scimed, Inc Method of using an increasing radius curve catheter
5947962, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries veins aneurysms vascular malformations and arteriovenous fistulas
5947963, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5951513, Feb 24 1995 Advanced Cardiovascular Systems, Inc. Balloon catheter having non-bonded integral balloon and methods for its manufacture
5951514, Mar 07 1997 Multi-lobe perfusion balloon
5957911, Jan 28 1992 Advanced Cardiovascular Systems, Inc. Left coronary guiding catheter
5976126, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5976131, Mar 13 1990 The Regents of the University at California Detachable endovascular occlusion device activated by alternating electric current
6010498, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
6015402, Mar 07 1997 Wire perfusion catheter
6077260, Feb 19 1998 STRYKER EUROPEAN HOLDINGS III, LLC Assembly containing an electrolytically severable joint for endovascular embolic devices
6083170, May 17 1996 Biosense, Inc. Self-aligning catheter
6083213, Jan 23 1991 Angioplasty guide catheter
6110163, Nov 13 1995 Preformed coronary artery guide catheter
6120495, Nov 13 1995 Preformed coronary artery guide catheter
6126631, Apr 04 1994 WAKE FOREST UNIVERSITY HEALTH SCIENCES Multi-lumen catheter system used in a blood treatment process
6156061, Aug 29 1997 STRYKER EUROPEAN HOLDINGS III, LLC Fast-detaching electrically insulated implant
6159206, Oct 30 1997 Kaneka Medix Corporation Medical implement for depositing implanted device and method of depositing implanted device
6199262, Aug 20 1997 Medtronic Ave, Inc Method of making a guiding catheter
6206849, Dec 22 1987 Vas-Cath Incorporated Multiple lumen catheter
6277126, Oct 05 1998 Codman & Shurtleff, Inc Heated vascular occlusion coil development system
6280423, Feb 24 1998 AngioDynamics, Inc High flow rate dialysis catheters and related methods
6346074, Feb 22 1993 Heartport, Inc. Devices for less invasive intracardiac interventions
6348041, Mar 29 1999 Cook Medical Technologies LLC Guidewire
6368302, Aug 25 1992 Medtronic Ave, Inc Dilatation catheter with stiffening wire
6383146, Mar 29 1999 Cook Medical Technologies LLC Guidewire
6401720, Feb 22 1993 Method and apparatus for thoracoscopic intracardiac procedures
6425914, Aug 29 1997 STRYKER EUROPEAN HOLDINGS III, LLC Fast-detaching electrically insulated implant
6475195, Jan 23 1991 VODA, JAN K Angioplasty guide catheter
6551305, Mar 09 1999 Micrus Corporation Shape memory segmented detachable coil
6558368, May 01 1992 Preformed coronary artery guide catheter
6589227, Jan 28 2000 Cook Medical Technologies LLC Endovascular medical device with plurality of wires
6595983, Dec 07 2000 Voda Heart Technology, LLC Guide or diagnostic catheter for right coronary artery
6651671, Feb 22 1993 Edwards Lifesciences, LLC Lens-invasive devices and methods for cardiac valve surgery
6651672, Feb 22 1993 Heartport, Inc. Devices for less-invasive intracardiac interventions
6672338, Dec 14 1998 Active slender tubes and method of making the same
6679268, Feb 22 1993 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
6733473, Apr 05 1991 Boston Scientific Scimed, Inc Adjustably stiffenable convertible catheter assembly
6743236, Oct 05 1998 Codman & Shurtleff, Inc Heated vascular occlusion coil deployment system
6743251, Nov 15 2000 Boston Scientific Scimed, Inc Implantable devices with polymeric detachment junction
6755794, Apr 25 2000 HERAEUS MATERIALS S A Adjustable stylet
6776765, Aug 21 2001 HERAEUS MATERIALS S A Steerable stylet
6955175, Feb 22 1993 Method and apparatus for thoracoscopic intracardiac procedures
6966892, Feb 09 2000 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
7008395, Apr 04 1994 WAKE FOREST UNIVERSITY HEALTH SCIENCES Multi-lumen catheter system used in a blood treatment process
7025758, Jan 28 2000 Cook Medical Technologies LLC Endovascular medical device with plurality of wires
7025768, May 06 2003 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
7100614, Feb 22 1993 Heartport, Inc. Method of Forming a Lesion in Heart Tissue
7179276, Oct 05 1998 Codman & Shurtleff, Inc Heated vascular occlusion coil deployment system
7182774, Oct 05 1998 Codman & Shurtleff, Inc Heated vascular occlusion coil deployment system
7238194, Jul 24 2002 Dendron GmbH Device for implanting occlusion spirals
7291127, Jul 28 2003 Boston Scientific Scimed, Inc Variable manipulative strength catheter
7300458, Jul 19 2002 USSC MEDICAL GMBH Medical implant having a curlable matrix structure
7485122, Jun 27 2002 STRYKER EUROPEAN HOLDINGS III, LLC Integrated anchor coil in stretch-resistant vaso-occlusive coils
7651513, Apr 03 2003 STRYKER EUROPEAN HOLDINGS III, LLC Flexible embolic device delivery system
7682352, Sep 28 2004 Medtronic Vascular, Inc. Catheter with curved distal section having reinforcing strip and method of making same
7722637, Oct 05 1998 Codman & Shurtleff, Inc Heated vascular occlusion coil deployment system
7736323, Oct 15 2002 Controllable stiffness catherer guide device
7749266, Feb 27 2006 CARDIACMD, INC Methods and devices for delivery of prosthetic heart valves and other prosthetics
7785341, Feb 27 2004 CARDIACMD, INC Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
7867218, Feb 24 2004 Voda Heart Technology, LLC Steerable catheter for right coronary artery
7892186, Dec 09 2005 HERAEUS MATERIALS S A Handle and articulator system and method
7892231, May 06 2003 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
7901704, Aug 21 2007 Boston Scientific Scimed, Inc. Embolization
7938845, Jun 27 2002 STRYKER EUROPEAN HOLDINGS III, LLC Anchor assemblies in stretch-resistant vaso-occlusive coils
7951206, Apr 02 2001 Boston Scientific Scimed, Inc. Medical stent
7998132, Sep 02 2005 Boston Scientific Scimed, Inc. Adjustable stiffness catheter
8029457, Mar 24 2006 Merit Medical Systems, Inc Indwelling catheter with anti-clotting features
8057396, May 24 2006 Phoenix Biomedical, Inc. Device for assessing a cardiac valve
8128692, Feb 27 2004 CARDIACMD, INC Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
8142492, Jun 20 2007 CARDIACMD, INC Prosthetic valve implantation systems
8147541, Feb 27 2006 CARDIACMD, INC Methods and devices for delivery of prosthetic heart valves and other prosthetics
8182506, Aug 25 2004 MICROVENTION, INC Thermal detachment system for implantable devices
8192480, Dec 21 2007 MICROVENTION, INC System and method of detecting implant detachment
8202292, Oct 13 2008 STRYKER EUROPEAN HOLDINGS III, LLC Vaso-occlusive coil delivery system
8216229, May 06 2003 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
8221483, May 18 2007 STRYKER EUROPEAN HOLDINGS III, LLC Medical implant detachment systems and methods
8298160, Mar 16 2001 Covidien LP Wire convertible from over-the-wire length to rapid exchange length
8303570, Sep 02 2005 Boston Scientific Scimed, Inc. Adjustable stiffness catheter
8328841, May 22 2007 Cook Medical Technologies LLC Embolization coil delivery systems and methods
8376865, Jun 20 2006 CARDIACMD, INC Torque shaft and torque shaft drive
8398671, Apr 16 2009 STRYKER EUROPEAN HOLDINGS III, LLC Electrical contact for occlusive device delivery system
8403981, Feb 27 2006 CARDIACMD, INC Methods and devices for delivery of prosthetic heart valves and other prosthetics
8430925, Feb 27 2004 CARDIACMD, INC Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
8460332, Dec 21 2007 MicroVention, Inc. System and method of detecting implant detachment
8500799, Jun 20 2007 CARDIACMD, INC Prosthetic heart valves, support structures and systems and methods for implanting same
8551019, Sep 06 2006 Pacesetter, Inc Variable stiffness guide wire
8585594, May 24 2006 PHOENIX BIOMEDICAL, INC Methods of assessing inner surfaces of body lumens or organs
8597323, Nov 16 2012 MICROVENTION, INC Delivery and detachment systems and methods for vascular implants
8608770, Feb 27 2004 CardiacMD, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
8721625, Jan 26 2001 Cook Medical Technologies LLC Endovascular medical device with plurality of wires
8728156, Feb 27 2004 Cardiac MD, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
8814848, Sep 02 2005 Boston Scientific Scimed Inc. Adjustable stiffness catheter
8845676, Sep 22 2004 Covidien LP Micro-spiral implantation device
8876855, Nov 16 2012 MICROVENTION, INC Delivery and detachment systems and methods for vascular implants
8906057, Jan 04 2010 Aneuclose LLC Aneurysm embolization by rotational accumulation of mass
8932317, Jun 02 1999 MARKS, MICHAEL P Intracorporeal occlusive device and method
8932318, Mar 30 2012 Depuy Synthes Products, LLC Embolic coil detachment mechanism with polymer tether
8940011, Sep 09 2008 Boston Scientific Scimed, Inc. Composite detachment mechanisms
8945024, Oct 29 2004 Kaneka Corporation Medical wire
20010009996,
20010056281,
20020087177,
20020133092,
20030045921,
20030097080,
20040002732,
20040054322,
20040078050,
20050027244,
20050283183,
20070083226,
20070249924,
20080027482,
20090082852,
20100076479,
20100137898,
20110166588,
20110245862,
20120046687,
20120078343,
20120283812,
20130261656,
20140163604,
20140277097,
EP830873,
EP992220,
EP1120088,
EP1806104,
EP1992308,
EP2695638,
RE43311, Aug 29 1997 STRYKER EUROPEAN HOLDINGS III, LLC Fast-detaching electrically insulated implant
WO2000054832,
WO2005060606,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 19 2014MicroVention, Inc.(assignment on the face of the patent)
Nov 16 2015TSUKASHIMA, ROSSMICROVENTION, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411250119 pdf
Jan 27 2017BOWMAN, HEATHMICROVENTION, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411250119 pdf
Date Maintenance Fee Events
May 04 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Nov 07 20204 years fee payment window open
May 07 20216 months grace period start (w surcharge)
Nov 07 2021patent expiry (for year 4)
Nov 07 20232 years to revive unintentionally abandoned end. (for year 4)
Nov 07 20248 years fee payment window open
May 07 20256 months grace period start (w surcharge)
Nov 07 2025patent expiry (for year 8)
Nov 07 20272 years to revive unintentionally abandoned end. (for year 8)
Nov 07 202812 years fee payment window open
May 07 20296 months grace period start (w surcharge)
Nov 07 2029patent expiry (for year 12)
Nov 07 20312 years to revive unintentionally abandoned end. (for year 12)