A dead time circuit (750) for a switching circuit is disclosed. The dead-time circuit comprises: an input (752) for receiving a switching signal of the switching circuit with at least one supply rail having a ground bounce signal; first and second outputs (754a, 754b); a first feedforward path (756) coupled to the first output and arranged to receive the switching signal; a second feedforward path (758) coupled to the second output and arranged to receive the switching signal; a first feedback path (760) forming a first feedback loop between the first output and the second feedforward path; and a second feedback path (762) forming a second feedback loop between the second output and the first feedforward path; wherein each of the first and second feedforward paths includes a respective first and second delay circuit (764a, 764b), each having a time delay greater than a predetermined time period of the ground bounce signal. A switching amplifier is also disclosed.
|
17. A switching amplifier comprising:
an inner feedback loop; and
an outer feedback loop having a loop gain and comprises a first integrator with at least one zero and a second integrator; wherein the inner feedback loop includes a closed-loop gain comprising the second integrator of the outer feedback loop, the closed-loop gain of the inner feedback loop having at least one pole;
the first integrator having a reactive element configured to generate a zero to at least partially cancel the at least one pole of the closed-loop gain of the inner feedback loop.
1. A dead time circuit for a switching circuit, the dead-time circuit comprising:
(i) an input for receiving a switching signal of the switching circuit with at least one supply rail having a ground bounce signal;
(ii) first and second outputs;
(iii) a first feedforward path coupled to the first output and arranged to receive the switching signal;
(iv) a second feedforward path coupled to the second output and arranged to receive the switching signal;
(v) a first feedback path forming a first feedback loop between the first output and the second feedforward path; and
(vi) a second feedback path forming a second feedback loop between the second output and the first feedforward path;
wherein each of the first and second feedforward paths includes a respective first and second delay circuit, each having a time delay greater than a time period of the ground bounce signal determined according to the equation: t=2π(LC)^0.5,
where t is the time period of the ground bounce signal, L is the inductance of a bonding wire and c is the capacitance of the at least one supply rail.
25. A switching amplifier comprising:
an inner feedback loop;
an outer feedback loop having a loop gain and comprises a first integrator with at least one zero and a second integrator; wherein the inner feedback loop includes a closed-loop gain comprising the second integrator of the outer feedback loop, the closed-loop gain of the inner feedback loop having at least one pole;
the first integrator having a reactive element configured to generate a zero to at least partially cancel the at least one pole of the closed-loop gain of the inner feedback loop; and
an output stage having a dead time circuit wherein the dead time circuit comprises:
(i) an input for receiving a switching signal of a switching circuit with at least one supply rail having a ground bounce signal;
(ii) first and second outputs;
(iii) a first feedforward path coupled to the first output and arranged to receive the switching signal;
(iv) a second feedforward path coupled to the second output and arranged to receive the switching signal;
(v) a first feedback path forming a first feedback loop between the first output and the second feedforward path; and
(vi) a second feedback path forming a second feedback loop between the second output and the first feedforward path;
wherein each of the first and second feedforward paths includes a respective first and second delay circuit, each having a time delay greater than a time period of the ground bounce signal determined according to the equation: t=2π(LC)^0.5,
where t is the time period of the ground bounce signal, L is the inductance of a bonding wire and c is the capacitance of the at least one supply rail.
2. The dead time circuit according to
3. The dead time circuit according to
5. The dead time circuit according to
6. The dead time circuit according to
7. The dead time circuit according to
8. The dead time circuit according to
9. The dead time circuit according to
10. The dead time circuit according to
11. The dead time circuit according to
12. The dead time circuit according to
13. The dead time circuit according to
14. A switching circuit for generating a switching signal, the switching circuit comprising:
a loop filter for producing a filtered signal from an input signal;
a modulator for modulating the filtered signal to produce a modulated switching signal; and
an output stage including the dead time circuit according to
wherein the modulated switching signal is delayed by the first and second delay circuits to generate the switching signal for driving a load.
15. The switching circuit according to
18. The switching amplifier according to
the first integrator has three poles and a further zero, and
the closed-loop gain of the inner feedback loop has one zero and a further pole.
19. The switching amplifier according to
the further zero of the first integrator at least partially cancels the further pole of the closed-loop gain of the inner feedback loop.
20. The switching amplifier according to
21. The switching amplifier according to
22. The switching amplifier according to
the second integrator's input is electrically coupled to an output of the first integrator and to an amplifier output for producing an amplified signal, and the second integrator's output is electrically coupled to an input to the modulator, and wherein
the first integrator's input is electrically coupled to the amplifier output.
23. The switching amplifier according to
24. The switching amplifier according to
|
The present application is a national phase entry under 35 U.S.C. §371 of International Application No. PCT/SG2015/050061, filed Apr. 2, 2015, which claims priority from U.S. Provisional Patent Application No. 61/974,198, filed Apr. 2, 2014, the disclosures of which are incorporated by reference herein.
The present invention relates to a dead time circuit for a switching circuit, and also a switching amplifier.
Class D amplifiers (CDAs) are becoming ubiquitous due to their significantly higher power-efficiency characteristics over their linear counterparts. For example, the commercial market size for CDAs in 2012 was estimated to be worth about two billion devices that incorporate CDAs (implemented in discrete/SoCs form factors), such as in smartphones, tablets, TVs, audio amplifiers, radios and the like. The attribute of CDAs having high power-efficiency is largely due to digital-like switching operation of associated output stages, in which power transistors arranged therein function as switches with low on-resistance. The high power-efficiency attribute is highly desirable as it translates to longer battery lifespan and elimination of usage of (or at least requires smaller) heat sinks.
Referring to
Irrespective of the modulation techniques utilized, a congruity in the design of CDAs is the ground-bounce (noise) generated due to the switching operation of the output stage(s) of the CDAs. The ground-bounce is defined as large voltage spikes (on the otherwise clean supply rails), which may result in significant reliability degradation and compromise the linearity performance of CDAs.
So due to ground-bounce, false switching in the output stage may occur, hence degrading the performance (including reliability and/or linearity). To illustrate the issue of false switching in the Class D output stage due to ground-bounce, schematics of a PWM CDA 300 is first depicted in
To illustrate the mechanisms of erroneous PWM pulses, consider a practical case in
There are four coupling paths in the integrator 104 (as per
To mitigate false switching, a conventional solution proposes using a comparator with a wide hysteresis (having a difference between upper and lower thresholds larger than the noise) and a long(er) response time to de-sensitize the CDA to the noise across its inputs. However, in PWM CDAs, a comparator generally tends to be used as the PWM modulator and typically features small-to-moderate hysteresis (i.e. on the order of a few mVs) and with relatively short response-time (i.e. of about a few nanoseconds) because a large hysteresis and/or long response time reduces the output dynamic range of the CDA and increases the overall delay. Furthermore, the ground-bounce spikes generated may be as high as a few hundred mVs and hence, a hysteresis of the said range is unrealistic practically.
Hence, the comparator is impervious to the ground-bounce only if the magnitude of the noise is small (i.e. lesser than the hysteresis of the comparator) and transiently fast-changing (i.e. of a high-frequency). It is well recognized that circuits with large switching currents, including CDAs (which includes audio CDAs and high-speed Class D supply modulator for power RF power amplifiers), switching mode power supply (DC-DC Converters), and other circuits with switching signals (with large current flow), tend to generate substantial ground-bounce, which consequently leads to significant performance degradation (such as reliability and/or linearity (e.g. Total Harmonic Distortion (THD)). Conventional design methodologies and practices to mitigate the ground-bounce noise are largely still empirical in nature, and the mechanisms for a CDA thereto are also largely un-investigated.
Another issue CDAs commonly face is their high susceptibility to power supply noise, which is quantified and qualified by Power Supply Rejection Ratio (PSRR) and Power-Supply Induced Intermodulation Distortion (PS-IMD). By means of negative feedback, the PSRR and PS-IMD may be improved by increasing the loop-gain of the CDA, which is a well-established technique. Conventional methods to increase the loop-gain often include applying multiple feedbacks, but typically limited to two feedback loops. Due to stability issues, triple (or more) feedback loops are difficult to realize or that their loop-gain may need to be reduced, in some cases, to even a lower level obtainable from a double-feed back.
To further explain,
One object of the present invention is therefore to address at least one of the problems of the prior art and/or to provide a choice that is useful in the art.
According to a 1st aspect of the invention, there is provided a dead time circuit for a switching circuit. The dead-time circuit comprises (i) an input for receiving a switching signal of the switching circuit with at least one supply rail having a ground bounce signal; (ii) first and second outputs; (iii) a first feedforward path coupled to the first output and arranged to receive the switching signal; (iv) a second feedforward path coupled to the second output and arranged to receive the switching signal; (v) a first feedback path forming a first feedback loop between the first output and the second feedforward path; and (vi) a second feedback path forming a second feedback loop between the second output and the first feedforward path; wherein each of the first and second feedforward paths includes a respective first and second delay circuit, each having a time delay greater than a predetermined time period of the ground bounce signal.
Advantageously, the proposed dead time circuit is able to block and prevent ground-bounce-induced short pulses from propagating to gates of the outputs, thereby eliminating the issue of false switching. Needless to say, this improves the reliability and/or linearity characteristics of the switching circuit.
Preferably, the first feedforward path may include a first logic gate for receiving the switching signal and an output signal from the second output via the second feedback path.
Preferably, the second feedback path may include a second logic gate.
Preferably, the second logic gate may include an inverter.
Preferably, the first logic gate's output may be coupled to an input of the first delay circuit, and the first delay circuit's output may be coupled to a first driver for boosting a first delayed signal from the first delay circuit.
Preferably, the second feedforward path may include a third logic gate for receiving the switching signal and an output signal from the first output via the first feedback path.
Preferably, the first feedback path may include a fourth logic gate.
Preferably, the fourth logic gate may include an inverter or a Level Shifter.
Preferably, the third logic gate's output may be coupled to an input of the second delay circuit, and the second delay circuit's output may be coupled to a second driver for boosting a second delayed signal from the second delay circuit.
Preferably, the second feedforward path may include third and fourth logic gates, the third logic gate for receiving the switching signal, the fourth logic gate for receiving the third logic gate's output and an output signal from the first output via the first feedback path.
Preferably, the third and fourth logic gates may respectively include an inverter and an AND gate.
Preferably, the first feedforward path may include first and second logic gates, the first logic gate for receiving the switching signal, the second logic gate for receiving the first logic gate's output and an output signal from the second output via the second feedback path.
Preferably, the first and second logic gates may respectively include an inverter and a NOR gate.
According to a 2nd aspect of the invention, there is provided a switching circuit for generating a switching signal, the switching circuit comprising: a loop filter for producing a filtered signal from an input signal; a modulator for modulating the filtered signal to produce a modulated switching signal; and an output stage including a dead time circuit according to any preceding claim, wherein the modulated switching signal is delayed by the first and second delay circuits to generate the switching signal for driving a load.
Preferably, the modulator may include a pulse width modulator, bang-bang control modulator, Sigma-Delta modulator or self-oscillation modulator.
Preferably, the switching circuit may be in the form of an amplifier or a DC-DC converter.
According to a 3rd aspect of the invention, there is provided a switching amplifier comprising: an inner feedback loop; and an outer feedback loop having a loop gain and comprises a first integrator with at least one zero and a second integrator; wherein the inner feedback loop includes a closed-loop gain comprising the second integrator of the outer feedback loop, the closed-loop gain of the inner feedback loop having at least one pole; the first integrator having a reactive element configured to generate a zero to at least partially cancel the at least one pole of the closed-loop gain of the inner feedback loop.
Advantageously, the inner and outer feedback loops (which collectively form a loop filter) are configured to improve the loop gain of the switching amplifier (e.g. by about more than 10 dB), which consequently translates to significant improvements in PSRR and PS-IMD. Also, since the phase-shift of the loop gain of this double-feedback arrangement is comparable to that of a single feedback arrangement, realization of a triple feedback switching amplifier with significantly higher loop gain is easily possible.
Preferably, the first integrator may have three poles and a further zero, and the closed-loop gain of the inner feedback loop may have one zero and a further pole.
Preferably, the further zero of the first integrator may at least partially cancel the further pole of the closed-loop gain of the inner feedback loop.
Preferably, the reactive element may emulate an inductor.
Preferably, the inductor may include a transconductance circuit.
Preferably, the switching amplifier may further comprise a modulator wherein the second integrator's input is electrically coupled to an output of the first integrator and to an amplifier output for producing an amplified signal, and the second integrator's output is electrically coupled to an input to the modulator, and wherein the first integrator's input is electrically coupled to the amplifier output.
Preferably, the first integrator's input may also be electrically coupled to an amplifier input for receiving a signal to be amplified.
Preferably, the switching amplifier may further comprise a third feedback loop having a third integrator, the third integrator's input being electrically coupled to an amplifier input for receiving a signal to be amplified, and to the amplifier output.
Preferably, the switching amplifier may comprise an output stage having a dead time circuit. The dead time circuit may comprise (i) an input for receiving a switching signal of a switching circuit with at least one supply rail having a ground bounce signal; (ii) first and second outputs; (iii) a first feedforward path coupled to the first output and arranged to receive the switching signal; (iv) a second feedforward path coupled to the second output and arranged to receive the switching signal; (v) a first feedback path forming a first feedback loop between the first output and the second feedforward path; and (vi) a second feedback path forming a second feedback loop between the second output and the first feedforward path; wherein each of the first and second feedforward paths includes a respective first and second delay circuit, each having a time delay greater than a predetermined time period of the ground bounce signal.
According to a 4th aspect of the invention, there is provided a switching amplifier comprising: an inner feedback loop; an outer feedback loop having a loop gain and comprises a first integrator with at least one zero and a second integrator; wherein the inner feedback loop includes a closed-loop gain comprising the second integrator of the outer feedback loop, the closed-loop gain of the inner feedback loop having at least one pole; the first integrator having a reactive element configured to generate a zero to at least partially cancel the at least one pole of the closed-loop gain of the inner feedback loop; and an output stage having a dead time circuit wherein the dead time circuit comprises: (i) an input for receiving a switching signal of a switching circuit with at least one supply rail having a ground bounce signal; (ii) first and second outputs; (iii) a first feedforward path coupled to the first output and arranged to receive the switching signal; (iv) a second feedforward path coupled to the second output and arranged to receive the switching signal; (v) a first feedback path forming a first feedback loop between the first output and the second feedforward path; and (vi) a second feedback path forming a second feedback loop between the second output and the first feedforward path; wherein each of the first and second feedforward paths includes a respective first and second delay circuit, each having a time delay greater than a predetermined time period of the ground bounce signal.
It should be apparent that features relating to one aspect of the invention may also be applicable to the other aspects of the invention.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Embodiments of the invention are disclosed hereinafter with reference to the accompanying drawings, in which:
Particularly, the first dead time circuit 750 comprises an input 752 for receiving a switching signal of the switching circuit with at least one supply rail (not shown) having a ground bounce signal; first and second outputs 754a, 754b (which are in turn respectively coupled to first and second power transistors 755a, 755b labelled as Mp1, Mn1); a first feedforward path 756 coupled to the first output 754a and arranged to receive the switching signal; a second feedforward path 758 coupled to the second output 754b and arranged to receive the switching signal; a first feedback path 760 forming a first feedback loop between the first output 754a and the second feedforward path 758; and a second feedback path 762 forming a second feedback loop between the second output 754b and the first feedforward path 756. The first and second outputs 754a, 754b are respectively labelled as VP1 and Vn1 in
It is to be appreciated that the output of the first NOR gate 766a is coupled to an input of the first delay circuit 764a, and the output of the first delay circuit 764a is coupled to the first driver 768a for boosting a first delayed signal from the first delay circuit 768a. Similarly, the output of the second NOR gate 766b is coupled to an input of the second delay circuit 764b, and the output of the second delay circuit 764b is coupled to the second driver 768b for boosting a second delayed signal from the second delay circuit 768b.
The configuration of the first dead time circuit 750 differs from the conventional dead time circuit 700 in that (for the first dead time circuit 750) the first and second delay circuits 784e. 764b are positioned respectively in the first and second feedforward paths 756, 758, whereas for the conventional dead time circuit 700, the corresponding delay circuits are instead positioned respectively within the associated feedback paths. That is, placement of the remaining components of the first dead time circuit 750 is largely the same as in the conventional dead time circuit 700, except for the above explained. For good order, it is to be highlighted that like components in the conventional dead-time circuit 700 to those in the first dead-time circuit 750 are described below using the same reference numerals, but with additional inclusion of “′” to the said reference numerals.
Furthermore, for the first dead time circuit 750, the delay of the first and second delay circuits 764a, 764b is purposefully configured to be longer than tGB (i.e. a period of the ground-bounce). More specifically, it is to be appreciated that a delay of the first and second delay circuits 764a, 764b to be configured is design-dependent in that the delay may depend on supply voltage, switching frequency of the CDA, parasitic capacitance/inductance/resistance, inductance of the bonding wire, and etc. In this embodiment, the delay is configured to be about 2 ns. However, in the conventional dead time circuit 700, the delay of the associated delay circuits 764a′, 764b′ (i.e. labelled as Delay_P and Delay_N in
tGB=2p(LC)^0.5 (1)
wherein L is the inductance of a bonding wire and C is the total capacitance between supply rails (including a decoupling capacitor and parasitic capacitance).
To understand why the conventional dead-time circuit 700 suffers from false switching, an explanation is provided with reference to
The proposed (ground-bounce-insensitive) first dead time circuit 750 of
To reiterate, the first dead time circuit 750 is applicable in the switching circuit (for generating a switching signal), in which the switching circuit comprises a loop filter for producing a filtered signal from an input signal; a modulator for modulating the filtered signal to produce a modulated switching signal; and an output stage (which incorporates the said dead time circuit 750), wherein the modulated switching signal is delayed by the first and second delay circuits 764a, 764b to generate the switching signal for driving a load. The modulator may be a pulse width modulator, bang-bang control modulator, Sigma-Delta modulator, self-oscillation modulator or the like.
For example, the switching circuit may be audio CDAs, the high speed Class D supply modulators for RF polar amplifiers, DC-DC Converters or other suitable circuits, in which switching (with large current flow) is to be performed. Conventionally, RF polar amplifiers are used for high power RF amplifiers for base stations, but not in mobile devices. This is because the large ground-bounce issue prevents RF polar amplifiers from being used in mobile devices, and so the first dead time circuit 750 can now be seen as an “enabler” for usage of RF polar amplifiers in mobile devices.
The remaining configurations will be described hereinafter. For the sake of brevity, description of like elements, functionalities and operations that are common between the different configurations are not repeated; reference will instead be made to similar parts of the relevant configuration(s).
The double-feedback PWM CDA 900 further includes a modulator, in which an input of the second integrator 906 is electrically coupled to the output of the first integrator 904 and to the output of the double-feedback PWM CDA 900 for producing an amplified signal. Also, an output of the second integrator 906 is electrically coupled to an input to the modulator, and an input of the first integrator 904 is electrically coupled to the output of the double-feedback PWM CDA 900. Moreover, the input of the first integrator 904 is also electrically coupled to an input of the double-feedback PWM CDA 900 for receiving a signal to be amplified.
Specifically, the first integrator 904 is arranged to have three poles and a further zero, and the closed-loop gain of the inner feedback loop 902 has one zero and a further pole. The further zero of the first integrator 904 at least partially cancels the further pole of the closed-loop gain of the inner feedback loop 902. So the reactive element functions to generate an additional pole and one additional zero, and thus eventually, the proposed double-feedback PWM CDA 900 is provided with five poles and three zeros (as opposed to only four poles and two zeros for the conventional double-feedback PWM CDA 600 of
The proposed double-feedback PWM CDA 900 is configured so that an overall loop gain of the loop filter is significantly increased, while yet ensuring stability. In the loop filter, active inductor(s) may be employed in the outer feedback loop 904 (as aforementioned). In this case, the active inductor 950 is realized using first and second transconductance amplifiers 952a, 952b (connected in parallel) and a capacitor 954 (i.e. see
It is to be appreciated that the two zeros generated by the outer feedback loop 904 are purposefully devised to cancel out the poles in the inner feedback loop 902. Ideally, a residual number of poles and zeros is to be reduced to three poles and one zero, but it is to be appreciated that for the proposed double-feedback PWM CDA 900, there is no necessity for ideal (i.e. perfect) cancellation to be achieved to derive significant improvements for the PWM CDA 900. As a result, the stability requirement may thus be relaxed—specifically, the phase shift of the loop gain of the loop filter (which has a double-feedback loop) is comparable to that of a single-feedback loop. Hence, the overall loop gain of the proposed double-feedback PWM CDA 900 is configurable to be significantly higher (e.g. about 10 dB higher at a frequency of 1 kHz) than the conventional double-feedback PWM CDA 600. Furthermore, the loop filter may also be stably configured to have triple feedback loops (to be further explained below), and hence a significantly improved loop gain (i.e. leading to significantly improved PSRR and other non-linearities) is realizable. Also for both cases, because of the increased loop gain, the PSRR and PS-IMD (and other non-linearities, including THD+N) are improved accordingly.
To delineate the proposed double-feedback PWM CDA 900 and also effect of the reactive element on the overall performance of the loop filter, reference is made to
Goverall=G1G2GPWM+G1GPWM (2)
To ensure the stability of the overall design (of the double-feedback PWM CDA 900), it is important that both the inner feedback loop 902 and the outer feedback loop 904 are stable. In this aspect, it is to be appreciated that the inner feedback loop 902 is configured as an 2nd order integrator and so is stable. As a result, the block diagram representation 1000 of
The loop gain, Gouter, of the outer feedback loop 904 is then expressed as:
It is observed from equation (5) that if conditions (A1) and (A2) below are satisfied, then Gouter may be simplified to equation (8). The conditions (A1) and (A2) are set out as:
Condition (A1):
Condition (A2):
2R13C>L/R23 (7)
Accordingly, with conditions (A1) and (A2) satisfied, the simplified expression for Gouter is then:
That is, if the conditions (A1)) and (A2) are satisfied, the two zeros in the outer feedback loop 904 cancel the poles of the inner feedback loop 902. Hence, the proposed double-feedback PWM CDA 900 simplifies to a three pole and a one zero arrangement. More specifically, with respect to equation (5), it is to be appreciated that if the conditions (A1) and (A2) are satisfied, the positions of two zeros are the same as the positions of two poles. Hence, the two poles are cancelled by the two zeros. So effectively, the PWM CDA 900 simplifies to a three pole and one zero arrangement. The conditions (A1) and (A2) ensure a perfect pole-zero cancellation. Practically, perfect cancellation is a strict requirement to obtain a stable PWM CDA 900. The PWM CDA 900 may have a stable configuration as long as positions of the poles and zeros are close. It is however to be appreciated the positions of the poles and zeros may deviate due to process variations of resistors (“R”), capacitors (“C”) and inductors (“L”) arranged in the PWM CDA 900, but usually do not significantly affect the stability of the PWM CDA 900. Compared to the conventional double-feedback PWM CDA 600, a total number of poles (in the proposed double-feedback PWM CDA 900) are reduced from four to three. Effectively, the loop gain and phase shift of the outer feedback loop 904 is now equivalent to a system with a double-pole having lead-lag compensation. Hence the double-feedback PWM CDA 900 is considered to be stable. It is to be appreciated that the overall loop gain of the double-feedback PWM CDA 900 is significantly higher than that of a design based on a single-feedback loop, and also easily configurable to be significantly higher than the conventional double-feedback PWM CDA 600.
For completeness, it is highlighted that it is not necessary for perfect pole-zero cancellation to be attained (i.e. where this may be the case for practical implementations). To clarify, although a perfect pole-zero cancellation is preferred, it may be not necessary. This is because while a perfect pole-zero cancellation is designed for and intended, when a circuit of the double-feedback PWM CDA 900 is being designed, but however due to process variations (i.e. the process variations for resistors and capacitors is typically about 20%), a perfect cancellation may be difficult to attain. In the proposed double-feedback PWM CDA 900, the stability of the double-feedback PWM CDA 900 is arranged to be unaffected by said process variations, although the pole-zero cancellation is only partial (and not perfect). In this instance, although the double-feedback PWM CDA 900 is configured as a five poles and three zeros arrangement, the double-feedback PWM CDA 900 preserves the stability characteristics due to partial cancellation of the at least one pole of the closed-loop gain of the inner feedback loop 902. In this manner, the overall loop gain of the double-feedback PWM CDA 900 is thus still significantly higher than the conventional double-feedback PWM CDA 600, thereby ensuring reduced non-linearities.
The remaining configurations will be described hereinafter. For the sake of brevity, description of like elements, functionalities and operations that are common between the different configurations are not repeated; reference will instead be made to similar parts of the relevant configuration(s).
A triple-feedback PWM CDA 1200 (as shown in
To illustrate significance of the triple-feedback PWM CDA 1200, the overall loop-gains of the conventional double-feedback PWM CDA 600 (of
It is apparent from equation (10) that, similar to the fifth embodiment, if conditions (B1) and (B2) below are satisfied, equation (10) may be simplified to equation (13). Conditions (B1) and (B2) are set out as:
Condition (B1):
Condition (B2):
2R13C+R13C13>L/R23 (12)
Accordingly, with conditions (B1) and (B2) satisfied, the simplified expression for Gouter,alt is then:
Similar to the fifth embodiment, for the seventh embodiment, the loop gain of the outer feedback loop 904 has a double-pole with lead-lag compensation, hence providing a stable feedback loop. An advantage of the seventh embodiment is that there is usage of a further design parameter in the form of capacitance (i.e. the two capacitors 1402, labelled as C13 in
For completeness, it is again to be appreciated that for practical implementations, the pole-zero cancellation is not perfect due to components variation and etc. Nevertheless, the stability condition is still provided for in the double-feedback PWM CDA 1400 (of the seventh embodiment) and so the loop gain is easily designed to be significantly higher than conventional designs, thereby obtaining the desired improvements in PSRR and PS-IMD (and other non-linearities).
In summary, the proposed loop filters are configured to beneficially improve the loop gain of double-feedback CDAs (e.g. by more than 10 dB), which consequently may translate to greater than 10 dB of improvement in PSRR and PS-IMD. Furthermore, since the phase-shift of the loop gain of the double-feedback arrangement (of the loop filter) is comparable to that of a single feedback arrangement, realization of a triple feedback PWM CDA with significantly (e.g. greater than 40 dB at a frequency of 217 Hz) higher loop gain (compared to a double-feedback arrangement) is also possible. Accordingly, the PSRR and PS-IMD are also reduced by approximately the same amount (subjected to the floor noise).
It is to be appreciated that some key attributes that may qualify the performance of CDAs include PSRR, PS-IMD and THD+N. In this regard, one object of the proposed dead-time circuit 750, 800, 840, 870 is to improve the THD+N attribute. Compared to conventional dead time circuits, the proposed dead time circuit 750, 800, 840, 870 is able to largely eliminate false switching in the Class D output stage that occur due to ground-bounce. As a result, the THD+N performance is improved significantly. On the other hand, an object of the proposed (high-loop gain) loop filter is to improve all three attributes: PSRR, PS-IMD and THD+N. Compared to conventional loop filters, the proposed loop filter is advantageous in that comparatively higher loop gain may be attained, thus resulting in better PSRR, PS-IMD and THD+N. Therefore, in a further embodiment, the proposed dead-time circuit 750, 800, 840, 870 and (high-loop gain) loop filter may be incorporated in combination, if desired, in a switching circuit/amplifier (e.g. an audio CDA) to improve the PSRR, PS-IMD and THD+N attributes simultaneously. The switching circuit may be any of those as mentioned in the first embodiment, and hence not repeated for brevity.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary, and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practising the claimed invention.
For example, the proposed dead-time circuit 750, 800, 840, 870 and (high-loop gain) loop filter are each independently usable without the other. Also, in respect of the proposed dead-time circuit 750, 800, 840, 870, other suitable logic gates may be used in place of the first and second NOR gate 766a, 766b (of
Chang, Joseph Sylvester, Ge, Tong, Guo, Linfei
Patent | Priority | Assignee | Title |
10164650, | Feb 16 2017 | Qualcomm Incorporated | Delay-free poly-phase quantizer and quantization method for PWM mismatch shaping |
Patent | Priority | Assignee | Title |
6288605, | Jan 19 1999 | STMicroelectronics S.r.l. | Power switching output stage with dead zone minimization and possibility of parallel synchronous connection |
7633336, | Aug 24 2007 | Texas Instruments Incorporated | Audio amplifier and methods of generating audio signals |
7733170, | May 09 2007 | APEXONE MICROELECTRONICS LTD | Switching amplifier and its modulation process |
8866544, | Apr 15 2011 | Semiconductor Components Industries, LLC | Class D pulse width modulator with dual feedback |
9564862, | Apr 30 2012 | Infineon Technologies Austria AG | Class D audio amplifier with adjustable loop filter characteristics |
20090027121, | |||
20110133836, | |||
JP2009021903, | |||
JP2013120947, | |||
JP2013175908, | |||
WO2013130731, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 02 2015 | Nanyang Technological University | (assignment on the face of the patent) | / | |||
Nov 05 2015 | GE, TONG | Nanyang Technological University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039614 | /0601 | |
Nov 05 2015 | GUO, LINFEI | Nanyang Technological University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039614 | /0601 | |
Dec 05 2015 | Chang, Joseph Sylvester | Nanyang Technological University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039614 | /0601 |
Date | Maintenance Fee Events |
Aug 30 2021 | REM: Maintenance Fee Reminder Mailed. |
Feb 14 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 09 2021 | 4 years fee payment window open |
Jul 09 2021 | 6 months grace period start (w surcharge) |
Jan 09 2022 | patent expiry (for year 4) |
Jan 09 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 09 2025 | 8 years fee payment window open |
Jul 09 2025 | 6 months grace period start (w surcharge) |
Jan 09 2026 | patent expiry (for year 8) |
Jan 09 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 09 2029 | 12 years fee payment window open |
Jul 09 2029 | 6 months grace period start (w surcharge) |
Jan 09 2030 | patent expiry (for year 12) |
Jan 09 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |