Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A heartbeat microwave authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected rf signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.
|
22. A method of authenticating a person using data related to the person's heartbeat, the method comprising:
transmitting a continuous wave (CW) radio frequency (rf) signal using at least one transmitter;
receiving a portion of the transmitted rf signal using at least one receiver, wherein the received portion of the transmitted rf signal is utilized for noise cancellation;
receiving a reflected microwave signal from a person using the at least one receiver, where the reflected signal contains information related to the person's heartbeat;
extracting heartbeat data from the reflected signal, where the heartbeat data is related to displacement as a result of the person's heartbeat;
comparing the extracted heartbeat data against at least one template profile; and
authenticating the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
10. A method of authenticating a person using data related to the person's heartbeat, the method comprising:
transmitting a continuous wave (CW) radio frequency (rf) signal using at least one transmitter;
receiving a portion of the transmitted rf signal using at least one receiver, wherein the received portion of the transmitted rf signal is utilized as a reference for coherent detection;
receiving a reflected microwave signal from a person using the at least one receiver, where the reflected signal contains information related to the person's heartbeat;
extracting heartbeat data from the reflected signal, where the heartbeat data is related to displacement as a result of the person's heartbeat;
comparing the extracted heartbeat data against at least one template profile; and
authenticating the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
19. A microwave sensor module for authenticating a person using data related to the person's heartbeat, comprising:
at least one transmitter configured to transmit a continuous wave (CW) radio frequency (rf) signal;
at least one receiver configured to receive a reflected microwave signal from a person that contains information related to the person's heartbeat;
a processor;
a memory containing an authentication application, wherein the authentication application configures the processor to:
receive a portion of the transmitted rf signal using the at least one receiver, wherein the received portion of the transmitted rf signal is utilized for noise cancellation;
extract heartbeat data from the reflected signal related to displacement as a result of the person's heartbeat;
compare the extracted heartbeat data against at least one template profile; and
authenticate the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
1. A microwave sensor module for authenticating a person using data related to the person's heartbeat, comprising:
at least one transmitter configured to transmit a continuous wave (CW) radio frequency (rf) signal;
at least one receiver configured to receive a reflected microwave signal from a person that contains information related to the person's heartbeat;
a processor;
a memory containing an authentication application, wherein the authentication application configures the processor to:
receive a portion of the transmitted rf signal using the at least one receiver, wherein the received portion of the transmitted rf signal is utilized as a reference for coherent detection;
extract heartbeat data from the reflected signal related to displacement as a result of the person's heartbeat;
compare the extracted heartbeat data against at least one template profile; and
authenticate the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
8. A microwave sensor module for authenticating a person using data related to the person's heartbeat, comprising:
at least one transmitter configured to transmit a continuous wave (CW) radio frequency (rf) signal;
at least one receiver configured to receive a reflected microwave signal from a person that contains information related to the person's heartbeat;
a processor;
a memory containing an authentication application, wherein the authentication application configures the processor to:
extract heartbeat data from the reflected signal related to displacement as a result of the person's heartbeat;
compare the extracted heartbeat data against at least one template profile; and
authenticate the person based upon the comparison of the extracted heartbeat data and the at least one template profile;
wherein the authentication application further configures the processor to extract heartbeat data from the reflected signal by:
extracting raw data from the reflected signal by constructing an I/Q radar returns matrix and I/Q time series waveforms;
bandpass filtering the I/Q time series waveforms to remove effects due to respiration and to isolate heartbeat only I/Q time series waveforms;
translating and rotating the heartbeat only I/Q time series waveforms to lie along the Q-axis, where a scaled imaginary part yields heartbeat displacement waveforms;
segmenting the heartbeat displacement waveforms into non-overlapping data windows (DW) of a fixed duration; and
removing anomalous DW from the data set, where anomalous DW include any DW whose root mean square or maximum absolute value is outside of a specified interval.
2. The microwave sensor module of
5. The microwave sensor module of
6. The microwave sensor module of
7. The microwave sensor module of
9. The microwave sensor module of
smoothing the I/Q time series waveforms to mitigate against outlier data points caused by motion artifacts;
removing affine trends from the I/Q time series waveforms to mitigate against stationary clutter effects; and
removing affine trends from the heartbeat only I/Q time series waveforms to remove residual clutter effects.
11. The method of
15. The method of
16. The method of
extracting raw data from the reflected signal by constructing an I/Q radar returns matrix and I/Q time series waveforms;
bandpass filtering the I/Q time series waveforms to remove effects due to respiration and to isolate heartbeat only I/Q time series waveforms;
translating and rotating the heartbeat only I/Q time series waveforms to lie along the Q-axis, where a scaled imaginary part yields heartbeat displacement waveforms;
segmenting the heartbeat displacement waveforms into non-overlapping data windows (DW) of a fixed duration; and
removing anomalous DW from the data set, where anomalous DW include any DW whose root mean square or maximum absolute value is outside of a specified interval.
17. The method of
smoothing the I/Q time series waveforms to mitigate against outlier data points caused by motion artifacts;
removing affine trends from the I/Q time series waveforms to mitigate against stationary clutter effects; and
removing affine trends from the heartbeat only I/Q time series waveforms to remove residual clutter effects.
18. The method of
20. The microwave sensor module of
21. The microwave sensor module of
23. The method of
24. The method of
|
The current application claims priority to U.S. Provisional Patent Application No. 62/038,128 filed Aug. 15, 2014, the disclosure of which is incorporated herein by reference.
The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
The present invention generally relates to radars and more specifically to microwave radar sensor modules for systems and methods for detecting biometrics.
Biometrics refer to the quantifiable data (or metrics) related to human characteristics and traits. The quantifiable metrics can be gathered using various sensors and the collected data processed to identify and/or authenticate individual persons. Typically, biometric identifiers can be categorized as physiological and/or behavioral characteristics. Generally, physiological characteristics are related to the shape of the body and can include (but not limited to) fingerprint, palm print, DNA, and scent. In contrast, behavioral characteristics relate to a pattern of behavior and include (but not limited to) gait, voice, and typing rhythm. Biometric identifiers can also include characteristics that are more subtle such as respiratory and heartbeat patterns.
Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules in accordance with embodiments of the invention are disclosed. In one embodiment, a microwave sensor module for authenticating a person using data related to the person's heartbeat includes at least one receiver configured to receive a reflected microwave signal from a person that contains information related to the person's heartbeat, a processor, a memory containing an authentication application, wherein the authentication application configures the processor to: extract heartbeat data from the reflected signal related to displacement as a result of the person's heartbeat, compare the extracted heartbeat data against at least one template profile, and authenticate the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
In a further embodiment, the microwave sensor module further includes at least one transmitter configured to transmit a continuous wave (CW) radio frequency (RF) signal.
In another embodiment, the at least one transmitter is built in to a mobile device.
In a still further embodiment, the at least one transmitter is built in to an external illumination source.
In still another embodiment, the transmitted RF signal is a Bluetooth signal.
In a yet further embodiment, the transmitted RF signal is a WI-FI signal.
In yet another embodiment, the transmitted RF signal is a cellular phone signal.
In a further embodiment again, the authentication application further configures the processor to receive a portion of the transmitted RF signal using the at least one receiver, wherein the received portion of the transmitted RF signal is utilized as a reference for coherent detection.
In another embodiment again, the authentication application further configures the processor to receive a portion of the transmitted RF signal using the at least one receiver, wherein the received portion of the transmitted RF signal is utilized for noise cancellation.
In a further additional embodiment, the authentication application further configures the processor to extract heartbeat data from the reflected signal by: extracting raw data from the reflected signal by constructing an I/Q radar returns matrix and I/Q time series waveforms, bandpass filtering the I/Q time series waveforms to remove effects due to respiration and to isolate heartbeat only I/Q time series waveforms, translating and rotating the heartbeat only I/Q time series waveforms to lie along the Q-axis, where a scaled imaginary part yields heartbeat displacement waveforms, segmenting the heartbeat displacement waveforms into non-overlapping data windows (DW) of a fixed duration, and removing anomalous DW from the data set, where anomalous DW include any DW whose root mean square or maximum absolute value is outside of a specified interval.
In another additional embodiment, wherein the authentication application further configures the processor to extract heartbeat data from the reflected signal by: smoothing the I/Q time series waveforms to mitigate against outlier data points caused by motion artifacts, removing affine trends from the I/Q time series waveforms to mitigate against stationary clutter effects, and removing affine trends from the heartbeat only I/Q time series waveforms to remove residual clutter effects.
In a still yet further embodiment, a smoothed differentiator pre-filter is utilized to enhance the heartbeat data.
In still yet another embodiment, a method of authenticating a person using data related to the person's heartbeat, the method includes receiving a reflected microwave signal from a person using at least one receiver, where the reflected signal contains information related to the person's heartbeat, extracting heartbeat data from the reflected signal, where the heartbeat data is related to displacement as a result of the person's heartbeat, comparing the extracted heartbeat data against at least one template profile, and authenticating the person based upon the comparison of the extracted heartbeat data and the at least one template profile.
In a still further embodiment again, the method further includes transmitting a CW RF signal using at least one transmitter.
In still another embodiment again, the at least one transmitter is built in to a mobile device.
In a still further additional embodiment, the at least one transmitter is built in to an external illumination source.
In still another additional embodiment, the transmitted RF signal is a Bluetooth signal.
In a yet further embodiment again, the transmitted RF signal is a WI-FI signal.
In yet another embodiment again, the transmitted RF signal is a cellular phone signal.
In a yet further additional embodiment, the method further includes receiving a portion of the transmitted RF signal using the at least one receiver, wherein the received portion of the transmitted RF signal is utilized as a reference for coherent detection.
In yet another additional embodiment, the method further includes receiving a portion of the transmitted RF signal using the at least one receiver, wherein the received portion of the transmitted RF signal is utilized for noise cancellation.
In a further additional embodiment again, the extracting heartbeat data from the reflected signal includes extracting raw data from the reflected signal by constructing an I/Q radar returns matrix and I/Q time series waveforms, bandpass filtering the I/Q time series waveforms to remove effects due to respiration and to isolate heartbeat only I/Q time series waveforms, translating and rotating the heartbeat only I/Q time series waveforms to lie along the Q-axis, where a scaled imaginary part yields heartbeat displacement waveforms, segmenting the heartbeat displacement waveforms into non-overlapping data windows (DW) of a fixed duration, and removing anomalous DW from the data set, where anomalous DW include any DW whose root mean square or maximum absolute value is outside of a specified interval.
In another additional embodiment again, the extracting heartbeat data from the reflected signal further includes smoothing the I/Q time series waveforms to mitigate against outlier data points caused by motion artifacts, removing affine trends from the I/Q time series waveforms to mitigate against stationary clutter effects, and removing affine trends from the heartbeat only I/Q time series waveforms to remove residual clutter effects.
In a still yet further embodiment again, a smoothed differentiator pre-filter is utilized to enhance the heartbeat data.
Turning now to the drawings, systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules in accordance with embodiments of the invention are disclosed. In many embodiments, the HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. In various embodiments, an illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. Typically, heartbeat displacement is affected by the arrangement and size of the blood vessels under the skin and thus the displacement is unique to the individual.
In many embodiments, the HERMA system utilizes a RF energy source to illuminate a person and at least one antenna to receive the reflected signal. In various embodiments, the HERMA system utilizes existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. As further described below, the received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user. In several embodiments, a reference copy of the transmitted signal can also be used for coherent detection and noise cancellation. Although specific configurations are discussed throughout, one of ordinary skill in the art would readily appreciate that the transmitter and receivers can be varied as appropriate to the requirements of a specification application. For example, the system can utilize dedicated transmitter(s) and dedicated receiver(s) in a mobile device. In other embodiments, external illumination sources (e.g. the cell tower, TV stations, Wi-Fi Access Points) can be utilized with the at least one receiver incorporated into a mobile device. Likewise, the system could utilize existing transmitters in a mobile device and utilize receivers in the area to receive the reflection. Similarly, the system could utilize signals radiated from a bystander's mobile device as the illumination source, and receive reflections either at the subject's phone, a bystander's phone, or some other external site. HERMA systems for identifying and/or authenticating a target in accordance with embodiments of the invention are further discussed below.
Conceptual Operation of a Heartbeat Microwave Authentication (HERMA) System
The authentication process can include measuring RF reflections including (but not limited to) microwave reflections at one or more receiver locations and a predetermined time segment such as (but not limited to) 5 seconds. For any given receiver antenna position, the measured reflected signal can be an integrated sum of the signals from all places “in view.” Thus, changing the antenna position or the part of the body being illuminated can change the unique pattern that is received by a microwave receiver.
A diagram illustrating the conceptual operations of a HERMA system in accordance with an embodiment of the invention is shown in
Authentication Using HERMA Systems
Although users can place their devices in different position, and thus change the nature of the detected microwave heartbeat waveform, the basic heart beat timing remains unique to that person. Thus, one of the values of utilizing a HERMA approach is that it allows users to continue to use their mobile devices in the same way or manner during authentication.
A process for authenticating a user utilizing heartbeat features in accordance with an embodiment of the invention is illustrated in
The process of authentication a user with HERMA can be implemented using a variety of hardware configurations. A hardware design implementation of a HERMA system in accordance with an embodiment of the invention is illustrated in
In several embodiments, a cancellation process can be utilized to remove a portion of the coupled signal that is not changing, and thus leaving just the variable signal from the reflections of the person. A sample of the reference signal can be used to provide a cancellation signal for cancellation adjustment 312 and as a reference for the coherent detectors 314. Cancellation adjustments utilizing various cancellation paths are disclosed in U.S. patent application Ser. No. 14/256,748, entitled “Life Detecting Radars,” filed Apr. 18, 2014, the disclosure of which is incorporated by reference herein in its entirety. Using the transmitted signal as a reference allows for a narrow bandwidth detection system, reducing the amount of noise, and providing immunity to interference. In various embodiments, the HERMA system also includes a signal processing unit 316 that can be connected to a host CPU 318 or the Internet for remote access to data and control functionalities. In various embodiments, the detected signals can be digitized and processed by an application running on the host mobile device. In some embodiments, an application running on the host computer can be made aware of when the mobile device is transmitting the CW signal, or, at least, ensure that the interface is transmitting with enough to provide the needed illumination signal.
Modern cellphone and mobile device technology provides a fairly low risk path to implementation of extra circuitry needed for the sensing of the reflected microwave signals from the user. In the near term, an effective strategy may be to include the circuitry and antennas in a case that fits around the mobile device. However, the HERMA system can be implemented using hardware present on a mobile device, as a standalone module, or in combination. A microwave sensor module in accordance with an embodiment of the invention is illustrated in
Although specific processes and hardware implementations for authenticating a user utilizing heartbeat features are discussed above with respect to
Pre-Processing of HERMA Data
Electrocardiogram (ECG) based recognition generally falls into two categories: fiducial and non-fiducial methods. Fiducial methods rely on extracting timing, duration, and amplitude of features specific to ECG signal shapes. In contrast, non-fiducial methods extract features from ECG waveforms based solely on the assumption that they are unique between individuals and consistent for a given individual. As heartbeat displacements obtained from HERMA do not empirically resemble ECG signal shapes, non-fiducial methods are utilized for authentication and/or identification.
In order to apply such techniques for HERMA based systems, reflection data can be pre-processed for extraction of heartbeat displacement of an individual. Typically, the received radar returns from HERMA contain respiration and noise effects in addition to heartbeat features where respiration chest displacements are on the order of 4-12 mm at a rate of 0.1-0.3 Hz and heartbeat chest displacements are on the order of 0.2-0.5 mm at a rate of 1-3 Hz. While respiration effects are spectrally isolated from heartbeat effects, they are between 1-2 orders of magnitude larger. Because of this, harmonics from respiration may leak into the desired band of interest for heartbeat signature features (1-40 Hz). Further, the observed 1/f2 noise appears to adversely affect the signal-to-noise ratio (SNR) of the received heartbeat waveform noticeably.
Ideally, I/Q radar returns should trace out a circular arc in the I/Q plane centered at the origin where x[n]=x1+jxQ[n]. Further, the displacement effects d[n] is equal to the displacement due to respiration dR[n] and the displacement due to heartbeat dH[r]. From the I/Q radar returns, the composite displacement d[n] (due to respiration dR[n] and heartbeat dH[n] effects) can be obtained as follows, where c is the speed of light and F0 is the carrier frequency:
Although the goal is to preserve the heartbeat displacement dH[n], in practice, the I/Q radar returns are corrupted by clutter/noise effects. For this case, the I/Q radar returns can be linearly detrend and then bandpass filter to the desired band of interest (1-40 Hz). This will yield a complex baseband signal y[n] that approximately spans a very small circular arc (between 4-8 degrees) corresponding solely to the heartbeat displacement dH[n]. The signal y[n] can be translated and rotated to lie approximately along the Q-axis, yielding a signal z[n]. From this, the heartbeat displacement dH[n] can be approximately determined as follows (this process is called linear demodulation):
A process for pre-processing reflection data in accordance with an embodiment of the invention is illustrated in
An optional affine trend can also be removed (512) from the heartbeat only I & Q time series waveforms to remove residual clutter effects. In various embodiments, the input I/Q waveforms can be translated and/or rotated (i.e. linear demodulation) (514) to lie along the Q-axis and the scaled imaginary part yields the displacement. Then, each data record can be partitioned into data windows (DWs) (516) of constant size where the subject/record indices are stored. In this setting, the DWs can be formed by segmenting the heartbeat displacement waveforms into non-overlapping windows of 5 seconds in duration. To excise anomalous DWs from the data set, such as those due to motion artifacts or low signal gain, any DW whose root mean square (RMS) or maximum absolute value (MAV) is outside of a specified interval is deemed anomalous and excised (518). Consider accepting a given DW only if either the RMS or MAV of the window lied within a specified range. Large values of RMS or MAV suggest the presence of a motion transient that should be removed from the data set. Small values of RMS or MAV suggest that the gain of the signal path is too low. In this case, the heartbeat displacement waveform will look severely corrupted by noise and should be removed from the data set.
The received heartbeat displacement waveforms often possess a noticeable fundamental beat, but do not appear to have finer details as in the case of ECG signals. This may be the result of the I/Q anti-aliasing filters at the receiver modules, which noticeably shape the input noise with a 1/f2 type behavior. While the noise power drops off appreciably with frequency, which ensures good alias image suppression, for low frequencies, this could result in strong noise components seen in bands of interest such as the heartbeat band of 1-40 Hz. To mitigate against this effect, a smoothed differentiator pre-filter can be utilized to enhance the heartbeat fine details (i.e., the harmonics above the fundamental). This has resulted in improved authentication/identification performance for some embodiments.
Although specific processes for pre-processing reflection data are discussed above with respect to
4 Channel and Single Channel HERMA System Implementations
Various non-fiducial methods implicitly extracted heartbeat signature features from the normalized AC of non-overlapping constant length DWs. In these methods, the normalized AC DW sequences were mapped to feature vectors (FVs) via a data transformation. Specifically, the three methods that we looked at for HERMA were the following: (1) applying a discrete cosine transform (DCT) and using the lower frequency components to form the FVs (referred to here as the AC/DCT method); (2) applying a principal component analysis (PCA) derived from the training set to form the FVs (referred to here as the AC/PCA method) and (3) applying a PCA followed by a linear discriminant analysis (LDA) derived from the training set to form the FVs (referred to here as the AC/PCLDA method). In testing system implementations, data from HERMA was collected using two antenna configurations: (1) a 4 channel cruciform arrangement in which the transmitter antenna was placed at the center of the cruciform and (2) a single channel system in which the transmitter and receiver antennas were adjacent to each other. A 4 channel cruciform arrangement in accordance with an embodiment of the invention is shown in
For the 4 channel cruciform arrangement, data was captured according to the following: 5 subjects, 3 orientations per subject (front facing, left temple profile, and right temple profile), and 2 data takes per orientation. For the single channel setup, data was captured according to the following: 6 subjects, 3 orientations per subject (front facing, left temple profile, and right temple profile), 6 data takes per orientation. For both configurations, considered both merged and separate orientations. For merged orientations, subject indices from data takes from a given individual at different orientations were merged together to correspond to one subject. For separated orientations, data takes from a given individual at different orientations were assigned separate subject indices.
The 4 channel system utilized DW construction with anomalous excision as discussed above. In particular, an experimental system used MAV criterion where only DWs with MAV levels between −80 dB and −74 dB were preserved. Thus, the original data set included 600 DWs with 5 sec non-overlapping windows from 120 record observations (5 subjects, 3 orientations, 2 takes per orientation, and 4 antenna channels per take) and the reduced data set included 163 DWs. The vast majority of the DWs that did not survive the MAV based purge came from Channels 1 & 3, which were known to yield noisy and heavily attenuated displacement signals. Further, DWs corrupted by random motion transients and artifacts were successfully removed, upon manual inspection.
A graph illustrating results from a 4 channel system with merged orientation in accordance with an embodiment of the invention is illustrated in
Lower limit
Upper limit
Distance
of 50%
of 50%
threshold
# of
# of
Observed
confidence
confidence
value
hits
trials
rate
interval
interval
Note
FV FP
0.1864
35
120
0.2917
0.2608
0.3249
Set for EER
FV FN
0.1864
6
23
0.2609
0.1870
0.3511
Set for EER
Record FP
0.1864
8
45
0.1778
0.1340
0.2325
Set for EER
Record FN
0.1864
1
7
0.1429
0.0403
0.3407
Set for EER
Further, results as to identification using a 4 channel system with merged orientation in accordance with an embodiment of the invention are summarized below in Table 2. With anomalous DWs removed, trends were noticed with the normalized ACs between the different subjects. In various embodiments, setting the maximum lag to 1.4 seconds yielded the best results in terms of authentication and identification.
Lower limit
Upper limit
of 50%
of 50%
# of
# of
Observed
confidence
confidence
hits
trials
rate
interval
interval
FV accuracy
46
88
0.5227
0.4811
0.5639
Record
20
33
0.6061
0.5321
0.6753
accuracy
A graph illustrating results from a 4 channel system with separated orientation in accordance with an embodiment of the invention is illustrated in
Lower limit
Upper limit
Distance
of 50%
of 50%
threshold
# of
# of
Observed
confidence
confidence
value
hits
trials
rate
interval
interval
Note
FV FP
0.1805
43
151
0.2848
0.2577
0.3138
Set for EER
FV FN
0.1805
2
7
0.2857
0.1380
0.4861
Set for EER
Record FP
0.1780
8
53
0.1509
0.1136
0.1984
Set for EER
Record FN
0.1780
1
3
0.3333
0.0914
0.6736
Set for EER
In addition, results as to identification using a 4 channel system with separated orientation in accordance with an embodiment of the invention are summarized below in Table 4.
Upper
Lower limit of
limit of 50%
# of
# of
Observed
50% confidence
confidence
hits
trials
rate
interval
interval
FV accuracy
28
133
0.2105
0.1845
0.2396
Record
10
44
0.2273
0.1784
0.2855
accuracy
The single channel system utilized DW construction with anomalous excision as discussed above. In particular, the single channel system employed an 11-tap smoothed differentiator feature enhancement pre-filter, as it yielded slightly improved performance. Further, it used MAV criterion where only DWs with MAV levels between −123 dB and −112 dB were preserved. The original data set included 540 DWs with 5 sec non-overlapping windows from 108 record observations (3 subjects, 3 orientations, 6 takes per orientation, and 1 antenna channel per take). However, the reduced data set included 411 DWs. The DWs were plagued by weaker heartbeat signals and higher noise levels at larger frequencies were appropriately excised, upon manual inspection. In addition, DWs corrupted by random motion transients and artifacts were successfully removed.
A graph illustrating results from a single channel system with merged orientation in accordance with an embodiment of the invention is illustrated in
Lower limit
Upper limit
Distance
of 50%
of 50%
threshold
# of
# of
Observed
confidence
confidence
value
hits
trials
rate
interval
interval
Note
FV FP
0.1734
121
336
0.3601
0.3413
0.3795
Set for EER
FV FN
0.1734
10
30
0.3333
0.2638
0.4112
Set for EER
Record FP
0.1747
21
82
0.2561
0.2198
0.2967
Set for EER
Record FN
0.1747
2
8
0.2500
0.1206
0.4332
Set for EER
Further, results as to identification using a single channel system with merged orientation in accordance with an embodiment of the invention are summarized below in Table 6. With anomalous DWs removed, trends with the normalized ACs between the different subjects were noticed. In various embodiments, wetting the maximum lag to 1.3 seconds and 1.2 seconds yielded the best results in terms of authentication and identification, respectively.
Lower limit
Upper limit
of 50%
of 50%
# of
# of
Observed
confidence
confidence
hits
trials
rate
interval
interval
FV accuracy
38
156
0.2436
0.2184
0.2711
Record accuracy
14
41
0.3415
0.2828
0.4059
Although specific implementations using 4 channel and single channel HERMA systems are discussed above with respect to
As discussed above, a HERMA system can include antennas arranged and configured as appropriate to the requirements of a specific application. For example, the antennas can be arranged and placed into a case for a particular mobile device or class of devices. An antenna configuration where the antenna positions are chosen to be close to existing antennas in a mobile device in accordance with an embodiment of the invention is illustrated in
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
Lux, James Paul, Chow, Edward, McKee, Michael Ray, Haque, Salman-ul Mohammed, Tkacenko, Andre
Patent | Priority | Assignee | Title |
11244315, | Mar 21 2017 | Intelligent Technologies International, Inc | Authentication system for controlling access and use based on heartbeat shape |
11559215, | Nov 20 2018 | Korea Advanced Institute of Science and Technology | Method for measuring high-accuracy realtime heart rate based on continuous-wave Doppler radar and radar system therefor |
Patent | Priority | Assignee | Title |
4641349, | Feb 20 1985 | IRIDIAN TECHNOLOGIES, INC | Iris recognition system |
5486833, | Apr 02 1993 | BARRETT HOLDING LLC | Active signalling systems |
5774571, | Aug 01 1994 | Edward W., Ellis; James, Marshall | Writing instrument with multiple sensors for biometric verification |
5913196, | Nov 17 1997 | SENTRY COM LTD | System and method for establishing identity of a speaker |
6125192, | Apr 21 1997 | DIGITAL PERSONA, INC | Fingerprint recognition system |
6554705, | Aug 22 1997 | Biometric Recognition, LLC | Passive biometric customer identification and tracking system |
6606511, | Jan 07 1999 | JPMorgan Chase Bank, National Association | Pulse oximetry pulse indicator |
7206938, | Sep 24 2002 | UNIQUI LLC | Key sequence rhythm recognition system and method |
7272431, | Aug 01 2002 | California Institute of Technology | Remote-sensing method and device |
7417536, | Mar 13 2003 | Living being presence detection system | |
7811234, | Aug 01 2002 | California Institute of Technology | Remote-sensing method and device |
7889053, | Apr 05 2006 | California Institute of Technology | Remote, non-contacting personnel bio-identification using microwave radiation |
8232866, | Apr 05 2006 | California Institute of Technology | Systems and methods for remote long standoff biometric identification using microwave cardiac signals |
8884809, | Apr 29 2011 | The Invention Science Fund I, LLC | Personal electronic device providing enhanced user environmental awareness |
9151834, | Apr 29 2011 | The Invention Science Fund I, LLC | Network and personal electronic devices operatively coupled to micro-impulse radars |
20020002335, | |||
20020138768, | |||
20040017300, | |||
20040086091, | |||
20050220310, | |||
20070257787, | |||
20080045832, | |||
20090067286, | |||
20100008449, | |||
20100194571, | |||
20110066041, | |||
20120068819, | |||
20120269102, | |||
20130005310, | |||
20140163362, | |||
WO2016025961, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 17 2015 | California Institute of Technology | (assignment on the face of the patent) | / | |||
Aug 25 2015 | MCKEE, MICHAEL RAY | California Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037245 | /0827 | |
Aug 26 2015 | TKACENKO, ANDRE | California Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037245 | /0827 | |
Sep 02 2015 | CHOW, EDWARD | California Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037245 | /0827 | |
Sep 09 2015 | LUX, JAMES PAUL | California Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037245 | /0827 | |
Sep 11 2015 | HAQUE, SALMAN-UL MOHAMMED | California Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037245 | /0827 | |
Oct 19 2015 | California Institute of Technology | NASA | CONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS | 042221 | /0576 |
Date | Maintenance Fee Events |
Jul 02 2021 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Jan 16 2021 | 4 years fee payment window open |
Jul 16 2021 | 6 months grace period start (w surcharge) |
Jan 16 2022 | patent expiry (for year 4) |
Jan 16 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 16 2025 | 8 years fee payment window open |
Jul 16 2025 | 6 months grace period start (w surcharge) |
Jan 16 2026 | patent expiry (for year 8) |
Jan 16 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 16 2029 | 12 years fee payment window open |
Jul 16 2029 | 6 months grace period start (w surcharge) |
Jan 16 2030 | patent expiry (for year 12) |
Jan 16 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |