An optical imaging lens, an image-side surface of a second lens element has a concave part in a vicinity of its periphery; an object-side of a third lens element has a concave part in a vicinity of its periphery; an object-side surface of a fourth lens element has a concave part in a vicinity of the optical axis, and a concave part in a vicinity of its periphery; an image-side surface of the fourth lens element has convex part in a vicinity of its periphery; an object-side surface of a fifth lens element has a convex part in a vicinity of the optical axis; an image-side surface of the fifth lens element has a concave part in a vicinity of the optical axis, and has convex part in a vicinity of its periphery. The imaging lens satisfies the relationship |V1−V3|≧20 and efl/(G34+G45)≦4.8.
|
1. An optical imaging lens set, from an object side toward an image side in order along an optical axis comprising: an aperture stop, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element, each lens element having refractive power, and having an object-side surface facing toward the object side as well as an image-side surface facing toward the image side, wherein:
the first lens element has positive refracting power;
the second lens element has an image-side surface with a concave part in a vicinity of its periphery;
the third lens element has an object-side surface with a concave part in a vicinity of said optical axis and a concave part in a vicinity of its periphery;
the fourth lens has positive refracting power, having an object-side surface with a concave part in a vicinity of said optical axis and a concave part in a vicinity of its periphery, and further has an image-side surface with a convex part in a vicinity of its periphery;
the fifth lens element has negative refracting power, having an object-side surface with a convex part in a vicinity of said optical axis, and further has image-side surface with a concave part in a vicinity of said optical axis and a convex part in a vicinity of its periphery; and
the optical imaging lens set does not include any lens element with refractive power other than said first, second, third, fourth and fifth lens elements; an air gap ag23 between said second lens element and said third lens element along said optical axis, a thickness t1 of said first lens element along said optical axis, and a thickness t4 of said fourth lens element along said optical axis, an air gap ag34 between said third lens element and said fourth lens element along said optical axis, an air gap ag45 between said fourth lens element and said fifth lens element along said optical axis, a total thickness alt of said first lens element, said second lens element, said third lens element, said fourth lens element and said fifth lens element along said optical axis, an effective focal length efl of the optical imaging lens set, an abbe number v1 of the first lens element, and an abbe number v3 of the third lens element satisfy the relationships: (G23+G45)/T4≦1.5, 33.717≧|V1−V3|≧20, alt/T1≦4.0, and efl/(G34+G45)≦4.8.
2. The optical imaging lens set of
4. The optical imaging lens set of
5. The optical imaging lens set of
6. The optical imaging lens set of
8. The optical imaging lens set of
9. The optical imaging lens set of
10. The optical imaging lens set of
11. The optical imaging lens set of
12. The optical imaging lens set of
13. An electronic device, comprising:
a case; and
an image module disposed in said case and comprising:
an optical imaging lens set of
a barrel for an installation of said optical imaging lens set;
a module housing unit for an installation of said barrel;
a substrate for an installation of said module housing unit; and
an image sensor disposed on the substrate and disposed at an image side of said optical imaging lens set.
|
This application claims priority from Taiwan patent Application No. 104110085, filed on Mar. 27, 2015, the contents of which are hereby incorporated by reference in their entirety for all purposes.
1. Field of the Invention
The present invention generally relates to an optical imaging lens set and an electronic device which includes such optical imaging lens set. Specifically speaking, the present invention is directed to an optical imaging lens set of five lens elements and an electronic device which includes such optical imaging lens set.
2. Description of the Prior Art
In recent years, the popularity of mobile phones and digital cameras makes photography modules (including optical imaging lens set, holder and sensor, etc) well developed. Mobile phones and digital cameras become lighter and thinner, so that the miniaturization demands of photography modules get higher and higher. As the charge coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) technologies advance, the size of the photography modules can be shrunk too, but these photography modules still need to maintain good imaging quality.
To an optical imaging lens set with five lens elements, the distance between the first object size surface to the image plane is too large to satisfy the specification requirements of consumer electronics products.
Therefore, how to reduce the total length of a photographic device, but still maintain good optical performance, is an important research objective.
In the light of the above, the present invention is capable of proposing an optical imaging lens set that is lightweight, and has a low production cost, reduced length, high resolution and high image quality. The optical imaging lens set of five lens elements of the present invention has an aperture, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element sequentially from an object side to an image side along an optical axis.
An optical imaging lens includes: an aperture, a first, second, third, fourth and fifth lens element, each lens element in the optical imaging lens set of the present invention has an object-side surface facing toward the object side as well as an image-side surface facing toward the image side, wherein the first lens element has positive refracting power; the second lens element has an image-side surface with a concave part in a vicinity of its periphery; the third lens element has an object-side surface with a concave part in a vicinity of its periphery; the fourth lens has positive refracting power and has an object-side surface with a concave part in a vicinity of the optical axis, and a concave part in a vicinity of its periphery; the fourth lens further has an image-side surface with a convex part in a vicinity of its periphery; the fifth lens element has negative refracting power and has an object-side surface with a convex part in a vicinity of the optical axis, the fifth lens element further has image-side surface with a concave part in a vicinity of the optical axis and a convex part in a vicinity of its periphery, wherein the optical imaging lens set does not include any lens element with refractive power other than said first, second, third, fourth, and fifth lens elements.
In the optical imaging lens set of six lens elements of the present invention, an air gap G12 along the optical axis is disposed between the first lens element and the second lens element, an air gap G23 along the optical axis is disposed between the second lens element and the third lens element, an air gap G34 along the optical axis is disposed between the third lens element and the fourth lens element, an air gap G45 along the optical axis is disposed between the fourth lens element and the fifth lens element, and the sum of total four air gaps between adjacent lens elements from the first lens element to the sixth lens element along the optical axis is AAG, AAG=G12+G23+G34+G45.
In the optical imaging lens set of six lens elements of the present invention, the first lens element has a first lens element thickness T1 along the optical axis, the second lens element has a second lens element thickness T2 along the optical axis, the third lens element has a third lens element thickness T3 along the optical axis, the fourth lens element has a fourth lens element thickness T4 along the optical axis, the fifth lens element has a fifth lens element thickness T5 along the optical axis, and the total thickness of all the lens elements in the optical imaging lens set along the optical axis is ALT, ALT=T1+T2+T3+T4+T5.
In addition, the distance between the first object-side surface of the first lens element to the image plane is TTL. The distance between the image-side surface of the fifth lens element to an image plane along the optical axis is BFL (back focal length); the effective focal length of the optical imaging lens set is EFL.
Furthermore, the focal length of the first lens element 10 is f1; the focal length of the second lens element 20 is f2; the focal length of the third lens element 30 is f3; the focal length of the fourth lens element 40 is f4; the focal length of the fifth lens element 50 is f5; the Abbe number of the first lens element 10 is V1; the Abbe number of the second lens element 20 is V2; the Abbe number of the third lens element 30 is V3; the Abbe number of the fourth lens element 40 is V4; and the Abbe number of the fifth lens element 50 is V5.
In the optical imaging lens set of five lens elements of the present invention, the relationship |V1−V3|≧20 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship EFL/(G34+G45)≦4.8 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship AAG/T3≦4.6 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship G34/G45≧0.9 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship (G12+G23)/T2≦2.1 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship AAG/G34≦3.5 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship (T1+T3)/T2≧3.3 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship EFL/T4≦7.1 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship (G23+G45)/T4≦1.5 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship ALT/(T2+T5)≧2.9 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship (T1+T5)/G23≧2.6 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship ALT/T1≦4.0 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship (T4+T5)/G23≧2.7 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship AAG/(T1+T2)≧2.0 is satisfied.
In the optical imaging lens set of five lens elements of the present invention, the relationship T5/G23≧1.1 is satisfied.
The present invention also proposes an electronic device which includes the optical imaging lens set as described above. The electronic device includes a case and an image module disposed in the case. The image module includes an optical imaging lens set as described above, a barrel for the installation of the optical imaging lens set, a module housing unit for the installation of the barrel, a substrate for the installation of the module housing unit, and an image sensor disposed on the substrate and at an image side of the optical imaging lens set.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In the present specification, the description “a lens element having positive refracting power (or negative refracting power)” means that the paraxial refracting power of the lens element in Gaussian optics is positive (or negative). The description “An object-side (or image-side) surface of a lens element” only includes a specific region of that surface of the lens element where imaging rays are capable of passing through that region, namely the clear aperture of the surface. The aforementioned imaging rays can be classified into two types, chief ray Lc and marginal ray Lm. Taking a lens element depicted in
The following criteria are provided for determining the shapes and the portions of lens element surfaces set forth in the present specification. These criteria mainly determine the boundaries of portions under various circumstances including the portion in a vicinity of the optical axis, the portion in a vicinity of a periphery of a lens element surface, and other types of lens element surfaces such as those having multiple portions.
1.
2. Referring to
3. For zero transition point cases, the portion in a vicinity of the optical axis is defined as the portion between 0-50% of the effective radius (radius of the clear aperture) of the surface, whereas the portion in a vicinity of a periphery of the lens element is defined as the portion between 50-100% of effective radius (radius of the clear aperture) of the surface.
Referring to the first example depicted in
Referring to the second example depicted in
Referring to a third example depicted in
As shown in
Furthermore, the optical imaging lens set 1 includes an aperture stop (ape. stop) 80 disposed in an appropriate position. In
In the embodiments of the present invention, the optional filter 72 may be a filter of various suitable functions, for example, the filter 72 may be an infrared cut filter (IR cut filter), placed between the fifth lens element 50 and the image plane 71. The filter 72 is made of glass.
Each lens element in the optical imaging lens set 1 of the present invention has an object-side surface facing toward the object side 2 as well as an image-side surface facing toward the image side 3. In addition, each object-side surface and image-side surface in the optical imaging lens set 1 of the present invention has a part in a vicinity of its circular periphery (circular periphery part) away from the optical axis 4 as well as a part in a vicinity of the optical axis (optical axis part) close to the optical axis 4. For example, the first lens element 10 has a first object-side surface 11 and a first image-side surface 12; the second lens element 20 has a second object-side surface 21 and a second image-side surface 22; the third lens element 30 has a third object-side surface 31 and a third image-side surface 32; the fourth lens element 40 has a fourth object-side surface 41 and a fourth image-side surface 42; and the fifth lens element 50 has a fifth object-side surface 51 and a fifth image-side surface 52.
Each lens element in the optical imaging lens set 1 of the present invention further has a central thickness on the optical axis 4. For example, the first lens element 10 has a first lens element thickness T1, the second lens element 20 has a second lens element thickness T2, the third lens element 30 has a third lens element thickness T3, the fourth lens element 40 has a fourth lens element thickness T4, and the fifth lens element 50 has a fifth lens element thickness T5. Therefore, the total thickness of all the lens elements in the optical imaging lens set 1 along the optical axis 4 is ALT=T1+T2+T3+T4+T5.
In addition, between two adjacent lens elements in the optical imaging lens set 1 of the present invention there is an air gap along the optical axis 4. For example, an air gap G12 is disposed between the first lens element 10 and the second lens element 20, an air gap G23 is disposed between the second lens element 20 and the third lens element 30, and an air gap G34 is disposed between the third lens element 30 and the fourth lens element 40, an air gap G45 is disposed between the fourth lens element 40 and the fifth lens element 50. Therefore, the sum of total four air gaps between adjacent lens elements from the first lens element 10 to the fifth lens element 50 along the optical axis 4 is AAG, AAG=G12+G23+G34+G45.
In addition, the distance between the first object-side surface 11 of the first lens element 10 to the image plane 71, namely the total length of the optical imaging lens set along the optical axis 4 is TTL; the effective focal length of the optical imaging lens set is EFL; the distance between the fifth image-side surface 52 of the fifth lens element 50 to the image plane 71 along the optical axis 4 is BFL; the distance between the fifth image-side surface 52 of the fifth lens element 50 to the filter 72 along the optical axis 4 is G5F; the thickness of the filter 72 along the optical axis 4 is TF; the distance between the filter 72 to the image plane 71 along the optical axis 4 is GFP; Therefore, BFL=G5F+TF+GFP.
Furthermore, the focal length of the first lens element 10 is f1; the focal length of the second lens element 20 is f2; the focal length of the third lens element 30 is f3; the focal length of the fourth lens element 40 is f4; the focal length of the fifth lens element 50 is f5; the refractive index of the first lens element 10 is n1; the refractive index of the second lens element 20 is n2; the refractive index of the third lens element 30 is n3; the refractive index of the fourth lens element 40 is n4; the refractive index of the fifth lens element 50 is n5; the Abbe number of the first lens element 10 is V1; the Abbe number of the second lens element 20 is V2; the Abbe number of the third lens element 30 is V3; the Abbe number of the fourth lens element 40 is V4; and the Abbe number of the fifth lens element 50 is V5.
Please refer to
The optical imaging lens set 1 of the first example has five lens elements 10 to 50 made of a plastic material and having refractive power. The optical imaging lens set 1 also has an aperture stop 80, a filter 72, and an image plane 71. The aperture stop 80 is provided between the object side 2 and the first lens element 10. The filter 72 may be used for preventing specific wavelength light (such as the infrared light) from reaching the image plane and adversely affecting the imaging quality.
The first lens element 10 has positive refractive power. The first object-side surface 11 facing toward the object side 2 has a convex part 13 in the vicinity of the optical axis and a convex part 14 in a vicinity of its circular periphery. The first image-side surface 12 facing toward the image side 3 has a concave part 16 in the vicinity of the optical axis and a convex part 17 in a vicinity of its circular periphery.
The second lens element 20 has negative refractive power. The second object-side surface 21 facing toward the object side 2 has a concave part 23 in the vicinity of the optical axis and a concave part 24 in a vicinity of its circular periphery. The second image-side surface 22 facing toward the image side 3 has a concave part 26 in the vicinity of the optical axis and a concave part 27 in a vicinity of its circular periphery.
The third lens element 30 has negative refractive power. The third object-side surface 31 facing toward the object side 2 has a concave part 33 in the vicinity of the optical axis and a concave part 34 in a vicinity of its circular periphery. The third image-side surface 32 facing toward the image side 3 has a convex part 36 in the vicinity of the optical axis and a concave part 37 in a vicinity of its circular periphery.
The fourth lens element 40 has positive refractive power. The fourth object-side surface 41 facing toward the object side 2 has a concave part 43 in the vicinity of the optical axis and a concave part 44 in a vicinity of its circular periphery. The fourth image-side surface 42 facing toward the image side 3 has a convex part 46 in the vicinity of the optical axis and a convex part 47 in a vicinity of its circular periphery.
The fifth lens element 50 has negative refractive power. The fifth object-side surface 51 facing toward the object side 2 has a convex part 53 in the vicinity of the optical axis and a convex part 54 in a vicinity of its circular periphery. The fifth image-side surface 52 facing toward the image side 3 has a concave part 56 in the vicinity of the optical axis and a convex part 57 in a vicinity of its circular periphery. The filter 72 may be disposed between the fifth lens element 50 and the image plane 71.
In the optical imaging lens element 1 of the present invention, the object-side surfaces 11/21/31/41/51 and image-side surfaces 12/22/32/42/52 are all aspherical. These aspheric coefficients are defined according to the following formula:
In which:
R represents the curvature radius of the lens element surface;
Z represents the depth of an aspherical surface (the perpendicular distance between the point of the aspherical surface at a distance Y from the optical axis and the tangent plane of the vertex on the optical axis of the aspherical surface);
Y represents a vertical distance from a point on the aspherical surface to the optical axis;
K is a conic constant; and
a2i is the aspheric coefficient of the 2i order.
The optical data of the first example of the optical imaging lens set 1 are shown in
|V1−V3|=33.717
EFL/(G34+G45)=4.798
AAG/T3=4.597
G34/G45=1.355
(G12+G23)/T2=1.949
AAG/G34=2.607
(T1+T3)/T2=4.106
EFL/T4=4.531
(G23+G45)/T4=0.775
ALT/(T2+T5)=3.674
(T1+T5)/G23=3.183
ALT/T1=3.990
(T4+T5)/G23=4.020
AAG/(T1+T2)=1.524
T5/G23=1.347
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=4.798
AAG/T3=4.597
G34/G45=1.447
(G12+G23)/T2=2.092
AAG/G34=2.593
(T1+T3)/T2=4.135
EFL/T4=4.627
(G23+G45)/T4=0.795
ALT/(T2+T5)=3.666
(T1+T5)/G23=3.011
ALT/T1=3.990
(T4+T5)/G23=3.772
AAG/(T1+T2)=1.572
T5/G23=1.275
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=4.485
AAG/T3=4.597
G34/G45=1.464
(G12+G23)/T2=1.532
AAG/G34=2.436
(T1+T3)/T2=3.340
EFL/T4=4.917
(G23+G45)/T4=0.830
ALT/(T2+T5)=3.523
(T1+T5)/G23=3.180
ALT/T1=3.990
(T4+T5)/G23=3.896
AAG/(T1+T2)=1.520
T5/G23=1.299
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=3.670
AAG/T3=4.597
G34/G45=1.203
(G12+G23)/T2=1.914
AAG/G34=2.531
(T1+T3)/T2=4.116
EFL/T4=7.232
(G23+G45)/T4=1.492
ALT/(T2+T5)=3.259
(T1+T5)/G23=3.003
ALT/T1=3.677
(T4+T5)/G23=2.956
AAG/(T1+T2)=1.916
T5/G23=1.283
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=3.632
AAG/T3=4.597
G34/G45=1.212
(G12+G23)/T2=1.938
AAG/G34=2.527
(T1+T3)/T2=4.020
EFL/T4=7.082
(G23+G45)/T4=1.471
ALT/(T2+T5)=3.237
(T1+T5)/G23=2.926
ALT/T1=3.819
(T4+T5)/G23=2.980
AAG/(T1+T2)=1.992
T5/G23=1.282
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=4.791
AAG/T3=4.200
G34/G45=1.441
(G12+G23)/T2=1.728
AAG/G34=2.499
(T1+T3)/T2=3.900
EFL/T4=4.819
(G23+G45)/T4=0.787
ALT/(T2+T5)=3.540
(T1+T5)/G23=3.378
ALT/T1=3.990
(T4+T5)/G23=4.106
AAG/(T1+T2)=1.479
T5/G23=1.443
Please refer to
|V1−V3|=33.717
EFL/(G34+G45)=4.798
AAG/T3=3.900
G34/G45=1.534
(G12+G23)/T2=2.005
AAG/G34=2.449
(T1+T3)/T2=5.154
EFL/T4=5.202
(G23+G45)/T4=0.855
ALT/(T2+T5)=4.193
(T1+T5)/G23=3.292
ALT/T1=3.300
(T4+T5)/G23=3.448
AAG/(T1+T2)=1.346
T5/G23=1.108
Some important ratios in each example are shown in
In the light of the above examples, the inventors observe the following features:
1. The first lens element has positive refractive power, helping to collect the image light. In addition, the aperture stop is disposed between the object side and the first lens element, so as to enlarge the field of view and to reduce the total length.
2. As mentioned above, each lens element in the optical imaging lens set of the present invention has an object-side surface facing toward the object side as well as an image-side surface facing toward the image side. The second lens element has an image-side surface with a concave part in a vicinity of its periphery, and the third lens element has an object-side surface with a concave part in a vicinity of its periphery, those two surfaces match each other, so as to eliminate the field curvature and the distortion. The fourth lens element has positive refracting power, the fourth lens has an object-side surface with a concave part in a vicinity of the optical axis, and a concave part in a vicinity of its periphery; the fourth lens further has an image-side surface with a convex part in a vicinity of its periphery, also helping to correct aberration. The fifth lens element has negative refracting power, the fifth lens element has object-side surface with a convex part in a vicinity of the optical axis, the fifth lens element further has image-side surface with a concave part in a vicinity of the optical axis and a convex part in a vicinity of its periphery, this arrangement helps to correct the light emitted angle onto the image plane. Each of the surfaces mentioned above match each other, in order to improve the aberration and image quality as well as reduce the total length.
In addition, the inventors discover that there are some better ratio ranges for different data according to the above various important ratios. Better ratio ranges help the designers to design the better optical performance and an effectively reduced length of a practically possible optical imaging lens set. For example:
(1) If the relationship of |V1−V3|≧20 is satisfied, the aberration and image quality can be improved.
(2) If the optical imaging lens set has smaller EFL, the total length can be reduced, and the HFOV can be enlarged, therefore if the following relationship is satisfied:
EFL/(G34+G45)≧4.8,
preferably, the range is between 3.5-4.8;
EFL/T4≦7.1,
preferably, the range is between 4.5-7.1, the optical imaging lens set will have a better arrangement.
(3) The first lens element has positive refractive power, helping to collect the image light. Therefore the thickness of the first lens element cannot be too small. Preferably, the first lens element has a relative thicker thickness, and also satisfies the following relationship:
(T1+T3)/T2≧3.3,
preferably, the range is between 3.3-5.2;
(T1+T5)/G23≧2.6,
preferably, the range is between 2.6-3.5;
ALT/T1≦4.0,
preferably, the range is between 3.3-4.0;
AAG/(T1+T2)≦2.0,
preferably, the range is between 1.3-2.0.
(4) In order to shrink the optical imaging lens set, the air gaps between two adjacent lenses and the thickness of the lens element will be shrunk as much as possible, but considering the difficulties during the assembling process, the air gaps and the thickness cannot be shrunk unlimitedly. If the following relationships are satisfied, the optical imaging lens set has better arrangement:
AAG/T3≦4.6,
preferably, the range is between 3.9-4.6;
G34/G45≧0.9,
preferably, the range is between 0.9-1.6;
(G12+G23)/T2≦2.1,
preferably, the range is between 1.5-2.1;
AAG/G34≦3.5,
preferably, the range is between 2.4-3.5;
(G23+G45)/T4≦1.5,
preferably, the range is between 0.7-1.5;
ALT/(T2+T5)≧2.9,
preferably, the range is between 2.9-4.2;
(T4+T5)/G23≧2.7,
preferably, the range is between 2.7-4.2;
T5/G23≧1.1,
preferably, the range is between 1.1-1.5.
The optical imaging lens set 1 of the present invention may be applied to an electronic device, such as game consoles or driving recorders. Please refer to
As shown in
The image sensor 70 used here is a product of chip on board (COB) package rather than a product of the conventional chip scale package (CSP) so it is directly attached to the substrate 172, and protective glass is not needed in front of the image sensor 70 in the optical imaging lens set 1, but the present invention is not limited to this.
To be noticed in particular, the optional filter 72 may be omitted in other examples although the optional filter 72 is present in this example. The case 110, the barrel 130, and/or the module housing unit 140 may be a single element or consist of a plurality of elements, but the present invention is not limited to this.
Each one of the five lens elements 10, 20, 30, 40 and 50 with refractive power is installed in the barrel 130 with air gaps disposed between two adjacent lens elements in an exemplary way. The module housing unit 140 has a lens element housing 141, and an image sensor housing 146 installed between the lens element housing 141 and the image sensor 70. However in other examples, the image sensor housing 146 is optional. The barrel 130 is installed coaxially along with the lens element housing 141 along the axis I-I′, and the barrel 130 is provided inside of the lens element housing 141.
Please also refer to
The first seat element 142 may pull the barrel 130 and the optical imaging lens set 1 which is disposed inside of the barrel 130 to move along the axis I-I′, namely the optical axis 4 in
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Hsu, Sheng-Wei, Tang, Tzu-Chien
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8179614, | Jan 03 2011 | Largan Precision Co. | Image pickup optical lens assembly |
8773767, | Mar 30 2012 | GENIUS ELECTRONIC OPTICAL CO , LTD | Mobile device and optical imaging lens thereof |
20100254029, | |||
20120069455, | |||
20130258164, | |||
20130342919, | |||
20140293445, | |||
CN102466867, | |||
JP2013156389, | |||
TW201213926, | |||
TW437261, | |||
TW438520, | |||
TW479425, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 10 2015 | HSU, SHENG-WEI | GENIUS ELECTRONIC OPTICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035840 | /0481 | |
Jun 10 2015 | TANG, TZU-CHIEN | GENIUS ELECTRONIC OPTICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035840 | /0481 | |
Jun 16 2015 | Genius Electronic Optical (Xiamen) Co., Ltd. | (assignment on the face of the patent) | / | |||
Aug 03 2017 | GENIUS ELECTRONIC OPTICAL CO , LTD | GENIUS ELECTRONIC OPTICAL XIAMEN CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043176 | /0727 |
Date | Maintenance Fee Events |
Jul 19 2021 | REM: Maintenance Fee Reminder Mailed. |
Jan 03 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 28 2020 | 4 years fee payment window open |
May 28 2021 | 6 months grace period start (w surcharge) |
Nov 28 2021 | patent expiry (for year 4) |
Nov 28 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 28 2024 | 8 years fee payment window open |
May 28 2025 | 6 months grace period start (w surcharge) |
Nov 28 2025 | patent expiry (for year 8) |
Nov 28 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 28 2028 | 12 years fee payment window open |
May 28 2029 | 6 months grace period start (w surcharge) |
Nov 28 2029 | patent expiry (for year 12) |
Nov 28 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |