A mating assurance system includes first and second microphones configured to be located in a vicinity of a mating zone for electrical connectors. The first microphone is located a first distance from the mating zone and the second microphone being located a second distance from the mating zone. The first and second microphones are configured to detect audible sound when the electrical connectors are mated. An output unit is connected to the first and second microphones and receives audio signals from the first and second microphones. The output unit processes the audio signals from the first microphone and from the second microphone for mating assurance.
|
14. A mating assurance system comprising:
first and second microphones configured to be located in a vicinity of a mating zone for electrical connectors, the first and second microphones configured to detect audible sound; and
an output unit connected to the first and second microphones and receiving audio signals from the first and second microphones, the output unit processing the audio signals from the first microphone and from the second microphone to determine a direction of origination of the audible sounds, and the output unit compares the audio signals from the first microphone with the audio signals from the second microphone for mating assurance.
16. A method of detecting electrical connector mating, the method comprising:
positioning a first microphone in a vicinity of a mating zone for the electrical connectors;
positioning a second microphone in a vicinity of the mating zone for the electrical connectors;
detecting audible sounds with the first and second microphones when the electrical connectors are mated;
transmitting audio signals based on the audible sounds detected by the first and second microphones to an output unit;
processing the audio signals from the first and second microphones at the output unit by comparing the audio signals from the first microphone with the audio signals from the second microphone for mating assurance.
1. A mating assurance system comprising:
first and second microphones configured to be located in a vicinity of a mating zone for electrical connectors, the first microphone being located a first distance from the mating zone and the second microphone being located a second distance from the mating zone, the first and second microphones configured to detect audible sound when the electrical connectors are mated; and
an output unit connected to the first and second microphones and receiving audio signals from the first and second microphones, the output unit processing the audio signals from the first microphone and from the second microphone for mating assurance, wherein the output unit compares the audio signals from the first microphone with the audio signals from the second microphone for mating assurance.
2. The mating assurance system of
3. The mating assurance system of
4. The mating assurance system of
5. The mating assurance system of
6. The mating assurance system of
7. The mating assurance system of
8. The mating assurance system of
9. The mating assurance system of
10. The mating assurance system of
11. The mating assurance system of
12. The mating assurance system of
13. The mating assurance system of
15. The mating assurance system of
17. The method of
18. The method of
|
This application claims the benefit of U.S. Provisional Application No. 62/119,475 filed Feb. 23, 2015 titled MATING ASSURANCE SYSTEM AND METHOD, the subject matter of which is herein incorporated by reference in its entirety.
The subject matter herein relates generally to mating assurance systems and methods.
Insuring that mating pairs of electrical connectors are mated properly is important in electrical systems, particularly in electrical systems that exhibit vibration during operation, such as in automotive applications. For example, an electrical connector can be partially mated during a car assembly process, such as in a car assembly factory, and can pass conventional electrical assurance tests, such as tests that pass electrical signals through the electrical connectors to determine electrical connection of the connectors. However, once in operation, the car vibration can cause the electrical connectors to come loose and cause failure.
Conventional assembly methods for electrical connectors provide a mating mechanism, such as a latch, that produces a click when the latch latches in place. However, in an assembly situation, a worker may not properly hear the click due to background factory noises, or could confuse the click with other sounds that closely resemble a connector click. Some known systems use a double casing of the connector, where a second case only fits if the electrical connectors were properly mated. However, such systems have increased cost associated with the second case and increased labor time to assemble.
A need remains for a mating assurance system and method to detect proper mating of electrical connectors.
In one embodiment, a mating assurance system is provided including first and second microphones configured to be located in a vicinity of a mating zone for electrical connectors. The first microphone is located a first distance from the mating zone and the second microphone being located a second distance from the mating zone. The first and second microphones are configured to detect audible sound when the electrical connectors are mated. An output unit is connected to the first and second microphones and receives audio signals from the first and second microphones. The output unit processes the audio signals from the first microphone and from the second microphone for mating assurance.
In a further embodiment, a mating assurance system is provided including first and second microphones configured to be located in a vicinity of a mating zone for electrical connectors. The first and second microphones are configured to detect audible sound. An output unit is connected to the first and second microphones and receives audio signals from the first and second microphones. The output unit processes the audio signals from the first microphone and from the second microphone to determine a direction of origination of the audible sounds.
In another embodiment, a method of detecting electrical connector mating is provided including positioning a first microphone in a vicinity of a mating zone for the electrical connectors and positioning a second microphone in a vicinity of the mating zone for the electrical connectors. The method includes detecting audible sounds with the first and second microphones when the electrical connectors are mated and transmitting audio signals based on the audible sounds detected by the first and second microphones to an output unit. The method includes processing the audio signals from the first and second microphones at the output unit.
In an exemplary embodiment, the mating assurance system 100 detects an audible sound, such as a latching sound or click, when the electrical connectors 102, 104 are mated. The mating assurance system 100 may use real time signal processing for mating assurance. The mating assurance system 100 may provide mating assurance as to the mating status of the connectors 102, 104 (e.g., confirmation that the connectors 102, 104 have been mated or that the connectors 102, 104 have not been mated). The mating assurance system 100 may provide feedback to the assembler of the mating status of the electrical connectors 102, 104 for mating assurance. The audible verification aspect of the mating assurance system 100 may be used in conjunction with an electronic verification system or other quality control systems that tests the electrical connection between the electrical connectors 102, 104 as a secondary verification system.
The mating assurance system 100 includes a plurality of microphones that are located in a vicinity of a mating zone 112 for the electrical connectors 102, 104. In the illustrated embodiment, a first microphone 110 and a second microphone 111 are illustrated; however any number of microphones may be used in various embodiments. The microphones 110, 111 may be omnidirectional microphones. In an exemplary embodiment, the microphones 110, 111 are positioned at different first and second distances from the mating zone 112, such that the first and second microphones 110, 111 may receive the audible sound at different times (e.g., the second microphone 111 may be positioned further from the electrical connectors 102, 104 such that the audible sound made when the electrical connectors 102, 104 are mated is received at a later time at the second microphone 111 as compared to the first microphone 110). The mating assurance system 100 may use the time difference to determine the relative distances between the microphones 110, 111 and the electrical connectors 102, 104 and/or to determine a direction of sound origination (e.g., the direction of the mating zone 112). The mating assurance system 100 may ignore audio signals determined to originate from a direction other than the mating zone, which reduces the amount of data that needs to be processed and enhances the speed of processing of the mating assurance system 100. Using multiple microphones 110, 111 may enhance reliability of the sound detection of the mating assurance system 100 as compared to systems that use a single microphone. Using multiple microphones 110, 111 may reduce the probability of false positive identification of connector mating as compared to systems that use a single microphone. Using multiple microphones 110, 111 allows collecting audio signals from different angles to provide enhanced signal signature matching capabilities and/or for determining angular orientation of the electrical connectors 102, 104 when mated. Optionally, the mating zone 112 may be positioned beyond the first microphone 110 such that the first microphone 110 is positioned between the mating zone 112 and the second microphone 111. In other embodiments, the mating zone 112 may be positioned between the first and second microphones 110, 111. The mating zone 112 may be staggered forward of, rearward of, or to one side or the other of the first microphone 110 and/or the second microphone 111.
The microphones 110, 111 are connected to one or more output unit(s) 114 and the output unit 114 receives audio signals from the microphones 110, 111. The microphones 110, 111 may be connected to the output unit 114 by a wired or a wireless connection. The output unit 114 may be a computer that processes the audio signals and provides feedback to the assembler based on the audio signals. In an exemplary embodiment, the output unit 114 compares the audio signals from the microphones 110, 111 for enhanced mating assurance. The output unit 114 may compare the time of receipt of the audio signals from the microphones 110, 111 during processing. The output unit 114 determines if the electrical connectors 102, 104 are properly mated based on the audio signals as a form of audible verification of proper mating. The output unit 114 determines or verifies if the audible sound received at the microphones 110, 111 originated from mating of the electrical connectors 102, 104 and/or filters out the audio signals if it is determined that the audible sound was form a source other than the mating of the electrical connectors 102, 104. For example, the output unit 114 may filter background noise if the output filter determines that the audible sound was from a source other than the mating of the electrical connectors 102, 104, which may enhance the audible sound for the assembler. For example, by using multiple microphones 110, 111, the output unit 114 may determine the direction of origin of the audible sound and may filter out audible sounds that are determined to occur from a direction outside of the mating zone 112, such as from a direction behind the second microphone 111 or from a direction too remote from the mating zone 112 to be occurring from the mating of the electrical connectors 102, 104. The mating assurance system 100 may include other microphones in or around the mating zone 112 that listen for background noise and the output unit 114 may compare the audio signals from each of the microphones to isolate the audible sounds associated with mating the electrical connectors 102, 104 from the background noise. The output unit 114 may have other means of filtering the background noise detected by the microphones.
In an exemplary embodiment, the first microphone 110 and/or the second microphone 111 may be held by the assembler proximate to the assembler's hand. For example, the microphones 110, 111 may be strapped to the assembler's hand or may be integrated into a glove worn by the assembler. In one particular embodiment, the first microphone 110 may be worn by the assembler at or near the assembler's finger tips, and thus at or near the mating zone 112, while the second microphone 111 may be worn by the assembler at or near the assemblers wrist, and thus outside of, but near enough to detect the audible sounds of, the mating zone 112. In other embodiments, rather than being worn by the assembler, the first microphone 110 and/or the second microphone 111 may be fixed or mounted in a particular location within the mating zone 112 in the vicinity where the assembler is mating the electrical connectors 102, 104. The first microphone 110 and/or the second microphone 111 may be embedded into or otherwise coupled to the electrical connectors 102 and/or 104.
In an exemplary embodiment, the mating assurance system 100 may be adapted for use in an area where visibility of and accessibility to the mating zone 112 is limited. For example, the electrical connectors 102, 104 may be part of wire harnesses that are assembled and mated during assembly of a car in an automotive plant. The electrical connectors 102, 104 may be mated in an area under the hood, behind the engine, behind the dashboard, under a seat, or in other difficult to see areas, making use of the audible clicking sound when the electrical connectors 102, 104 are mated. The mating assurance system 100 enhances the audible sound providing various types of feedback to the assembler to ensure that the electrical connectors 102, 104 are properly mated. Additionally, the mating of the electrical connectors 102, 104 may occur in a noisy environment, such as in an assembly plant, manufacturing plant or elsewhere where the audible click made when the latching of the electrical connectors 102, 104 may be unheard by the assembler.
The electrical connectors 102, 104 may be any type of electrical connectors. In an exemplary embodiment, the mating assurance system 100 may be used during assembly of automotive electrical connectors. The electrical connectors 102, 104 may be sealed or unsealed connectors.
The mating assurance system 100 may be used for connector identification purposes, such as to identify latching of the eight position connectors as compared to the twelve position connectors (or other types of connectors). The mating assurance system 100 may be used to identify the mating orientation of the electrical connectors 102, 104, such as to determine if the electrical connectors 102, 104 are top-up, bottom-up, side-up and the like as the audible characteristics of the latching sound or click may be different based on the orientation of the electrical connectors 102, 104. The mating assurance system 100 may have different templates for the various orientations for enhanced signal processing.
In the exemplary embodiment, the header electrical connectors 102 include a deflectable latch 106 and the receptacle electrical connectors 104 include a catch 108 for the latch 106. Optionally, the latch 106 of the twelve position header connector (
Returning to
In an exemplary embodiment, the output unit 114 provides audible feedback to the assembler based on the audio signals. For example, a speaker 116 may be coupled to the output unit 114 and output from the output unit 114 may cause the speaker 116 to provide audible feedback. The speaker 116 may enhance (e.g., make louder) the click detected by the microphones 110,111 to make it easier or possible for the assembler to hear.
In an exemplary embodiment, the output unit 114 provides visual feedback to the assembler at a display screen 118 coupled to the output unit 114. The display screen 118 may be a stationary monitor, such as a monitor setting on a desk, integrated into a computer or other system, or mounted to a wall, or may be a portable monitor, such as a monitor configured to be worn by or carried by the assembler. The display screen 118 may display visual confirmation that proper mating has occurred based on the audio signals processed by the output unit 114, such as by displaying a particular color, displaying a particular icon, displaying words and/or symbols, and the like. The output unit 114 may determine the type of the electrical connectors 102, 104 mated (e.g., eight position versus twelve position versus another type) and may display information relating to the particular type of electrical connectors 102, 104 that have been mated. For example, during a particular assembly, the assembler may need to mate a four position connector, an eight position connector and a twelve position connector. After the assembler performs the mating, the assembler may refer to the display screen 118 to verify that all three connectors where mated. The display screen 118 may indicate that only two of the connectors were actually mated, causing the assembler to return to the vehicle and figure out which connector was not properly mated. Alternatively, the output unit 114 may identify which of the connectors were mated based on the audio signals and indicate on the display screen 118 which of the three connectors were properly mated and/or which of the three connectors were not properly mated.
In an exemplary embodiment, the output unit 114 may include or be coupled to a template module 120 that includes different type templates of audio signatures (examples shown in
In an exemplary embodiment, the output unit 114 may include or be coupled to a calibration module 122 that is used to calibrate the output unit 114 and/or the template module 120. For example, in a calibration mode, the electrical connectors 102, 104 may be mated, preferably numerous times and/or in various orientations to increase the amount of data to calibrate the output unit 114 and/or template module 120. Time domain characteristics, frequency domain characteristic and/or other characteristics of the audio signal associated with the mating (e.g. the click) detected by the microphone 110 may be recorded and a median or average time domain template, frequency domain template and/or other type of template may be determined for each type of electrical connector 102, 104 (e.g., 2 position, 4 position, 6 position, 8 position, 12 position, etc.) that may be assembled and monitored by the mating assurance system 100. The output unit 114 may be calibrated and programmed for use with any number of different types of electrical connectors 102, 104. Based on the unique signatures of the audible sound made when the particular types of electrical connectors 102, 104 are mated and/or when the particular electrical connectors 102, 104 are mated at various orientations, the output unit 114 is able to identify and determine exactly which type of electrical connectors 102, 104 have been mated at any particular time. The output unit 114 provides feedback at the display screen 118 for the assembler to identify which types of electrical connectors 102, 104 have been mated.
In an exemplary embodiment, the output unit 114 includes or is electrically connected to any electronic verification module 124. The electronic verification module 124 sends signals through the electrical connectors 102, 104 to verify that the electrical connectors 102, 104 are electrically connected. The output unit 114 may verify which electrical connectors 102, 104 have affirmatively passed the electronic verification module 124 and compare such list of electrical connectors 102, 104 with the list of electrical connectors 102, 104 that have affirmatively passed audible verification. Data from the output unit 114 and/or electronic verification module 124 may be sent to a master quality control database or system on the vehicle or at the assembly plant for review and/or verification of successful assembly of the electrical connectors 102, 104. Such information may be combined with information from other modules or systems.
As used herein, the terms “system,” “unit,” or “module” may include a hardware and/or software system that operates to perform one or more functions. For example, a module, unit, or system may include a computer processor, controller, or other logic-based device that performs operations based on instructions stored on a tangible and non-transitory computer readable storage medium, such as a computer memory. Alternatively, a module, unit, or system may include a hard-wired device that performs operations based on hard-wired logic of the device. Various modules or units shown in the attached figures may represent the hardware that operates based on software or hardwired instructions, the software that directs hardware to perform the operations, or a combination thereof.
“Systems,” “units,” or “modules” may include or represent hardware and associated instructions (e.g., software stored on a tangible and non-transitory computer readable storage medium, such as a computer hard drive, ROM, RAM, or the like) that perform one or more operations described herein. The hardware may include electronic circuits that include and/or are connected to one or more logic-based devices, such as microprocessors, processors, controllers, or the like. These devices may be off-the-shelf devices that are appropriately programmed or instructed to perform operations described herein from the instructions described above. Additionally or alternatively, one or more of these devices may be hard-wired with logic circuits to perform these operations.
It should be noted that the particular arrangement of components (e.g., the number, types, placement, or the like) of the illustrated embodiments may be modified in various alternate embodiments. In various embodiments, different numbers of a given module or unit may be employed, a different type or types of a given module or unit may be employed, a number of modules or units (or aspects thereof) may be combined, a given module or unit may be divided into plural modules (or sub-modules) or units (or sub-units), a given module or unit may be added, or a given module or unit may be omitted.
It should be noted that the various embodiments may be implemented in hardware, software or a combination thereof. The various embodiments and/or components, for example, the units, modules, or components and controllers therein, also may be implemented as part of one or more computers or processors. The computer or processor may include a computing device, an input device, a display unit and an interface, for example, for accessing the Internet. The computer or processor may include a microprocessor. The microprocessor may be connected to a communication bus. The computer or processor may also include a memory. The memory may include Random Access Memory (RAM) and Read Only Memory (ROM). The computer or processor further may include a storage device, which may be a hard disk drive or a removable storage drive such as a solid state drive, optical drive, and the like. The storage device may also be other similar means for loading computer programs or other instructions into the computer or processor.
As used herein, the term “computer” and “controller” may each include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set computers (RISC), application specific integrated circuits (ASICs), logic circuits, GPUs, FPGAs, and any other circuit or processor capable of executing the functions described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of the term “controller” or “computer.”
The computer, module, or processor executes a set of instructions that are stored in one or more storage elements, in order to process input data. The storage elements may also store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within a processing machine.
The set of instructions may include various commands that instruct the computer, module, or processor as a processing machine to perform specific operations such as the methods and processes of the various embodiments described and/or illustrated herein. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software and which may be embodied as a tangible and non-transitory computer readable medium. Further, the software may be in the form of a collection of separate programs or modules, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to operator commands, or in response to results of previous processing, or in response to a request made by another processing machine.
As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a computer, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program. The individual components of the various embodiments may be virtualized and hosted by a cloud type computational environment, for example to allow for dynamic allocation of computational power, without requiring the user concerning the location, configuration, and/or specific hardware of the computer system.
In an exemplary embodiment, the events 162 may be verified by comparing the audio signatures from the first microphone 110 and the audio signatures of the second microphone 111. The output unit 114 is able to estimate the delay between the times when a sound strikes each microphone 110, 111 by monitoring the average power of the digitized signals that are present on the microphones 110, 111. The output unit 114 may analyze the audio signals using cross correlation of the audio signals. The output unit 114 may analyze the audio signals using direction-of-arrival (DOA) methods. In an exemplary embodiment, the output unit 114 determines an origination distance from the electrical connectors 102, 104 to the second microphone 111 based on a timed difference between receipt of the audible sound at the first microphone 110 and receipt of the audible sound at the second microphone 111.
The signal-to-noise ratio (SNR) of the audio signals may be enhanced using deterministic or adaptive beamforming techniques across the several microphones 110, 111. For example, the output unit 114 may use a sum beam beamforming technique as a deterministic method to enhance the audio signal and analysis. In such technique, the outputs of multiple microphone signals are coherently summed to form a beam with directivity. A close to an omnidirectional microphone pattern can be transformed into a directional pattern. Adaptive beamforming techniques can be used if a source of noise impinging on the microphones 110, 111 from a direction other than the electrical connectors 102, 104 is known to exist. For example, the direction of the source can be estimated and a null can be placed in the beam pattern to eliminate its contribution to the received signal.
The mating assurance system 200 includes first and second microphones 210, 211 that are located in a vicinity of a mating zone 212 for the electrical connectors 202, 204. In an exemplary embodiment, the first microphone 210 may be provided at or near the fingertips of the assembler while the second microphone 211 may be provided at or near the wrist of the assembler. For example, the microphones 210, 211 may be strapped to the assembler's hand or may be integrated into a glove worn by the assembler. Alternatively, the microphones 210, 211 may be otherwise positioned within the mating zone 212 in the vicinity where the assembler is mating the electrical connectors 202, 204, such as being fixed in place in the mating zone 212. The microphone 210 may be embedded into or otherwise coupled to the electrical connectors 202 and/or 204.
The microphones 210, 211 are connected to an output unit 214 and the output unit 214 receives audio signals from the microphones 210, 211. The output unit 214 processes the audio signals and provides an audible output or feedback. In an exemplary embodiment, the output unit 214 includes a speaker that provides an audible output. The output unit 214 may include an ear bud or headphone worn by the assembler to provide audible feedback to the assembler based on the audio signals. The mating assurance system 200 enhances the audible sound providing various types of feedback to the assembler to ensure that the electrical connectors 202, 204 are properly mated. The output unit 214 may filter background noise to enhance the audible sound for the assembler. The output unit 214 may cross-correlate the audio signals from both microphones 210, 211 to verify that the direction of the sound origin originated in the mating zone 212, otherwise filtering such audio signals out as being from other audio sources.
To the extent that the figures illustrate diagrams of the functional blocks of various embodiments, the functional blocks are not necessarily indicative of the division between hardware circuitry. Thus, for example, one or more of the functional blocks (e.g., processors or memories) may be implemented in a single piece of hardware (e.g., a general purpose signal processor or random access memory, hard disk, or the like) or multiple pieces of hardware. Similarly, the programs may be stand-alone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, and the like. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Maalouf, Khalil John, Spade, Rodney Kenneth
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8186216, | May 24 2007 | Toyota Jidosha Kabushiki Kaisha | Device, system, and method for determining fitting condition of connector |
20100242599, | |||
20140203945, | |||
20150098574, | |||
DE102012004165, | |||
DE10308403, | |||
EP2161796, | |||
JP2006221971, | |||
JP2007004073, | |||
JP2008226506, | |||
JP3297080, | |||
JP7185952, | |||
WO2006075263, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 21 2016 | MAALOUF, KHALIL JOHN | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037574 | /0910 | |
Jan 21 2016 | SPADE, RODNEY KENNETH | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037574 | /0910 | |
Jan 25 2016 | TE Connectivity Corporation | (assignment on the face of the patent) | / | |||
Jan 01 2017 | Tyco Electronics Corporation | TE Connectivity Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 041350 | /0085 | |
Sep 28 2018 | TE Connectivity Corporation | TE CONNECTIVITY SERVICES GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056514 | /0048 | |
Nov 01 2019 | TE CONNECTIVITY SERVICES GmbH | TE CONNECTIVITY SERVICES GmbH | CHANGE OF ADDRESS | 056514 | /0015 | |
Mar 01 2022 | TE CONNECTIVITY SERVICES GmbH | TE Connectivity Solutions GmbH | MERGER SEE DOCUMENT FOR DETAILS | 060885 | /0482 |
Date | Maintenance Fee Events |
Apr 21 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 07 2020 | 4 years fee payment window open |
May 07 2021 | 6 months grace period start (w surcharge) |
Nov 07 2021 | patent expiry (for year 4) |
Nov 07 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 07 2024 | 8 years fee payment window open |
May 07 2025 | 6 months grace period start (w surcharge) |
Nov 07 2025 | patent expiry (for year 8) |
Nov 07 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 07 2028 | 12 years fee payment window open |
May 07 2029 | 6 months grace period start (w surcharge) |
Nov 07 2029 | patent expiry (for year 12) |
Nov 07 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |