A method of switching a transport stream, (TS) such as an MPEG-2 TS, receives a plurality of input streams, receives a switching command for a first input stream, among the plurality of input streams, that is currently being output, searches for an out-point of the first input stream and an in-point of a second input stream to be newly output, in response to the switching command, inserts a virtual p picture stream between the out-point and the in-point, and switches from the first input stream into the second input stream based on the out-point and the in-point.
|
1. A method of switching a transport stream, comprising:
receiving input streams;
receiving a switching command for a first input stream that belongs to the input streams and that is currently output;
searching for an out-point of the first input stream and an in-point of a second input stream that is newly output, based on the switching command;
inserting a virtual p picture stream and zero or more null packets between the out-point and the in-point by replacing a picture stream of the first input stream from the out-point to the in-point with virtual p pictures, each virtual p picture being followed by zero or one null packets; and
performing switching from the first input stream into the second input stream based on the out-point and the in-point,
wherein an element stream from the out-point to the in-point is entirely filled with the virtual p picture stream and the zero or more null packets, and
wherein if a p or b picture of the second input stream after the in-point that refers to a picture before the in-point is present, the p or b picture is replaced with the virtual p picture stream and a null packet corresponding to a length of a packet comprising the p or b picture is inserted.
13. An apparatus for switching a transport stream, comprising:
an input stream receiver configured to receive input streams;
a switching command receiver configured to receive a switching command for a first input stream that belongs to the input streams and that is currently output;
a searcher configured to search for an out-point of the first input stream and an in-point of a second input stream that is newly output, based on the switching command;
an inserter configured to insert a virtual p picture stream and zero or more null packets between the out-point and the in-point by replacing a picture stream of the first input stream from the out-point to the in-point with virtual p pictures, each virtual p picture being followed by zero or one null packets; and
a switch configured to perform switching from the first input stream into the second input stream based on the out-point and the in-point,
wherein an element stream from the out-point to the in-point is entirely filled with the virtual p picture stream and the zero or more null packets, and
wherein if a p or b picture of the second input stream after the in-point that refers to a picture before the in-point is present, the p or b picture is replaced with the virtual p picture stream and a null packet corresponding to a length of a packet comprising the p or b picture is inserted.
18. A system for switching a transport stream, comprising:
encoders configured to generate encoded input streams and send the encoded input streams; and
a transport stream switch configured to receive encoded input streams from the encoders and perform switching into a specific input stream,
wherein the transport stream switch receives a switching command for a first input stream that belongs to the encoded input streams and that is currently output, searches for an out-point of the first input stream and an in-point of a second input stream that is newly output, in response to the switching command, inserts a virtual p picture stream and zero or more null packets between the out-point of the first input stream to the in-point of the second input stream by replacing a picture stream of the first input stream from the out-point to the in-point with virtual p pictures, each virtual p picture being followed by zero or one null packets, and performs switching from the first input stream into the second input stream based on the out-point and the in-point,
wherein an element stream from the out-point to the in-point is entirely filled with the virtual p picture stream and zero or more null packets, and
wherein if a p or b picture of the second input stream after the in-point that refers to a picture before the in-point is present, the p or b picture is replaced with the virtual p picture stream and a null packet corresponding to a length of a packet comprising the p or b picture is inserted.
2. The method of
the out-point is searched for as a start point of a first I or p picture of the first input stream after the switching command, and
the in-point is searched for as a start point of a first I picture of the second input stream after the out-point.
3. The method of
4. The method of
5. The method of
6. The method of
when second switching from the second input stream to the first input stream is performed after first switching from the first input stream to the second input stream,
counting a first frame count value that is a number of frames of the first input stream and a second frame count value that is a number of frames of the second input stream until a switching command for the second switching is input after the first switching; and
comparing the first frame count value with the second frame count value and performing the second switching based on a result of the comparison.
7. The method of
8. The method of
a picture stream up to the in-point of the first input stream after the inserted null packet is replaced with the virtual p picture stream, and
the length of the packet is set using the null packet.
9. The method of
10. The method of
11. The method of
different ring buffers for the first input stream and the second input stream are configured, and
time information about each frame included in an audio Packetized Elementary stream (PES) is calculated based on time information included in the PES, and the calculated time information is stored.
12. The method of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
|
Priorities to Korean patent application number 10-2013-0070093 filed on Jun. 19, 2013 and Korean patent application number 10-2014-0067662 filed on Jun. 3, 2014, the entire disclosure of which is incorporated by reference herein, is claimed.
Field of the Invention
The present invention relates to a method, apparatus, and system for switching a transport stream and, more particularly, to an MPEG-2 Transport Stream (TS) switching apparatus and method for switching and outputting a single MPEG-2 TS that belong to two or more MPEG-2 TSs output by different encoders and that is selected in response to a switching command from a user.
Discussion of the Related Art
Referring to
Referring to
In the case where a plurality of MPEG-2 TSs continues to be received from different encoders, however, there is a problem in that a delay time is too long if switching is performed after an IDR picture is reached at a stream to be switched and entered.
Furthermore, a closed GOP structure may be used to obviate a problem in that a B picture subsequent to the I picture of a stream to be switched and entered cannot be decoded. In general, in broadcasting, the video of a broadcasting program is encoded in an open GOP structure by taking an encoding efficiency viewpoint into consideration. It is however almost impossible to perform encoding in the closed GOP structure only at a point where a stream is expected to be replaced because the setting of an encoder needs to be changed.
Furthermore, two MPEG-2 TSs need to be switched within a short time as much as possible without buffering a plurality of received MPEG-2 TSs. To this end, the I picture of a B stream needs to be input at a point of time at which a P or I picture is started on the basis of a Decoding Time Stamp (DTS) in a stream A.
From
Referring to
Accordingly, there is a need to connect two MPEG-2 TSs to two different MPEG-2 TSs in such a manner that the two MPEG-2 TSs may be restored without a phenomenon in which audio or video is disconnected or broken at a point of time at which the two MPEG-2 TSs are connected to the two different MPEG-2 TSs.
An embodiment of the present invention relates to a method of connecting two MPEG-2 TSs output by different encoders, and an object of the present invention is to provide a method and apparatus for connecting different MPEG-2 TSs in such a manner that the different MPEG-2 TSs can be restored without a phenomenon in which audio or video is disconnected or broken at a point of time at which the different MPEG-2 TSs are connected.
In accordance with an aspect of the present invention, there is provided a method of switching a transport stream, including receiving a plurality of different input streams, receiving a switching command for a first input stream that belongs to the plurality of input streams and that is now output, searching for the out-point of the first input stream and the in-point of a second input stream that is newly output, based on the switching command, inserting a virtual P picture stream between the out-point and the in-point, and performing switching from the first input stream into the second input stream based on the out-point and the in-point.
The out-point may be searched for as the start point of the first I or P picture of the first input stream after the switching command, and the in-point may be searched for as the start point of the first I picture of the second input stream after the out-point.
The virtual P picture stream may be inserted by replacing a picture stream of the first input stream from the out-point to the in-point, and a null packet corresponding to the length of the picture stream from the out-point to the in-point may be filled.
The virtual P picture stream may include a stream in which the motion information of all the macro blocks and a residual signal are made 0 according to an encoding method through the analysis of a video Element Stream (ES) included in the first or the second input stream.
If the P or B picture of the second input stream after the in-point that refers to a picture before the in-point is present, the P or B picture may be replaced with the virtual P picture stream, and a null packet corresponding to the length of a packet may be inserted.
The Presentation Time Stamp (PTS), Decoding Time Stamp (DTS), and time stamp of a Program Clock Reference (PCR) of the second input stream after the in-point may be modified so that the PTS, the DTS, and the time stamp become a PTS, a DTS, and a time stamp of a PCR that are continuous based on the time information of the first input stream.
If the second input stream is a stream of a 3D left image, in switching from the second input stream to a right-image video stream corresponding to the 3D left image, when the switching is performed based on the in-point of the second input stream, the PTS of a picture corresponding to the in-point of the second input stream may be stored, the PTS and DTS of the right-image video stream may be modified based on the stored PTS, and the PCR of the right-image video stream may be modified based on the PCR of the first input stream.
The method may further include counting a first frame count value that is the number of frames of the first input stream and a second frame count value that is the number of frames of the second input stream until a switching command for the second switching is input after the first switching when the second switching from the second input stream to the first input stream is performed after the first switching from the first input stream to the second input stream, comparing the first frame count value with the second frame count value, and performing the second switching based on a result of the comparison.
If, as a result of the comparison, the second frame count value is equal to or greater than the first frame count value, the null packet may be inserted between the out-point of the second input stream and the in-point of the first input stream by the length of a packet corresponding to the number of frames obtained by subtracting the second frame count value from the first frame count value when performing the second switching.
A picture stream up to the in-point of the first input stream after the inserted null packet may be replaced with the virtual P picture stream, and the length of the packet may be set using the null packet.
If, as a result of the comparison, the first frame count value is greater than the second frame count value, the virtual P picture stream may be inserted between the out-point of the second input stream and the in-point of the first input stream by the number of packets corresponding to the number of frames obtained by subtracting the first frame count value from the second frame count value when performing the second switching, the first frame count and the second frame count may continue to be performed while inserting and outputting the virtual P picture stream, and a virtual P picture stream may be additionally inserted until the first frame count becomes equal to the second frame count.
The switching of an audio signal from the first input stream to the second input stream may be performed by storing the PTS of a picture at which video is switched and using a point of time at which the PTS of subsequently input audio corresponds to a PTS at which a picture of the video is switched as a switching time point.
Different ring buffers for the first input stream and the second input stream may be configured, time information about each frame included in an audio Packetized Elementary Stream (PES) may be calculated based on time information included in the PES, and the calculated time information may be stored.
In accordance with an aspect of the present invention, there is provided an apparatus of switching a transport stream, including an input stream reception unit configured to receive a plurality of different input streams, a switching command input unit configured to receive a switching command for a first input stream that belongs to the plurality of input streams and that is now output, a search unit configured to search for the out-point of the first input stream and the in-point of a second input stream that is newly output, based on the switching command, an insertion unit configured to insert a virtual P picture stream between the out-point and the in-point, and a switching execution unit configured to perform switching from the first input stream into the second input stream based on the out-point and the in-point.
The insertion unit may be further configured to insert the virtual P picture stream by replacing a picture stream of the first input stream from the out-point to the in-point with the virtual P picture stream and fill a null packet corresponding to the length of the picture stream from the out-point to the in-point is filled.
The virtual P picture stream may include a stream in which motion information of all the macro blocks and a residual signal are made 0 according to an encoding method through an analysis of a video Element Stream (ES) included in the first or the second input stream.
The apparatus may further include a frame counter configured to count a first frame count value that is the number of frames of the first input stream and a second frame count value that is the number of frames of the second input stream until a switching command for second switching is input after first switching when the second switching from the second input stream to the first input stream is performed after the first switching from the first input stream to the second input stream, compare the first frame count value with the second frame count value, and perform the second switching based on a result of the comparison.
If, as a result of the comparison, the second frame count value is equal to or greater than the first frame count value, the null packet may be inserted between the out-point of the second input stream and the in-point of the first input stream by the length of a packet corresponding to the number of frames that is obtained by subtracting the second frame count value from the first frame count value when performing the second switching.
If, as a result of the comparison, the first frame count value is greater than the second frame count value, the virtual P picture stream may be inserted between the out-point of the second input stream and the in-point of the first input stream by the number of packets corresponding to the number of frames obtained by subtracting the first frame count value from the second frame count value when performing the second switching, the first frame count and the second frame count may continue to be performed while inserting and outputting the virtual P picture stream, and a virtual P picture stream may be additionally inserted until the first frame count becomes equal to the second frame count.
In accordance with an aspect of the present invention, there is a system for switching a transport stream, including a plurality of encoders configured to generate a plurality of encoded input streams and send the plurality of encoded input streams and a transport stream switching unit configured to receive the plurality of input streams from the plurality of encoders and perform switching into a specific input stream, The transport stream switching unit may receive a switching command for a first input stream that belongs to the plurality of input streams and that is now output, search for the out-point of the first input stream and the in-point of a second input stream that is newly output, in response to the switching command, insert a virtual P picture stream between the out-point of the first input stream and the in-point of the second input stream, and perform switching from the first input stream into the second input stream based on the out-point and the in-point.
The present invention may be modified in various ways and may be implemented to have several embodiments. Specific embodiments are illustrated in the drawings and are described in detail.
It is however to be understood that the present invention is not intended to be limited to the specific embodiments, but that the specific embodiments include all modifications, equivalents, and substitutions which fall within the spirit and technical scope of the present invention.
Terms, such as the first and the second, may be used to describe various elements, but the elements should not be restricted by the terms. The terms are used to only distinguish one element and the other element from each other. For example, a first element may be named a second element without departing from the scope of the present invention. Likewise, a second element may be named a first element. A term “and/or” includes a combination of a plurality of related and described items or any one of a plurality of related and described items.
When it is said that one element is “connected” or “coupled” with the other element, it should be understood that one element may be directly connected or coupled with the other element, but a third element may exist between the two elements. In contrast, when it is said that one element is “directly connected” or “directly coupled” with the other element, it should be understood that a third element does not exist between the two elements.
The terms used in this application are used to only describe specific embodiments and are not intended to restrict the present invention. An expression of the singular number includes an expression of the plural number unless clearly defined otherwise in the context. In this application, terms, such as “comprise” or “have”, are intended to designate that characteristics, numbers, steps, operations, elements, or parts which are described in the specification, or a combination of them exist, and should not be understood that they exclude the existence or possible addition of one or more other characteristics, numbers, steps, operations, elements, parts, or combinations of them in advance.
All terms used herein, unless otherwise defined, have the same meanings as those typically understood by those having ordinary skill in the art. The terms, such as ones defined in common dictionaries, should be interpreted to have the same meanings as terms in the context of pertinent technology, and should not be interpreted to have ideal or excessively formal meanings unless clearly defined in the specification.
Hereinafter, some exemplary embodiments of the present invention are described in more detail with reference to the accompanying drawings. In describing the present invention, in order to help general understanding, the same reference numerals are used to denote the same elements throughout the drawings, and a redundant description of the same elements is omitted.
Broadcasting Service Environment in which 3DTV is Interchangeable with HDTV
Today, in the case of terrestrial wave DTV, a single broadcasting program is transmitted through a single channel. If service-compatible 3DTV service or Multi-Mode Service (MMS) by which a plurality of programs is served through a single channel is introduced, however, time during which a single HDTV program is served and mixed broadcasting in which a plurality of programs, such as a 3DTV program or an MMS program, is served may be present in a single channel depending on a broadcasting program, as illustrated in
A service-compatible 3DTV method is a 3DTV method for encoding and sending the streams of left and right images, and has compatibility with existing HDTV broadcasting service. A user who owns existing HDTV may receive only signals that belong to 3DTV signals and that are encoded by an MPEG-2 encoder, and may view HDTV broadcasting. Likewise, even in a multi-channel service method, a user who owns existing HDTV may view one of a plurality of programs provided by existing HDTV 1.
In contrast, if a user has 3DTV or TV or a terminal capable of MMS viewing, the user may select and view 3DTV and a desired one of a plurality of programs. In this case, a broadcasting company has to switch the program from a single HDTV program to a 3DTV program or an MMS program or from a 3DTV program or an MMS program to a single HDTV program and to send corresponding MPEG-2 TSs. In such a case, a phenomenon in which audio is disconnected video is broken should not occur because an existing HDTV user continuously views only single HDTV broadcasting although the transmitted MPEG-2 TSs are output by different encoders.
Referring to
Transport Stream Switching Method
Referring to
After the out-point and the in-point are searched for as described above, the apparatus inserts a virtual P picture Element Stream (ES) and a null packet between the out-point and the in-point at step S640. In accordance with an embodiment of the present invention, the virtual P picture ES is a stream in which the motion information of all macro blocks is 0 and a residual signal becomes 0 according to a video encoding method, such as MPEG-2, Advanced Video Coding (AVC), or High Efficiency Video Coding (HEVC) through the analysis of a video ES included in a received TS. The virtual P picture ES may be previously generated and stored in memory. Any one of the in-point search process and the process of inserting the virtual P picture and the null packet may be first performed according to circumstances. That is, after searching for the out-point, the virtual P picture and the null packet may be inserted until the in-point appears, a picture stream suitable for in-point conditions may be searched for, and the insertion of the virtual P picture and the null packet may be then terminated. Alternatively, after searching for the out-point, the in-point may be scanned in advance, and the virtual P picture and the null packet may be then inserted between the retrieved in-point and the scanned out-point. The null packet functions to set the length of a packet by performing filling by the length of a P or B picture stream from the out-point of the first input stream to the in-point of the second input stream.
After inserting the virtual P picture ES and the null packet, the apparatus performs switching into the second input stream at the in-point at step S650.
Referring to
Referring to an output stream 730, the apparatus replaces the P or B picture part of the first input stream 710 with the virtual P picture ES 732 according to the first input stream 710 in the stream section 732. The virtual P picture ES 732 is a stream in which the motion information of all macro blocks is 0 and the residual signal has been made to become 0. Accordingly, the start location of an I picture may be easily filled with a null packet at the first in-point 714 after the out-point 712 even without buffering an input TS because the amount of data of the virtual P picture ES 732 is much smaller than an actual video picture ES.
In accordance with an embodiment of the present invention, two B pictures 716 indicated by dotted lines after the in-point 714 are replaced with a virtual P picture ES 736, thereby preventing a phenomenon in which video is broken although separate two TSs are connected. The two B pictures 716 indicated by the dotted lines are pictures that refer to a picture before the in-point of the second input stream 714, and video may be broken because the referred picture is present prior to switching and thus a picture to be referred to is not present. In this case, a phenomenon in which video is broken may be prevented by replacing the two B pictures 716 with the virtual P picture ES 736. If two videos correspond streams encoded using different encoding methods, the virtual P picture ES 732 from the out-point 712 to the in-point 714 and the virtual P picture ES 736 after the in-point 714 may have different forms of ESs from a viewpoint of the output stream 730.
In accordance with an embodiment of the present invention, the virtual P picture ES 732 from the out-point 712 to the in-point 714 and the virtual P picture ES 736 after the in-point 714 become the same virtual P picture ES because video within the first input stream 710 (i.e., the HDTV TS) uses an MPEG-2 encoder and likewise a left image video within the second input stream 720 (i.e., the 3DTV TS) uses an MPEG-2 encoder.
Referring to
In accordance with another embodiment of the present invention, in switching from an HDTV TS into a 3DTV TS, the switching of a right-image video ES within the 3DTV TS is performed based on a left-image video ES. That is, an in-point may be searched for based on the left-image video ES within the 3DTV TS, and the PTS of video at which switching is started may be stored. Thereafter, when the right-image video ES within the input 3DTV MPEG-2 TS appears, a PTS and a DTS may be modified based on the stored PTS, and a PCR may be modified based on the PCR of the first input stream 810.
Procedure for Processing Re-Switching Command
Referring to
If, as a result of the comparison, the count value of the second input frame is equal to or greater than the count value of the first input frame, the apparatus inserts a null packet by the length of a packet of the number of frames that corresponds to the difference between the second input frame and the first input frame at step S950. Thereafter, picture streams from the inserted null packet to the in-point of the first input stream may be replaced with a virtual P picture ES at step S960. As in the aforementioned embodiment, after the picture streams are replaced with the virtual P picture ES, a null packet is inserted in order to set the length of the packet at step S970. Thereafter, the second switching is performed at the in-point of the first input stream at step S980.
In contrast, if, as a result of the comparison at step S940, the count value of the first input frame is greater than the count value of the second input frame, a virtual P picture ES is inserted by the number of packets corresponding to the difference between the count value of the first input frame and the count value of the second input frame at step S955. Thereafter, the number of frames of the first and the second input streams continues to be counted after the first switching at the moment when the virtual P picture ES is inserted, and a virtual P picture ES is additionally inserted until the number of frames of the first input stream becomes equal to the number of frames of the second input stream at step S965. When the number of frames of the first input stream becomes equal to the number of frames of the second input stream, the process is terminated, and the second switching is performed at the in-point of the first input stream at step S980.
Referring to
First, if Frame_Count_2 is greater than Frame_Count_1 at the out-point 1012, a null packet 1032 is filled by the length of a packet corresponding to the number of frames obtained by subtracting Frame_Count_2 from Frame_Count_1. The embodiment of
Referring to
Referring to
Processing of Audio Frame
In general, since a synchronization signal is searched for based on an audio signal, the audio signal is transmitter posterior to a video signal. Accordingly, the PTS of a picture at which video is switched is stored, and a point of time at which the PTS of audio that is later received corresponds to a PTS at which video picture is switched is used as a switching time point.
Referring to
Referring to
Other Utilization
The method of switching a transport stream according to an embodiment of the present invention may be applied to mutual switching between two different HDTV TSs and mutual switching between TSs for multi-channel service in an HDTV TS in addition to switching from an HDTV TS to a 3DTV TS.
Furthermore, the MPEG-2 TS switching unit according to an embodiment of the present invention has a function of generating Program Specific Information (PSI) suitable for service depending on whether switching between what MPEG-2 TSs will be performed.
TS Switching Apparatus
Referring to
The switching command input unit 1620 manually or automatically inputs a switching command. If the switching command is manually input, the switching command may be input through a user interface (not shown) from a user who wants to input the switching command. If the switching command is automatically input, the switching command may be input depending on set input conditions. The input conditions may be set based on time. In this case, the switching command may be periodically input in a specific time period, or a scheduling time may be set and the switching command for automatically switching a channel 1 into a channel 2 may be input at a specific point of time. In addition to time, channel conditions, network conditions, etc. may be set, and the switching command may be automatically input depending on network conditions (e.g., an available bandwidth and a packet loss ratio).
The control unit 1630 controls the execution of switching between received input streams in response to the input of a switching command. The control unit 1630 may include a search unit 1631, an insertion unit 1632, a switching execution unit 1633, a video analysis unit 1634, a time stamp modification unit 1635, a count value comparison unit 1636, and an audio time control unit 1637.
When a switching command is received, the search unit 1631 searches for the out-point of a first input stream whose output is terminated by switching and the in-point of a second input stream that is newly output by the switching. The out-point may be searched for as the start point of the first I or P picture after the switching command is received, and the in-point may be searched for as the start point of the first I picture after the out-point.
The insertion unit 1632 inserts a virtual P picture ES and a null packet between the out-point and the in-point. The insertion unit 1632 may receive the virtual P picture ES from a virtual P picture storage unit 1642, and may insert the received virtual P picture ES between the out-point and the in-point. The insertion unit 1632 may replace a picture that belongs to a P or B picture after the in-point and that refers to video before the in-point, and may insert the virtual P picture ES. In this case, in the case of the P or B picture, a virtual P picture based on the encoding method of a second input stream is received from the virtual P picture storage unit 1642, and is inserted.
The switching execution unit 1633 performs switching between input streams at an in-point.
The video analysis unit 1634 may analyze the video ES of an input stream received from the reception unit 1610, may generate a virtual P picture ES, and may store the generated virtual P picture ES in the virtual P picture storage unit 1642. If methods of encoding first and second input streams are different, the video analysis unit 1634 may generate and store different virtual P picture ESs.
The time stamp modification unit 1635 receives information about the PTS, DTS, and PCR of each input stream from a time stamp (not shown), and modifies the information about the PTS, the DTS, and the PCR suitably for switching between input streams. For example, the time stamp modification unit 1635 may modify information about the PTS, DTS, and PCR of a second input stream so that the PTS, the DTS, and the PCR become a PTS, a DTS and the time stamp of a PCR that are continuous based on the time information of a first input stream.
When second switching (re-switching) from a second input stream to a first input stream is performed again after first switching from the first input stream into the second input stream, the count value comparison unit 1636 receives the value of the number of frames of the first input stream and the value of the number of frames of the second input stream, counted based on a first switching time point, from the frame counter 1650, and compares the count value of the number of frames of the first input stream with the counted value of the number of frames of the second input stream. A method of inserting, by the insertion unit 1632, a virtual P picture ES and a null packet may differ based on a result of the comparison of the count value comparison unit 1636. For example, if the frame count value of the second input stream is equal to or greater than the frame count value of the first input stream, a null packet may be inserted by the length of a packet that corresponds to the number of frames corresponding to the difference between the two frame count values, picture streams up to the in-point of the first input stream may be replaced with virtual P picture ESs, and the length of a packet may be set using a null packet. In contrast, if the frame count value of the first input stream is greater than the frame count value of the second input stream, virtual P picture ESs may be continuously inserted by the number of packets corresponding to the difference between the two frame count values, the number of frames of the two input streams may continue to be counted while the virtual P picture ESs are inserted, and virtual P picture ESs may be further inserted until the two frame count values become equal.
The audio time control unit 1637 separately stores the ESs and pieces of time information of the audio PESs of different input streams that are stored in different ring buffers (e.g., a ring buffer 1 and a ring buffer 2) within the audio buffer 1646 of the storage unit 1640. The audio time control unit 1637 stores the PTS of a picture at which video is switched, compares the stored PTS of the picture with the PTS of audio that is later received, and determines a point of time, corresponding to the stored PTS, to be a switching time point. Thereafter, the audio time control unit 1637 performs control so that switching is performed in the ES (e.g., an AC3 frame) of a second input stream corresponding to the determined switching time point.
The storage unit 1640 may include the virtual P picture storage unit 1642 configured to store at least one virtual P picture ES generated by the video analysis unit 1634, a video buffer 1644 configured to temporarily store video streams, and the audio buffer 1646.
The frame counter 1650 counts the number of frames of a received input frame.
The output unit 1660 outputs streams on which switching has been performed. The output unit 1660 may display an image of an input stream on which switching has been performed after the image is decoded by a decoder (not shown). Alternatively, the output unit 1660 may send image data to another output device according to circumstances.
In accordance with the method, apparatus, and system for switching a transport stream according to embodiments of the present invention, there is an advantage in that audio and video can be restored without a phenomenon in which the audio is disconnected or the video is broken at a point of time at which two different MPEG-2 TSs output by different encoders in an open GOP structure are connected when connecting the two MPEG-2 TSs. Furthermore, there is an advantage in that switching can be performed within a short time as much as possible from a point of time at which a switching command is received from a user without buffering two input TSs. Accordingly, the present invention is a technology that is necessarily required for broadcasting service in which HDTV and 3DTV or multi-channel service are interchangeably used in a single channel.
Furthermore, in accordance with the method, apparatus, and system for switching a transport stream according to embodiments of the present invention, since the processing time taken for input to and output from the MPEG-2 TS switching unit is minimized, the delay of a broadcasting program is reduced, and thus an input TS can be immediately processed without storing the TS in a buffer.
The present invention has been described with reference to the accompanying drawings and some embodiments, but the scope of the present invention should not be construed as being limited to the drawings or the embodiments. It is to be understood that those skilled in the art may modify and change the present invention in various ways without departing from the spirit and scope of the present invention written in the claims.
Kim, Jong Ho, Cho, Suk Hee, Choi, Jin Soo, Kim, Jin Woong, Choo, Hyon Gon
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6611624, | Mar 13 1998 | CISCO SYSTEMS, INC , A CORPORATION OF CALIFORNIA | System and method for frame accurate splicing of compressed bitstreams |
6785289, | Jun 05 1998 | Wistron Corporation | Method and apparatus for aligning sub-stream splice points in an information stream |
6823010, | Oct 14 1998 | France Telecom SA; Telediffusion de France SA | Method for switching a first digital audio-visual program video component(s) on a second digital audio-visual program video component(s) |
6993081, | Nov 23 1999 | International Business Machines Corporation | Seamless splicing/spot-insertion for MPEG-2 digital video/audio stream |
8571111, | Dec 20 2006 | Intel Corporation | Method and apparatus for switching program streams using a fixed speed program stream buffer coupled to a decoder |
8687656, | Mar 19 2004 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for providing faster channel switching in a digital broadcast system |
8743958, | Dec 14 2007 | THOMSON LICENSING DTV | Compressed video data stream switching method |
8755669, | May 13 2009 | SYNAMEDIA LIMITED | Splicing system |
20020087976, | |||
20030206596, | |||
20070234395, | |||
20120307843, | |||
JP2008154018, | |||
KR100211977, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 19 2014 | CHO, SUK HEE | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033111 | /0460 | |
May 19 2014 | KIM, JONG HO | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033111 | /0460 | |
May 19 2014 | CHOI, JIN SOO | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033111 | /0460 | |
May 19 2014 | KIM, JIN WOONG | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033111 | /0460 | |
May 21 2014 | CHOO, HYON GON | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033111 | /0460 | |
Jun 16 2014 | Electronics and Telecommunications Research Institute | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 23 2021 | REM: Maintenance Fee Reminder Mailed. |
Feb 07 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 02 2021 | 4 years fee payment window open |
Jul 02 2021 | 6 months grace period start (w surcharge) |
Jan 02 2022 | patent expiry (for year 4) |
Jan 02 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 02 2025 | 8 years fee payment window open |
Jul 02 2025 | 6 months grace period start (w surcharge) |
Jan 02 2026 | patent expiry (for year 8) |
Jan 02 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 02 2029 | 12 years fee payment window open |
Jul 02 2029 | 6 months grace period start (w surcharge) |
Jan 02 2030 | patent expiry (for year 12) |
Jan 02 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |