The present invention relates to a power conditioning unit for delivering power from a dc power source to an ac output, particularly ac voltages greater than 50 volts, either for connecting directly to a grid utility supply, or for powering mains devices independent from the mains utility supply. We describe a power conditioning unit for delivering power from a dc power source to an ac mains output, the power conditioning unit comprising an input for receiving power from said dc power source, an output for delivering ac power, an energy storage capacitor, a dc-to-dc converter having an input connection coupled to said input and an output connection coupled to the energy storage capacitor, and a dc-to-ac converter having an input connection coupled to said energy storage capacitor and an output connection coupled to said output, wherein said energy storage capacitor has a capacitance of less than twenty microfarads.
|
1. A power conditioning unit for delivering power from a dc power source to an ac circuit, the power conditioning unit comprising:
a dc input for receiving power from the dc power source;
an ac output for delivering ac power to the ac circuit;
a non-electrolytic energy storage capacitor configured to store energy from the dc power source for delivery to the ac circuit, wherein a peak amplitude of a fluctuating dc voltage on the energy storage capacitor depends on an amount of power transferred from the dc power source to the ac circuit;
a dc to dc converter having an input connection coupled to the dc input and an output connection coupled to the energy storage capacitor; and
a dc to ac converter having an input connection coupled to the energy storage capacitor and an output connection coupled to the ac output.
12. A power conditioning unit (PCU) for delivering power from a solar photovoltaic dc power source to an ac mains, the PCU comprising:
a first power conversion stage for voltage conditioning of power received from the solar photovoltaic dc power source;
a second power conversion stage for injecting power into the ac mains;
a non-electrolytic energy storage capacitor having a capacitance of less than twenty microfarads coupled between the first power conversion stage and the second power conversion stage to buffer power transferred from the first power conversion stage to the second power conversion stage; and
a power injection control block coupled to the energy storage capacitor and to the second power conversion stage and configured to control an amount of power injected into the ac mains by controlling a peak amplitude of a fluctuating sinusoidal component of a dc voltage on the energy storage capacitor.
2. The power conditioning unit according to
3. The power conditioning unit according to
4. The power conditioning unit according to
5. The power conditioning unit according to
6. The power conditioning unit according to
7. The power conditioning unit according to
8. The power conditioning unit according to
9. The power conditioning unit according to
10. The power conditioning unit according to
11. The power conditioning unit according to
13. The PCU according to
14. The PCU according to
15. The PCU according to
16. The PCU according to
17. The PCU according to
18. The PCU according to
19. The PCU according to
20. The PCU according to
21. The PCU according to
22. The power conditioning unit according to
|
This application is a continuation application of U.S. patent application Ser. No. 14/331,194, filed Jul. 14, 2014, now published as U.S. Publication 2015/0009724. U.S. patent application Ser. No. 14/331,194 is a continuation application of U.S. patent application Ser. No. 13/276,885, filed on Oct. 19, 2011, now issued as U.S. Pat. No. 8,811,047. U.S. patent application Ser. No. 13/276,885 is a continuation application of U.S. patent application Ser. No. 12/160,743, filed on May 4, 2010, now issued as U.S. Pat. No. 8,089,785. U.S. patent application Ser. No. 12/160,743 is a national stage application of PCT Application PCT/GB2007/050014, filed Jan. 12, 2007, now published as WO 2007/080429. PCT Application PCT/GB2007/050014 claims the benefit of United Kingdom Patent Application GB 0600658.9, filed Jan. 13, 2006. U.S. Publication 2015/0009724 and U.S. Pat. Nos. 8,811,047 and 8,089,785 are incorporated herein by reference.
The present invention relates to a power conditioning unit for delivering power from a dc power source to an ac output, particularly suitable for ac voltages greater than 50 volts, either for connecting directly to the mains or grid utility supply, or for powering mains devices directly, independent from the mains utility supply.
A number of power electronics converters have been produced in the past for research or commercial purposes, see for example EP0780750, EP0947905, and JP2000020150. In these solutions a capacitor is used as a reservoir and for filtering of high frequency currents. Further information may be found in US2005/0068012, JP05003678, GB2415841 and WO2006/011071. However, attention is not directly paid into the choice of capacitor and the control of energy input and output. It is common to encounter aluminum electrolytic capacitors in power supplies. These capacitors have lifetimes in the range of 2000 to 12000 hours, that is, up to 1.4 years of continuous service. In contrast other capacitor technologies, such as polyester, can achieve lifetimes of up to 500,000 hours or slightly more than 50 years. Therefore, it would be advantageous to provide a better lifetime of the power converter by using polyester or polypropylene capacitor. This is possible with the method of energy control explained herein.
We will describe a method to control direct current energy sources, in particular a method to control direct current energy sources that utilise power electronics converters to condition the input power into alternating current electricity that is supplied to the mains. Such power electronics converter comprises of a plurality of conversion stages and one energy reservoir in the form of a capacitor. The method presented allows the utilisation of long-lifetime polyester or polypropylene capacitors as opposed to short-lifetime electrolytic capacitors. The method consists of two control algorithms: one algorithm controls the power extracted from the energy source that is supplied to the energy reservoir and another controls the transfer of power from the reservoir into the electricity mains. We will describe controlling the voltage in the energy reservoir, as opposed to the supply voltage, which in turn controls the energy transfer. We will describe energy being supplied to the reservoir from the source (PV panel). To release that energy the voltage variation in the reservoir is used to define a current amplitude. We will describe how energy is stored in the power converter (in the energy reservoir) and how to use that energy to define a current injection into the mains.
According to an aspect of the invention, there is provided a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising an input for receiving power from said dc power source, an output for delivering ac power, an energy storage capacitor, a dc-to-dc converter having an input connection coupled to said input and an output connection coupled to the energy storage capacitor, and a dc-to-ac converter having an input connection coupled to said energy storage capacitor and an output connection coupled to said output, wherein said energy storage capacitor has a capacitance of less than twenty microfarads.
The ac mains power supply output may be connected to the utility grid, so that the power conditioning unit delivers power into the grid, or it may be a standalone power supply output for supplying power to electrical appliances.
The dc-to-dc converter may be configured to draw a substantially constant power from the dc power source regardless of a voltage on the energy storage capacitor. It may be configured to perform maximum power point tracking (MPPT) of the dc power source, and this may be achieved by maintaining a voltage or current from the dc power source substantially at a reference voltage or current. This may comprise controlling transistors in the dc-to-dc converter responsive both to the voltage or current from the dc power source and to a voltage or current to the energy storage capacitor.
The dc-to-ac converter may be configured to deliver a substantially sinusoidal current or voltage to the ac mains power supply output regardless of a voltage on the energy storage capacitor. This may be achieved by maintaining a current or voltage to the power supply output substantially at a reference sinusoid current or voltage. This may comprise controlling transistors in the dc-to-ac converter responsive both to a voltage or current from the energy storage capacitor and to the current or voltage to the power supply output.
The energy storage capacitor may comprise a non-electrolytic capacitor such as a film-type capacitor (for example polyester or polypropylene). The value of the capacitance may be directly proportional to the maximum power transfer capability, that is, the rated power of the apparatus. This value may be lower than an equivalent electrolytic capacitor in a conventional power conditioning unit with the same power rating. For example, less than 20 microfarads, less than 15 microfarads, less than 10 microfarads, less than 5 microfarads or another size available for a non-electrolytic capacitor.
According to another aspect of the invention, there is provided a dc-to-dc converter for delivering power from a dc power source to a dc output, the converter being configured to maintain a voltage on the dc power source substantially constant over a range of dc output voltages, the converter comprising an input for receiving power from said dc power source, an output for delivering dc power, at least one power device for transferring power from the input to the output, a sensing circuit for sensing a voltage on said input, and a driver circuit for driving said at least one power device responsive to said sensing to control said power transfer.
According to a further aspect of the invention, there is provided an inverter for delivering power from a dc power source to an ac output, the inverter being configured to maintain a substantially sinusoidal output voltage or current over a range of dc power source voltages, the inverter comprising an input for receiving power from said dc power source, an output for delivering ac power, at least one power device for transferring power from the input to the output, a low-pass filter coupled to said input, a sensing circuit for sensing an output from the low-pass filter and comparing with a reference, and a driver circuit for driving said at least one power device responsive to said sensing to control said power transfer.
According to a yet further aspect of the invention, there is provided a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, wherein a link capacitor of the power conditioning unit connected in parallel between an output of a dc-to-dc converter of said power conditioning unit and an input of a dc-to-ac converter of said power conditioning unit is not an electrolytic capacitor.
According to another aspect of the invention, there is provided a method to control a power conditioning unit for delivering power from a dc source into the electricity supply, the power conditioning comprising the following: a plurality of inputs for connecting the dc power source, a plurality of output for connecting into the electricity supply, a power conversion stage for voltage conditioning of the dc power source, a power conversion stage for power injection into the electricity supply, a dc capacitor for energy buffering from the dc power source to the electricity supply.
Embodiments of the invention will now be described in detail, with reference to the accompanying drawings, in which:
The present invention relates to a method of controlling the transfer of power from a dc energy source, such as a solar panel, fuel cell, dc wind turbine, etc, into the electricity mains supply, and in particular, this method allows the replacement of shortlifetime energy reservoirs for long-lifetime polyester or polypropylene capacitors.
The energy control method can be used in any power electronics converter device (1) as shown in
The power converter stage A (3) may be of different types: it can be a stepdown converter where the voltage at the input is decreased using some power electronics topology; it can be a step-up converter where the input voltage is amplified using a different type of power electronics circuit; or it can do both amplify and attenuate the input voltage. In addition, it may provide electrical isolation by means of a transformer or a coupled inductor. In whatever case, the electrical conditioning of the input voltage must be such that the voltage across the capacitor Cdc (4) remains higher than the grid voltage (6) magnitude at all times. Also, this block contains one or more transistors, inductors, and capacitors. The transistor(s) are driven through a pulse width modulation (PWM) generator. The PWM signal(s) have variable duty cycle, that is, the ON time is variable with respect to the period of the signal. This variation of the duty cycle effectively controls the amount of power transferred across the power converter stage A (3).
The power converter stage B (5) injects current into the electricity supply (6). Therefore, the topology utilises some means to control the current flowing from the capacitor Cdc (4) into the mains (6). The circuit topology can be either a voltage source inverter or a current source inverter.
Control B (8 in
The capacitor Cdc (4) acts as an energy buffer from the input to the output. Energy is supplied into the capacitor via the power stage A (3) at the same time that energy is extracted from the capacitor via the power stage B (5). The current invention provides a control method that balances the average energy transfer and allows a voltage fluctuation, resulting from the injection of ac power into the mains (6), superimposed to the average dc voltage of the capacitor Cdc (4), as shown in
Two synchronised and independent control blocks control the system (1): a control block A (7) that directly controls the power stage A (3), and a control block B (8) that directly controls the power stage B (5).
Control block A (7) has the configuration shown in
Controlling the dc source (2) voltage directly controls the power being transferred across power stage A (3) as is shown in
Control block B (8) has the configuration shown in
An implementation of control blocks A and B is shown in
The control shown in
Implementation of control B (52) includes a current transducer that senses the rectified output current. This signal is conditioned to appropriate voltage levels using operational amplifiers and is then compared against a reference current. The reference current is generated in the microcontroller by an algorithm shown in
No doubt many other effective alternatives will occur to the skilled person. It will be understood that the invention is not limited to the described embodiments and encompasses modifications apparent to those skilled in the art lying within the spirit and scope of the claims appended hereto.
Patent | Priority | Assignee | Title |
11411510, | Jan 24 2020 | Lear Corporation | DC/AC inverter resonance topology |
11996787, | Nov 08 2018 | Redx Technology Australia Pty Ltd | FWS DC-AC grid connected inverter |
Patent | Priority | Assignee | Title |
2852721, | |||
4479175, | Aug 13 1982 | Honeywell Inc. | Phase modulated switchmode power amplifier and waveform generator |
4626983, | Oct 06 1983 | Nishimu Electronics Industries Co., Ltd. | Power conversion device for solar cell |
4772994, | Sep 10 1987 | Nishimu Electronics Industries, Co., Ltd. | Power source using high-frequency phase control |
5329222, | Nov 30 1992 | S&C Electric Company | Apparatus and method for dynamic voltage restoration of utility distribution networks |
5381327, | Mar 19 1992 | Astec International, Ltd. | Electrical power inverter |
5404059, | Mar 19 1992 | ABB Patent GmbH | Circuit for driving a voltage-controlled semiconductor switch |
5576941, | Aug 10 1994 | YORK TECHNOLOGIES, INC | Modular power supply system |
5585749, | Dec 27 1994 | Google Technology Holdings LLC | High current driver providing battery overload protection |
5625539, | May 30 1994 | Sharp Kabushiki Kaisha | Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains |
5719758, | Dec 20 1995 | Sharp Kabushiki Kaisha | Inverter control method and inverter apparatus using the method |
5814970, | Jul 30 1994 | Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. | Apparatus for charge exchange among a plurality of series connected energy accumulators or energy converters |
5930131, | May 28 1998 | Long Well Electronics Corp. | Controlling device for conversion of DC power to sine wave AC power |
6021052, | Sep 22 1997 | SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC | DC/AC power converter |
6058035, | Mar 30 1998 | Sanyo Electric Co., Ltd. | Method and apparatus for supplying AC power to commercial power line by using sunlight |
6081104, | Nov 20 1998 | Applied Power Corporation | Method and apparatus for providing energy to a lighting system |
6219623, | Nov 24 1997 | Beacon Power, LLC | Anti-islanding method and apparatus for distributed power generation |
6281485, | Sep 27 2000 | The Aerospace Corporation | Maximum power tracking solar power system |
6339538, | Jun 22 1998 | Inverter circuit and method of operation | |
6369461, | Sep 01 2000 | ABB Inc | High efficiency power conditioner employing low voltage DC bus and buck and boost converters |
6445599, | Mar 29 2001 | Maxim Integrated Products, Inc.; Maxim Integrated Products, Inc | Ripple canceling, soft switching isolated DC/DC converters with reduced voltage stress synchronous rectification |
6657419, | Nov 19 2001 | Atom H2O, LLC | Micro-solar insolation circuit |
6678174, | Nov 27 2000 | Canon Kabushiki Kaisha | Power converting apparatus, control method therefor, and power generation system |
6856102, | May 14 2004 | LIGTEK ELECTRONICS CO , LTD | Three-stage electronic ballast for metal halide lamps |
6888728, | May 25 2001 | TDK Corporation | Switching power supply unit |
6906474, | Sep 29 2003 | OSRAM SYLVANIA Inc | Three-phase electronic ballast |
6950323, | Mar 09 2001 | Fronius International GmbH | Method for regulating an inverter system |
6980783, | May 31 2002 | Ciena Corporation | Apparatus and method of controlling low frequency load currents drawn from a DC source in a telecommunications system |
7031176, | Jul 15 2002 | Koninklijke Philips Electronics N V | Inverter |
7057611, | Mar 25 2003 | O2Micro International Limited | Integrated power supply for an LCD panel |
7064967, | Feb 28 2003 | Hitachi, Ltd.; Hitachi Home & Life Solutions Inc. | Fuel cell system and control method |
7078883, | Apr 07 2004 | Board of Trustees of the University of Illinois, The | Method and apparatus for starting power converters |
7091707, | Sep 29 2003 | SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC | Method and apparatus for controlling power drawn from an energy converter |
7099169, | Feb 21 2003 | SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC | DC to AC inverter with single-switch bipolar boost circuit |
7193872, | Jan 28 2005 | The Aerospace Corporation | Solar array inverter with maximum power tracking |
7262979, | Jun 09 2004 | Yuan Ze University | Current source wave voltage inverter voltage-clamping and soft-switching techniques, and fuel cell system using the same |
7319313, | Aug 10 2005 | SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC | Photovoltaic DC-to-AC power converter and control method |
7324361, | Jan 28 2005 | The Aerospace Corporation | Solar array inverter with maximum power tracking |
7339287, | Jun 23 2002 | SMA SOLAR TECHNOLOGY AG | Power converter |
7414870, | Feb 26 2005 | Kostal Industrie Elektrik GmbH | Inverter |
7432691, | Sep 29 2003 | Xantrex Technology Inc. | Method and apparatus for controlling power drawn from an energy converter |
7450401, | Oct 17 2005 | Kabushiki Kaisha Toyota Jidoshokki | Bidirectional DC/AC inverter |
7463500, | Feb 21 2003 | XANTREX TECHNOLOGY, INC A WASHINGTON CORPORATION | Monopolar DC to bipolar DC to AC converter |
7466566, | Mar 05 2004 | ROHM CO , LTD | DC-AC converter, controller IC therefor, and electronic apparatus utilizing such DC-AC converter |
7479774, | Apr 07 2006 | Yuan Ze University | High-performance solar photovoltaic (PV) energy conversion system |
7885085, | Jan 22 2007 | POTENTIA SEMICONDUCTOR CORP | Cascaded PFC and resonant mode power converters |
7919953, | Oct 23 2007 | AMPT, LLC | Solar power capacitor alternative switch circuitry system for enhanced capacitor life |
8089785, | Jan 13 2006 | TESLA, INC | Power conditioning unit |
8139382, | May 14 2008 | National Semiconductor Corporation | System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking |
8184460, | May 28 2009 | GE GRID SOLUTIONS LLC | Solar inverter and control method |
8363427, | Jun 25 2010 | GREECON TECHNOLOGIES LTD | Bi-directional power converter with regulated output and soft switching |
8405367, | Jan 13 2006 | TESLA, INC | Power conditioning units |
8461809, | Jan 13 2006 | TESLA, INC | Power conditioning unit |
8767421, | Jun 16 2011 | ENPHASE ENERGY, INC | Power converter bus control method, system, and article of manufacture |
8811047, | Jan 13 2006 | TESLA, INC | Solar power conditioning unit |
9246397, | Jan 13 2006 | TESLA, INC | Solar power conditioning unit |
9270191, | Jan 13 2006 | TESLA, INC | Power condition units with MPPT |
20010023703, | |||
20020034083, | |||
20020085397, | |||
20020118559, | |||
20020177401, | |||
20030193821, | |||
20040076028, | |||
20040117676, | |||
20040165408, | |||
20040207366, | |||
20040233685, | |||
20050030772, | |||
20050068012, | |||
20050242795, | |||
20060232220, | |||
20070035975, | |||
20070158185, | |||
20070290656, | |||
20080055941, | |||
20080097655, | |||
20080205096, | |||
20080266919, | |||
20080285317, | |||
20080291707, | |||
20080304296, | |||
20080304298, | |||
20090080226, | |||
20090097283, | |||
20100002470, | |||
20100052425, | |||
20100157632, | |||
20100195361, | |||
20100207455, | |||
20100246230, | |||
20100309695, | |||
20110210694, | |||
20150109833, | |||
20160226390, | |||
DE10064039, | |||
DE19937410, | |||
EP340006, | |||
EP780750, | |||
EP947905, | |||
EP1235339, | |||
EP1239576, | |||
EP1974453, | |||
GB1261838, | |||
GB2415841, | |||
GB2419968, | |||
GB2434490, | |||
GB2454389, | |||
GB2478789, | |||
GB2482653, | |||
JP10174452, | |||
JP1311874, | |||
JP2000020150, | |||
JP2000316282, | |||
JP2000347753, | |||
JP2001178145, | |||
JP2002238246, | |||
JP2002270876, | |||
JP2002354677, | |||
JP5003678, | |||
JP7028538, | |||
JP8227324, | |||
JP8317664, | |||
WO4001942, | |||
WO2004006342, | |||
WO2004008619, | |||
WO2005015584, | |||
WO2006011071, | |||
WO2007080429, | |||
WO2007111868, | |||
WO2007124518, | |||
WO2008092055, | |||
WO2009051853, | |||
WO2009134756, | |||
WO9607130, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 08 2015 | SolarCity Corporation | (assignment on the face of the patent) | / | |||
Mar 16 2021 | SolarCity Corporation | TESLA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056172 | /0062 |
Date | Maintenance Fee Events |
Apr 27 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 07 2020 | 4 years fee payment window open |
May 07 2021 | 6 months grace period start (w surcharge) |
Nov 07 2021 | patent expiry (for year 4) |
Nov 07 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 07 2024 | 8 years fee payment window open |
May 07 2025 | 6 months grace period start (w surcharge) |
Nov 07 2025 | patent expiry (for year 8) |
Nov 07 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 07 2028 | 12 years fee payment window open |
May 07 2029 | 6 months grace period start (w surcharge) |
Nov 07 2029 | patent expiry (for year 12) |
Nov 07 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |