A display device includes an image display unit and a conversion processing unit that receives a first input signal including first color information which is obtained based on an input video signal and which is for displaying at a predetermined pixel, and outputs a second input signal including second color information in which a hue of the first color information is varied by an amount of hue variation within a range defined such that hue variation falls within a predetermined range.
|
10. A color conversion method on an input signal supplied to a drive circuit of an image display unit, the image display unit including a plurality of pixels, each pixel of the plurality of pixels including:
a first sub-pixel for displaying a red component according to an amount of lighting of a self-emitting element;
a second sub-pixel for displaying a green component according to an amount of lighting of a self-emitting element;
a third sub-pixel for displaying a blue component according to an amount of lighting of a self-emitting element,
the color conversion method comprising:
receiving a first input signal including first color information that is obtained based on an input video signal and that is for displaying at a predetermined pixel;
outputting a second input signal including second color information in which a hue of the second color information is varied from a hue of the first color information by an amount of a hue variation within a range defined such that the hue variation falls within a predetermined range and the hue of the second color information is shifted toward a different color with a higher luminance or toward a different color with lower power when the hue of the second color information is converted to power, than the hue of the first color information, and
performing luminance adjustment to further vary the hue of the second color information such that a luminance of the first color information and a luminance of the second color information remain substantially equal to each other.
1. A display device comprising:
an image display unit including a plurality of pixels, each pixel of the plurality of pixels including
a first sub-pixel for displaying a red component according to an amount of lighting of a self-emitting element;
a second sub-pixel for displaying a green component according to an amount of lighting of a self-emitting element;
a third sub-pixel for displaying a blue component according to an amount of lighting of a self-emitting element; and
a conversion processing circuitry configured to receive a first input signal including first color information for display at a predetermined pixel, where the first input signal is obtained based on an input video signal, and, the conversion processing circuitry being configured to output a second input signal including second color information in which a hue of the second color information is varied from a hue of the first color information by an amount of a hue variation within a range defined such that the hue variation falls within a predetermined range and the hue of the second color information is shifted toward a different color with a higher luminance or toward a different color with lower power when the hue of the second color information is converted to power, than the hue of the first color information, wherein
the conversion processing circuitry is configured to perform a calculation to further vary the hue of the second color information such that a luminance of the first color information and a luminance of the second color information remain substantially equal to each other.
2. The display device according to
the image display unit includes a fourth sub-pixel for displaying an additional color component according to an amount of lighting of a self-emitting element where the additional color component is different from color components of the first sub-pixel, the second sub-pixel, and the third sub-pixel, and having the higher luminance or a higher power efficiency to display the additional color component as compared to representation with the first sub-pixel, the second sub-pixel, and the third sub-pixel, and
the display device further comprises:
a fourth sub-pixel signal processing circuitry configured to output a third input signal to a drive circuit that drives the image display unit, the third input signal including third color information with the red component, the green component, the blue component, and the additional color component that are converted based on the second color information in the second input signal.
3. The display device according to
4. The display device according to
a color conversion layer is provided for each of the first sub-pixel, the second sub-pixel, and the third sub-pixel to convert the additional color component to each of the red component, the green component, and the blue component.
5. The display device according to
6. The display device according to
7. The display device according to
8. The display device according to
9. The display device according to
|
The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2013-219696 filed in Japan on Oct. 22, 2013; and Japanese Patent Application No. 2014-213104 filed in Japan on Oct. 17, 2014.
1. Field of the Invention
The present disclosure relates to a display device and a color conversion method.
2. Description of the Related Art
Conventionally, a liquid crystal display device with an RGBW-type liquid crystal panel that is provided with pixels W (white) in addition to pixels R (red), G (green), and B (blue) has been employed. The RGBW-type liquid crystal display device displays images while allocating, to the pixels W, transmission amounts of light from a backlight through the pixels R, G, and B based on RGB data that determines display of images, thereby making it possible to reduce luminance of the backlight and thus reduce power consumption.
In addition to the liquid crystal display device, an image display panel that lights self-emitting elements, such as organic light-emitting diodes (OLEDs), has been known. For example, Japanese Translation of PCT International Application Publication No. 2007-514184 (JP-T-2007-514184) describes a method of converting a three-color input signal (R, G, B) corresponding to three color-gamut defining primary colors to a four-color output signal (R′, G′, B′, W) corresponding to the color-gamut defining primary colors and one additional primary color W in order to drive a display device including light-emitting elements that emit light corresponding to the four-color output signal.
In the display device including the image display panel that lights the self-emitting elements, a backlight is not needed and the amount of power of the display device is determined according to the amounts of lighting of the self-emitting elements of respective pixels. Therefore, when a conversion process is simply performed by the method described in JP-T-2007-514184, and if the amounts of lighting of the self-emitting elements that emit light for the four-color output signal (R′, G′, B′, W) increase, it may be difficult to reduce power consumption.
For the foregoing reasons, there is a need for a display device and a color conversion method capable of suppressing power consumption in an image display unit that lights self-emitting elements.
According to an aspect, a display device includes: an image display unit including a plurality of pixels, each of the pixels including a first sub-pixel for displaying a red component according to an amount of lighting of a self-emitting element; a second sub-pixel for displaying a green component according to an amount of lighting of a self-emitting element; and a third sub-pixel for displaying a blue component according to an amount of lighting of a self-emitting element; and a conversion processing unit configured to receive a first input signal including first color information for display at a predetermined pixel, where the first input signal is obtained based on an input video signal and that is used and, the conversion processing unit being configured to output a second input signal including second color information in which a hue of the first color information is varied by an amount of hue variation within a range defined such that hue variation falls within a predetermined range.
According to another aspect, a color conversion method on an input signal supplied to a drive circuit of an image display unit is provided. The image display unit includes a plurality of pixels, each of the pixels including: a first sub-pixel for displaying a red component according to an amount of lighting of a self-emitting element; a second sub-pixel for displaying a green component according to an amount of lighting of a self-emitting element; a third sub-pixel for displaying a blue component according to an amount of lighting of a self-emitting element. The color conversion method includes: receiving a first input signal including first color information that is obtained based on an input video signal and that is for displaying at a predetermined pixel; and outputting a second input signal including second color information in which a hue of the first color information is varied by an amount of hue variation within a range defined such that hue variation falls within a predetermined range.
Exemplary embodiments for carrying out the present disclosure will be described in detail below with reference to the accompanying drawings. The present disclosure is not limited to the contents described in the following embodiments. Each component described below includes those which can easily be conceived by persons skilled in the art and those which are substantially equivalent. Further, the components described below may be combined appropriately. The disclosure herein is presented by way of example only, and the appended claims are to be construed as embodying appropriate modifications that may easily occur to persons skilled in the art within the basic teaching herein set forth. Further, in the drawings, a width, a thickness, a form, and the like of each component may be schematic as compared to actual embodiments, but this is done for simplicity of explanation and by way of example, and the present invention is not thus limited. Furthermore, the same components described in different embodiments and drawings may be denoted by the same reference numerals and symbols and detailed explanation thereof may be omitted appropriately.
Configuration of Display Device
As illustrated in
The conversion processing unit 10 receives a first input signal SRGB1 including first color information that is obtained based on an input video signal from an image output unit 12 of a control device 11 and that is used for display at a predetermined pixel. The conversion processing unit 10 outputs a second input signal SRGB2, in which the first color information that is an input value in an HSV color space is converted to second color information such that a saturation is reduced by an amount of saturation attenuation within a range of acceptable saturation variation. Each of the first color information and the second color information is a three-color input signal (R, G, B) including a red component (R), a green component (G), and a blue component (B).
The fourth sub-pixel signal processing unit 20 is coupled to the image display panel drive circuit 40 that drives the image display unit 30. For example, the fourth sub-pixel signal processing unit 20 converts an input value of an input signal (the second input signal SRGB2) in the input HSV color space to a reproduced value (a third input signal SRGBW) in the HSV color space reproduced with a first color, a second color, a third color, and a fourth color to generate an output signal, and outputs the generated output signal to the image display unit 30. In this manner, the fourth sub-pixel signal processing unit 20 outputs, to the drive circuit 40, the third input signal SRGBW including third color information with a red component (R), a green component (G), a blue component (B), and an additional color component such as a white component (W) that are converted based on the second color information in the second input signal SRGB2. The third color information is a four-color input signal (R, G, B, W). While an example will be described in which the additional color component is a white component of so-called pure white represented by (R, G, B)=(255, 255, 255) assuming that each of the red component (R), the green component (G), and the blue component (B) has 256 gradations, the embodiment is not thus limited. For example, it may be possible to perform conversion to the additional color component such as a fourth sub-pixel with a color component represented by (R, G, B)=(255, 230, 204).
In the embodiment, a process of converting an input signal (for example, RGB) to the HSV space is described above as an example of the conversion process; however, the embodiment is not thus limited, and other coordinate systems, such as an XYZ space and a YUV space, may be employed. A color gamut of sRGB or Adobe (registered trademark) RGB, which is a color gamut of a display, is represented by a triangular range in the xy chromaticity range of the XYZ color system; however, a predetermined color space that defines a specific color gamut is not limited to those defined by the triangular range and may be defined by a range corresponding to an arbitrary shape, such as a polygonal shape.
The fourth sub-pixel signal processing unit 20 outputs the generated output signal to the image display panel drive circuit 40. The drive circuit 40 is a control device of the image display unit 30 and includes a signal output circuit 41, a scanning circuit 42, and a power source circuit 43. The drive circuit 40 of the image display unit 30 holds, by the signal output circuit 41, the third input signal SRGBW including the third color information, and sequentially outputs the signal to each of pixels 31 of the image display unit 30. The signal output circuit 41 is electrically coupled to the image display unit 30 via a signal line DTL. The drive circuit 40 of the image display unit 30 selects, by the scanning circuit 42, a sub-pixel in the image display unit 30, and controls ON and OFF of a switching element (for example, thin film transistor (TFT)) to control operation of the sub-pixel (light transmittance). The scanning circuit 42 is electrically coupled to the image display unit 30 via a scanning line SCL. The power source circuit 43 supplies power to a self-emitting element of each of the pixels 31 (to be described below) via a power line PCL.
As the display device 100, various modifications described in Japanese Patent No. 3167026, Japanese Patent No. 3805150, Japanese Patent No. 4870358, Japanese Patent Application Laid-open Publication No. 2011-90118, and Japanese Patent Application Laid-open Publication No. 2006-3475 are applicable.
As illustrated in
Each of the pixels 31 includes a plurality of sub-pixels 32, and lighting drive circuits of the respective sub-pixels 32 illustrated in
In
As illustrated in
The image display unit 30 includes a substrate 51, insulating layers 52, 53, a reflecting layer 54, a lower electrode 55, a self-emitting layer 56, an upper electrode 57, an insulating layer 58, an insulating layer 59, color filters 61R, 61G, 61B, 61W as color conversion layers, a black matrix 62 as a shielding layer, and a substrate 50 (see
Hole Transport Layer
As a layer for generating holes, it is preferable to employ, for example, a layer containing an aromatic amine compound and a substance with electron acceptability to the aromatic amine compound. The aromatic amine compound is a substance having an arylamine skeleton. Among the aromatic amine compounds, an aromatic amine compound containing triphenylamine in the skeleton and having a molecular weight of 400 or greater is much preferable. Among the aromatic amine compounds containing triphenylamine in the skeletons, an aromatic amine compound containing condensed aromatic ring, such as naphthyl, in the skeleton is much preferable. With use of the aromatic amine compound containing triphenylamine and condensed aromatic ring, it becomes possible to improve heat resistance of a self-emitting element. Examples of the aromatic amine compound include, but are not limited to, 4-4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (i.e., α-NPD), 4-4′-bis[N-(3-methylphenyl)-N-phenylamino]biphenyl (i.e., TPD), 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (i.e., TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino)triphenylamine (i.e., MTDATA), 4-4′-bis[N-{4-(N,N-di-m-tolylamino)phenyl}-N-phenylamino]biphenyl (i.e., DNTPD), 1, 3, 5-tris[N,N-di(m-tolyl)-animo]benzene (i.e., m-MTDAB), 4,4′4″-tris(N-carbazolyl)triphenylamine (i.e., TCTA), 2-3-bis(4-diphenylaminophenyl) quinoxaline (i.e., TPAQn), 2,2′,3,3″-tetrakis(4-diphenylaminophenyl)-6,6′-bisquinoxaline (i.e., D-TriPhAQn), and 2-3-bis{4-[N-(1-naphthyl)-N-phenylamino]phenyl}-dibenzo[f,h]quinoxaline (i.e., NPADiBzQn). The substance with the electron acceptability to the aromatic amine compound is not specifically limited, and examples thereof include, but are not limited to, molybdenum oxide, vanadium oxide, 7,7,8,8-tetracyanoquinodimethane (TCNQ), and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F4-TCNQ).
Electron Injection Layer and Electron Transport Layer
An electron transport substance is not specifically limited, and examples thereof include, but are not limited to, metal complex, such as tris(8-hydroxyquinolinato)aluminum (i.e., Alq3), tris(4-methyl-8-hydroxyquinolinato)aluminum (i.e., Almq3), bis(10-hydroxybenzo[h]quinolinato)beryllium (i.e., BeBq2), bis(2-methyl-8-hydroxyquinolinato)-4-phenylphenolato-aluminum (i.e., BAlq), bis[2-(2-hydroxyphenyl)benzoxazolato]zinc (Zn(BOX)2), or bis[2-(2-hydroxyphenyl)benzothiazolate]zinc (Zn(BTZ)2), as well as 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxydiazole (i.e., PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxydiazole-2-yl]benzene (i.e., OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4-biphenylyl)-1,2,4-triazole (i.e., TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-(4-biphenylyl)-1,2,4-triazole (i.e., p-EtTAZ), bathophenanthroline (i.e., BPhen), and bathocuproin (i.e., BCP). A substance with electron-donating ability to the electron transport substance is not specifically limited, and examples thereof include, but are not limited to, alkali metal, such as lithium or cesium; alkali earth metal, such as magnesium or calcium; and rare earth metal, such as erbium or ytterbium. It may be possible to employ, as the substance with the electron-donating ability to the electron transport substance, a substance selected from alkali metal oxide such as lithium oxide (Li2O) or alkali earth metal oxide such as calcium oxide (CaO), sodium oxide (Na2O), potassium oxide (K2O), or magnesium oxide (MgO).
Light-Emitting Layer
To obtain, for example, reddish light, it may be possible to employ a substance having an emission spectrum with a peak at 600 nm to 680 nm. Examples of such a substance include, but are not limited to, 4-dicyanomethylene-2-isopropyl-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (i.e., DCJTI), 4-dicyanomethylene-2-methyl-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (i.e., DCJT), 4-dicyanomethylene-2-tert-butyl-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (i.e., DCJTB), periflanthene, and 2,5-dicyano-1,4-bis[2-(10-methoxy-1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]benzene. To obtain greenish light, it may be possible to employ a substance having an emission spectrum with a peak at 500 nm to 550 nm. Examples of such a substance include, but are not limited to, N,N′-dimethylquinacridone (i.e., DMQd), coumalin6, coumalin545T, and tris(8-hydroxyquinolinato)aluminum (i.e., Alq3). To obtain bluish light, it may be possible to employ a substance having an emission spectrum with a peak at 420 nm to 500 nm. Examples of such a substance include, but are not limited to, 9,10-bis(2-naphthyl)-tert-butylanthracene (i.e., t-BuDNA), 9,9′-bianthryl, 9,10-diphenylanthracene (i.e., DPA), 9,10-bis(2-naphthyl)anthracene (i.e., DNA), bis(2-methyl-8-hydroxyquinolinato)-4-phenylphenolato-gallium (i.e., BGaq), and bis(2-methyl-8-hydroxyquinolinato)-4-phenylphenolato-aluminum (i.e., BAlq). Other than the substance that emits fluorescence as described above, a substance that emits phosphorescence may be employed as the light-emitting substance. Examples of such a substance include, but are not limited to, bis[2-(3,5-bis(trifluoromethyl)phenyl)pyridinato-N,C2′]iridium (III) picolinate (i.e., Ir(CF3ppy)2(pic)), bis[2-(4,6-difluorophenyl)pyridinato-N,C2′]iridium (III) acetylacetonate (i.e., FIr(acac)), bis[2-(4,6-difluorophenyl)pyridinato-N,C2′]iridium(III)picolinate (i.e., FIr(pic)), and tris(2-phenylpyridinato-N,C2′)iridium (i.e., Ir(ppy)3).
The upper electrode 57 is a transparent electrode made of a transparent conductive material (transparent conductive oxide), such as Indium Tin Oxide (ITO). In the embodiment, ITO is described as an example of the transparent conductive material; however, the embodiment is not thus limited. As the transparent conductive material, a conductive material with different composition, such as Indium Zin Oxide (IZO), may be used. The upper electrode 57 serves as the cathode (negative electrode) of the organic light-emitting diode E1. The insulating layer 58 is a sealing layer that seals the above described upper electrode 57, and may be made of silicon oxide, silicon nitride, or the like. The insulating layer 59 is a planarizing layer that suppresses steps formed by the bank, and may be made of silicon oxide, silicon nitride, or the like. The substrate 50 is a transparent substrate that protects the entire image display unit 30, and may be, for example, a glass substrate.
In
The image display unit 30 is a color display panel, and includes, as illustrated in
The first input signal SRGB1 includes, as the first color information, input signals of the respective gradations of the red component (R), the green component (G), and the blue component (B), and therefore serves as information on the cylindrical HSV color space, that is, a cylindrical portion of the HSV color space illustrated in
As illustrated in
As illustrated in
As illustrated in
The conversion processing unit 10 according to the first embodiment performs a hue conversion step of shifting the hue H of an original color by the amount of hue variation PRG, PGB, or PRB or less within a range in which a human being is less likely to notice the variation in the hue, such that the total amount of lighting of the light-emitting elements of the first sub-pixel 32R, the second sub-pixel 32G, the third sub-pixel 32B, and the fourth sub-pixel 32W is reduced (Step S12). For example, according to the look-up table illustrated in
Subsequently, the conversion processing unit 10 performs a luminance adjustment step of performing a calculation to adjust a luminance such that the luminance of the first color information and the luminance of the second color information remain substantially equal to each other (Step S13). When a human being compares the first color information and the second color information, variation in the luminance is relatively small, so that degradation of the entire image is less likely to be recognized. For example, according to the look-up table illustrated in
Subsequently, the fourth sub-pixel signal processing unit 20 performs, at Step S14, the RGBW signal processing step of performing conversion to a reproduced value (the third input signal SRGBW) in the HSV color space reproduced with the first color, the second color, the third color, and the fourth color to generate an output signal, and outputting the generated output signal to the image display unit 30. Then, the fourth sub-pixel signal processing unit 20 performs an output step of outputting, to the drive circuit 40 that controls drive of the image display unit 30, the third input signal SRGBW including the third color information with the red component (R), the green component (G), the blue component (B), and the additional color component such as the white component (W) that are converted based on the second color information in the second input signal SRGB2 (Step S15).
As described above, according to the color conversion method of the first embodiment, the hue conversion is performed such that the hue of the second color information is shifted within a range of hue variation acceptable to a human being, relative to the hue of the first color information. As described above, the conversion processing unit 10 receives the first input signal SRGB1 including the first color information that is obtained based on an input video signal and that is used for display at a predetermined one of the pixels 31, and outputs the second input signal SRGB2 including the second color information with a hue that is shifted from the hue of the first color information by the amount of hue variation within a range of hue variation acceptable to a human being. Therefore, the total amount of lighting of the light-emitting elements of the first sub-pixel 32R, the second sub-pixel 32G, and the third sub-pixel 32B can be reduced.
The image display unit 30 shifts the original hue such that the luminance of the first color information and the luminance of the second color information remain substantially equal to each other; therefore, degradation of an image is less likely to be recognized by a human being. Consequently, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality.
The conversion processing unit 10 shifts a hue such that the amount of hue variation varies depending on the hue of the first color information. Therefore, the amount of hue variation in a hue region in which a human being can easily distinguish a difference in colors is relatively small, so that degradation of an image is less likely to be recognized by a human being. Consequently, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality.
The conversion processing unit 10 may obtain a power reduction effect after the hue conversion step at Step S12 even when the first color information contains no or a small amount of the white component. As a result, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality. The amount of saturation attenuation decreases as the color comes closer to a primary color; therefore, a human being is less likely to distinguish a difference in colors.
According to the embodiment, it is possible to provide a display device and a color conversion method capable of suppressing power consumption in an image display unit that lights self-emitting elements. The display device and the color conversion method according to the embodiment are capable of converting a hue of an original color within a range defined as a range in which the variation in the hue is less likely to be noticed and capable of increasing the amount of lighting of the fourth sub-pixel; therefore, it is possible to suppress power consumption.
As a modification of a luminance adjustment step (Step S13), for example, according to the look-up table illustrated in
The fourth sub-pixel 32W has a higher luminance or a higher power efficiency to display the additional color component such as the white component (W) as compared to representation with the amount of lighting of the red component (R) displayed by the first sub-pixel 32R, the amount of lighting of the green component (G) displayed by the second sub-pixel 32G, and the amount of lighting of the blue component (B) displayed by the third sub-pixel 32B, so that power can further be saved.
As another modification of the luminance adjustment step (Step S13), for example, according to the look-up table illustrated in
The fourth sub-pixel 32W has a higher luminance or a higher power efficiency to display the additional color component such as the white component (W) as compared to representation with the amount of lighting of the red component (R) displayed by the first sub-pixel 32R, the amount of lighting of the green component (G) displayed by the second sub-pixel 32G, and the amount of lighting of the blue component (B) displayed by the third sub-pixel 32B, so that power can further be saved.
Next, processing operation performed by the display device 100, the conversion processing unit 10, and the fourth sub-pixel signal processing unit 20 will be described as a second embodiment.
As illustrated in
Subsequently, as illustrated in
As illustrated in
As illustrated in
Subsequently, as illustrated in
In
As illustrated in
Subsequently, as illustrated in
As illustrated in
As described above, the fourth sub-pixel signal processing unit 20 performs an output step of outputting, to the drive circuit 40 that controls drive of the image display unit 30, the third input signal SRGBW including the third color information with the red component (R), the green component (G), the blue component (B), and the additional color component such as the white component (W) that are converted based on the second color information in the second input signal SRGB2 (Step S26).
Incidentally, if a total amount of lighting of the self-emitting elements obtained when the first color information is converted to the red component, the green component, the blue component, and the additional color component is smaller than a total amount of lighting of the self-emitting elements obtained when the second color information is converted to the red component, the green component, the blue component, and the additional color component, the conversion processing unit 10 outputs the first color information, as the second color information, to the fourth sub-pixel signal processing unit 20. In this manner, conversion of the first color information to the second color information that has a saturation reduced by the amount of saturation attenuation within the range of acceptable saturation variation includes use of information same as the first color information as the second color information. Consequently, it becomes possible to suppress the possibility that the power consumption of the pixel 31 may increase due to execution of the saturation conversion step (Step S23).
As described above, the conversion processing unit 10 receives the first input signal including the first color information that is used for display at a predetermined pixel, and outputs the second input signal including the second color information in which a saturation is reduced by the amount of saturation attenuation defined such that saturation variation falls within a predetermined range according to the first color information. Therefore, the display device 100 attenuates a saturation (an original saturation S) of an original color within a predetermined range defined as a range in which the variation in the saturation is less likely to be noticed, to thereby increase the amount of lighting of the fourth sub-pixel 32W. The saturation (the original saturation S) of the original color is attenuated within a predetermined range defined as a range in which the variation in the saturation is less likely to be noticed, such that the total amount of lighting of the light-emitting elements of the first sub-pixel 32R, the second sub-pixel 32G, the third sub-pixel 32B, and the fourth sub-pixel 32W is reduced; therefore, it is possible to suppress power consumption. Consequently, if the sub-pixels 32 that are not lighted among the first sub-pixel 32R, the second sub-pixel 32G, and the third sub-pixel 32B increase, the power consumption can further be suppressed.
In the image display unit 30, the original saturation S is attenuated such that the luminance of the first color information and the luminance of the second color information remain substantially equal to each other; therefore, degradation of an image is less likely to be recognized by a human being. Consequently, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality.
The conversion processing unit 10 reduces a saturation such that the amount of saturation attenuation varies according to the hue of the first color information. Therefore, the amount of saturation attenuation in a hue region in which a human being can easily distinguish a difference in colors is relatively small, so that degradation of an image is less likely to be recognized by a human being. Consequently, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality.
The conversion processing unit 10 performs a calculation to reduce a saturation by increasing the amount of saturation attenuation with a decrease in the saturation of the first color information. Therefore, the amount of attenuation of a low saturation that is less likely to be distinguished by a human being is large, so that a power reduction effect through the saturation conversion step (Step S23) can be improved. Consequently, the display device 100 can suppress the entire power consumption while suppressing a decrease (degradation) in the entire display quality. The amount of saturation attenuation decreases as the color comes closer to a primary color; therefore, a human being is less likely to distinguish a difference in colors.
According to the embodiment, it is possible to provide a display device and a color conversion method capable of suppressing power consumption in an image display unit that lights self-emitting elements. The display device and the color conversion method according to the embodiment attenuates a saturation according to a hue and a saturation of an original color within a range defined as a range in which the variation in the saturation is less likely to be noticed, to thereby increase the amount of lighting of the fourth sub-pixel; therefore, it is possible to suppress power consumption.
In the color conversion method on an input signal supplied to the image display unit 30 as illustrated in
Subsequently, as illustrated in
The conversion processing unit 10, based on information in a look-up table defined such that saturation variation falls within a predetermined range according to each of the color information P11, the color information P21, and the color information P31, calculates conversion information AR1, conversion information AR2, and conversion information AR3 on orientations and distances with respect to the white point WP serving as a conversion target specified by the color information P11, the color information P21, the color information P31 within a predetermined range in which the amounts of saturation attenuation are regulated to ΔSR1, ΔSG1, and ΔSB1, respectively.
The look-up table depends on a display color coordinate represented by, for example, the color information P11, the color information P21, and the color information P31, and also depends on the reference color gamut of the image display unit 30 and the white point WP of the image display unit 30. This is because, for example, the image display unit 30 is influenced by the ratio of each of the first sub-pixel 32R, the second sub-pixel 32G, the third sub-pixel 32B, and the fourth sub-pixel 32W with respect to the total or by a color generated by each of the sub-pixels.
The conversion processing unit 10 performs a saturation conversion step of converting saturations from the color information P11, the color information P21, and the color information P31 to color information P12, color information P22, and color information P32 that serve as the second color information, based on the conversion information AR1, the conversion information AR2, and the conversion information AR3, respectively (Step S23). The color information P11, the color information P21, and the color information P31 correspond to chromatic colors, as compared to the color information P12, the color information P22, and the color information P32 serving as the second color information, and are converted toward achromatic colors by being converted to the color information P12, the color information P22, and the color information P32, respectively.
Subsequently, as illustrated in
Then, the fourth sub-pixel signal processing unit 20 performs an output step of outputting, to the drive circuit 40 that controls drive of the image display unit 30, the third input signal SRGBW including the third color information with the red component (R), the green component (G), the blue component (B), and the additional color component such as the white component (W) that are converted based on the second color information in the second input signal SRGB2 (Step S26).
The conversion target specified by each of the color information P11, the color information P21, and the color information P31 is not limited to the white point WP.
Then, the fourth sub-pixel signal processing unit 20 performs an output step of outputting, to the drive circuit 40 that controls drive of the image display unit 30, the third input signal SRGBW including the third color information with the red component (R), the green component (G), the blue component (B), and the additional color component such as the white component (W) that are converted based on the second color information in the second input signal SRGB2 (Step S26).
If color information serving as the first color information is located between the white point WP and the target white point WPT, the total amount of lighting of the self-emitting elements obtained when the first color information is converted to the red component, the green component, the blue component, and the additional color component may become smaller than a total amount of lighting of the self-emitting elements, or a corresponding power value, obtained when the second color information is converted to the red component, the green component, the blue component, and the additional color component. Or, if color information serving as the first color information is converted to the second color information such that at least one of the hue and the saturation is converted to a different color coordinate, the total amount of lighting of the self-emitting elements obtained when the first color information is converted to the red component, the green component, the blue component, and the additional color component may become smaller than a total amount of lighting of the self-emitting elements, or a corresponding power value, obtained when the second color information is converted to the red component, the green component, the blue component, and the additional color component. If the total amount of lighting of the self-emitting elements obtained when the first color information is converted to the red component, the green component, the blue component, and the additional color component is smaller than a total amount of lighting of the self-emitting elements, or a corresponding power value, obtained when the second color information is converted to the red component, the green component, the blue component, and the additional color component, the conversion processing unit 10 outputs the first color information, as the second color information, to the fourth sub-pixel signal processing unit 20. In this manner, conversion of the first color information to the second color information that has a saturation reduced by the amount of saturation attenuation within the range of acceptable saturation variation includes use of information same as the first color information as the second color information. Consequently, it becomes possible to suppress the possibility that the power consumption of the pixel 31 may increase due to execution of the saturation conversion step (Step S23).
The target white point WPT is not limited to a color represented by lighting the fourth sub-pixel 32W. The target white point WPT may be a color represented by lighting all of the first sub-pixel 32R, the second sub-pixel 32G, the third sub-pixel 32B, and the fourth sub-pixel 32W, or may be a color represented by lighting all of the first sub-pixel 32R, the second sub-pixel 32G, and the third sub-pixel 32B.
If an image with a hue deviation over the entire image is input as an input video signal, and if a hue of a green component for example excessively increases through the color conversion method on an input signal supplied to the image display unit according to the above described first and second embodiments, the entire image quality may be degraded.
Therefore, as illustrated in
Subsequently, at an image analysis step at Step S42, the conversion processing unit 10 performs an image analysis on the input video signal. Alternatively, at the image analysis step at Step S42, the conversion processing unit 10 acquires image analysis information on the input video signal, which is calculated through other processes. As a result of the image analysis on the input video signal, if there is a hue deviation over the entire image and the deviation is not above a predetermined threshold (NO at Step S43), the conversion processing unit 10 proceeds to Step S45. The process from Step S45 to Step S48 is the same as the process from Step S12 to Step S15 of the first embodiment, and therefore, explanation thereof will be omitted.
As a result of the image analysis on the input video signal, if there is a hue deviation over the entire image and the deviation is above the predetermined threshold (YES at Step S43), the conversion processing unit 10 proceeds to Step S44.
The conversion processing unit 10 obtains a centroid of average chromaticity of the hue of the entire image. The conversion processing unit 10 calculates an amount of correction for use in the hue conversion on the basis of the amount of shift of the centroid of the average chromaticity, and stores the amount of correction (Step S44). Subsequently, as illustrated in
As described above, when there is a hue deviation in pieces of the first color information used for display at all of pixels according to an image analysis on the input video signal, the conversion processing unit 10 according to the third embodiment adds the amount of correction based on the centroid of the hue deviation to the first color information used for display at a predetermined pixel, and thereafter performs conversion to the second color information. Therefore, when there is a hue deviation over the entire image, the amount of hue variation is reduced and degradation of an image is less likely to be recognized by a human being.
According to the embodiment, it is possible to provide a display device and a color conversion method capable of suppressing power consumption in an image display unit that lights self-emitting elements.
With reference to
Each of the display devices 571 illustrated in
In
According to the application examples, it is possible to provide a color conversion method capable of suppressing power consumption in an image display unit that lights self-emitting elements.
Nakanishi, Takayuki, Yata, Tatsuya
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6778183, | Jul 10 2002 | GAMEHANCEMENT LLC | Method and system for adaptive color and contrast for display devices |
6885380, | Nov 07 2003 | Global Oled Technology LLC | Method for transforming three colors input signals to four or more output signals for a color display |
6897876, | Jun 26 2003 | Global Oled Technology LLC | Method for transforming three color input signals to four or more output signals for a color display |
6903378, | Jun 26 2003 | Global Oled Technology LLC | Stacked OLED display having improved efficiency |
7012588, | Jun 05 2001 | Global Oled Technology LLC | Method for saving power in an organic electroluminescent display using white light emitting elements |
7091941, | Apr 11 2003 | Global Oled Technology LLC | Color OLED display with improved power efficiency |
7151517, | Mar 25 2003 | SAMSUNG DISPLAY CO , LTD | Apparatus and method of driving display device |
7982693, | Jun 15 2004 | Global Oled Technology LLC | OLED display apparatus |
8094933, | Dec 13 2007 | Global Oled Technology LLC | Method for converting an input color signal |
8184112, | Sep 24 2008 | Global Oled Technology LLC | Increasing dynamic range of display output |
8203572, | Feb 26 2008 | SAMSUNG DISPLAY CO , LTD | Organic light emitting display device and processing method of image signals thereof |
8232944, | Feb 15 2008 | Panasonic Intellectual Property Corporation of America | Display device |
8299985, | Jun 17 2005 | LG DISPLAY CO , LTD | Method of power conservation for organic light-emitting display according to light emitting area ratio |
8362981, | Feb 04 2010 | Global OLED Technology, LLC | Display device |
8681190, | Jul 27 2010 | Sony Corporation | Liquid crystal display |
20040113875, | |||
20040178973, | |||
20040222999, | |||
20040263528, | |||
20050218768, | |||
20070115392, | |||
20120236016, | |||
JP2004295086, | |||
JP2007514184, | |||
JP2007524109, | |||
JP2009192887, | |||
JP2010072353, | |||
JP2010211098, | |||
JP2011100144, | |||
JP2011118319, | |||
JP2011164137, | |||
JP2011221112, | |||
JP2012027397, | |||
JP2012194256, | |||
JP2013182149, | |||
JP4494808, | |||
KR20060044593, | |||
WO2005048232, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 16 2014 | YATA, TATSUYA | JAPAN DISPLAY INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034029 | /0689 | |
Oct 16 2014 | NAKANISHI, TAKAYUKI | JAPAN DISPLAY INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034029 | /0689 | |
Oct 21 2014 | Japan Display Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 23 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 02 2021 | 4 years fee payment window open |
Jul 02 2021 | 6 months grace period start (w surcharge) |
Jan 02 2022 | patent expiry (for year 4) |
Jan 02 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 02 2025 | 8 years fee payment window open |
Jul 02 2025 | 6 months grace period start (w surcharge) |
Jan 02 2026 | patent expiry (for year 8) |
Jan 02 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 02 2029 | 12 years fee payment window open |
Jul 02 2029 | 6 months grace period start (w surcharge) |
Jan 02 2030 | patent expiry (for year 12) |
Jan 02 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |