The invention is a multi-directional reactive pendulum object that is intended to be attached to any moving object such as the dashboard of a motor vehicle. The object is put into motion by the movement of the vehicle causing a pendulum to swing. The pendulum operates two levers that are on pivots which are perpendicular to each other. The object entertains occupants by mimicking the actions of the movement of the vehicle (i.e. turning left, right, stopping, accelerating). Placed on top of the pendulum object will be a toy consisting of various characters, models, or artistic renderings of existing items such as a car, motorcycle, or airplane.
|
1. A multidirectional reactive pendulum device that emulates the motion of a moving object, the device including:
a. a base having a base mounting cradle;
b. a pendulum rod that is partly inserted in the base, the pendulum rod having a rod upper extension extending from a pivot connection point;
c. a lower lever through which the rod upper extension is received, the lower lever:
i. being secured to the pendulum rod via the pivot connection point; and
ii. pivotably interfacing with the base mounting cradle such that the pendulum rod is pivotable along a first axis with respect to the base; and
d. a toy that is rotatably interfaced with the rod upper extension such that the toy is pivotable along a second axis with respect to the lower lever, the second axis being different from the first axis, wherein the toy is simultaneously pivotable along both the first and second axes, wherein the toy includes at least two downwardly-projecting contact tabs that fit about at least a portion of the rod upper extension.
2. The device of
3. The device of
a. are a pivot point for the lower lever; and
b. allow the lower lever to move leftward and rightward.
4. The device of
a. the pivot connection point includes an aperture extending thereto; and
b. the lower lever further includes a pendulum pivot;
c. the fastener is inserted through the pendulum pivot and the pivot connection point to mate the pendulum rod to the pivot connection point.
5. The device of
6. The device of
a. the lower lever includes a toy mounting cradle; and
b. the toy includes toy pivot trunions that snap fit with the toy mounting cradle to secure the toy to the lower lever.
7. The device of
8. The device of
a. the lower lever includes a toy mounting cradle; and
b. the toy includes pivot trunions that snap fit with the toy mounting cradle to secure the lower lever to the toy.
9. The device of
a. the pendulum rod pivots along the first axis to move the toy in leftward and rightward directions; and
b. the toy pivots along the second axis to move the toy in forward and backward directions.
|
Not Applicable.
Not Applicable.
The present invention relates to an object that is activated by the movement of a pendulum. The invention is meant to be mounted/attached to a moving object which causes the pendulum to swing. The pendulum rod extends above the pendulum pivot and activates two levers. The lower lever moves the toy left and right on a fixed axis. The upper lever moves the toy forward and backwards on a fixed axis. Both upper and lower levers are able to be moved at the same time.
Novelty items such as vehicle accessories and gadgets have always been a fascinating way for owner/operators to express their hobbies and beliefs. The multi-directional reactive pendulum object also allows the occupants to be entertained by the mirrored and exaggerated actions of the device as it is moved.
The multi-directional reactive pendulum object is meant to be placed on any moving vehicle, i.e. the dashboard of an automobile, boat, train, plane, golf cart. The toy at the top of the pendulum object will mimic the movement of the vehicle that it is placed upon. The movement of the toy is caused by a pendulum rod with bob attached that transfers movement to two perpendicular pivots that can be operated at the same time. When the vehicle corners, the bob will swing from the lateral force. This motion is transferred to the left/right pivot via the pendulum rod pivot connection point which allows forward/backward movement of the pendulum rod while transferring left to right movement directly to the lower lever. Said lower lever left/right pivot is located above the pendulum bob causing the upper lever's movement to be opposite of the bobs, creating the effect that the toy is leaning into the corner. When the vehicle accelerates, the bob will swing backwards; when the vehicle decelerates, the bob will swing forward. These movements are transferred to contact tabs on the toy which are located below said toy's forward/backward pivot by a portion of the pendulum rod that extends past said pendulum rod pivot causing the movement to again be reversed giving the effect that the toy is doing a wheelie when accelerating and a nose dive when decelerating. Both pivots can move at the same time, e.g. if the vehicle is accelerating and turning, the toy will wheelie and lean into the turn simultaneously.
The drawings in this application illustrate the interaction of the components.
The multi-directional reactive pendulum object has a bob (5) that is attached to the bottom of a rigid pendulum rod (3). The bob (5) is round and has a pendulum rod mounting hole (7) through the center allowing the pendulum rod (3) to be attached to it. The bob (5) also has a chamfered bottom edge (11) to allow clearance of the base cap (6) when swinging. The bob (5) is made of high density material such as lead, steel, or other metals and is attached to the pendulum rod (3) with adhesive, mechanical fasteners, resistance fit or by upsetting the end of the pendulum rod (3) with heat or pressure.
The pendulum rod (3) is composed of two main parts: the pivot (9) and the upper pendulum rod extension (10). The pendulum rod (3) can be made of injection molded rigid plastic, nylon, PVC or other lightweight rigid material or metal.
The pivot (9) is the axis that the pendulum swings forward and backwards on and is also the contact point that transfers left and right movement of the pendulum to the lower lever (2). The pivot (9) is sized in a manor that allows the fastener that it swings on to slip through allowing it to swing freely with minimal resistance.
The upper pendulum rod extension (10) transfers the pendulum's forward and backward movement to the toy (1). The upper pendulum rod extension (10) extends above the pivot (9) and has a bulb shape at the end to allow for continuous contact with the toy (1) contact tabs (19) as the parts move.
The bob bumper (21) is shaped like a disc, is slightly larger in diameter than the bob (5), and has a bumper hole (24) in the center of it allowing it to fit freely over the pendulum rod (3) and rest on the bob (5). The pendulum bob bumper (21) is made of a soft resilient material such as low density open-celled foam.
The base (4) is shaped like a dome and is made of injection molded rigid plastic, nylon, PVC or other lightweight rigid material. The exterior of the base (4) can be smooth to simulate air, concrete, or asphalt. The exterior of the base (4) can also be rough to simulate dirt, rocks, or waves. The base (4) can be injection molded with colored material or painted to further simulate the above stated exterior surface conditions. The base (4) can have wheels (27) attached or molded as part of it further enhancing the realistic characterization of the toy (1) mounted on top. The base (4) is hollow with thin walls and consists of three main parts: the lower lever mounting cradle (12) which is the receptacle for the lower lever (2), the pendulum rod clearance hole (8), and the recessed cap receptacle (26). The lower lever mounting cradle (12) allows the lower lever pivot trunions (16) to be attached to the base (4) with a firm snap fit due to a slightly closed “C” shape design with the opening at the top of the lower lever mounting cradle (12) being slightly narrower than the lower lever pivot trunions (16). This allows for simple assembly and reduced costs. The inside surfaces of the lower lever mounting cradle (12) are smooth to reduce friction. The bottom of the base (4) has a recessed cap receptacle (26) to allow for the concealed fitment of the base cap (6). The recessed cap receptacle (26) can have a small lip that will allow the base cap (6) to be snapped into place.
The base cap (6) is made of injection molded rigid plastic, nylon, PVC or other lightweight rigid material. There can be a fastener hole (41) in the middle to allow a mechanical fastener to be used to mount it to the vehicle. The base cap (6) has a flat bottom to allow the placement of adhesive tape for fastening to the vehicle and/or can have a ring of soft rubber (42) around the edge to dampen vibration transferred from the vehicle. Said ring of soft rubber (42) will consist of a resilient material such as polyurethane gel or silicone rubber and can be fitted to a channel within the cap, secured with adhesives, or the cap could be a dual durometer injection molded part.
The lower lever (2) is made of injection molded rigid plastic, nylon, PVC, or other lightweight rigid material. The lower lever (2) is slightly narrower than the gap between the base's (4) lower lever mounting cradle (12) allowing for free movement. The lower lever (2) consists of four main parts: the toy mounting cradle (14), the pendulum pivot (15), the lower lever pivot trunions (18) and the pendulum rod bumpers (17). The toy mounting cradle (14) is the receptacle for the toy (1). It allows the toy's (1) pivot trunions (18) to be attached to the lower lever (2) with a firm snap fit due to a slightly closed “C” shape design. The opening at the top of the upper lever mounting cradle (14) is slightly narrower than the toy's (1) pivot trunions (18). This allows for simple assembly and reduced costs. The inside surfaces of the toy mounting cradle (14) are smooth to reduce friction. The lower lever pivot trunions (16) are the pivot point for the lower lever (2) and allow the lower lever (2) to move left and right. The lower lever pivot trunions (16) are smooth plastic and slightly smaller than the lower lever mounting cradle (12) to allow for easy movement due to reduced friction. The toy pivot trunions (18) snap firmly into the base's (4) lower lever mounting cradle (12). The pendulum pivot (9) is the receptacle where the pendulum rod is mated. The pendulum rod (3) is passed through the middle of the lower lever (2), and a fastener is inserted through the pendulum pivot (15) and the pivot (9). The pendulum rod bumpers (17) limit the forward and backward movement of the pendulum rod (3).
The toy (1) is thin walled and light weight made of injection molded rigid plastic, nylon, PVC, or other lightweight rigid material. The toy (1) consists of three main parts: the toy pivot trunions (18), the contact tabs (19) and the mounting surface (20). The toy pivot trunions (18) are smooth plastic and slightly smaller than the upper lever mounting cradle (14) to allow for easy movement due to reduced friction. The toy mounting surface (20) is also slightly narrower than the gap between the toy mounting cradles (14) to allow for free movement. The toy pivot trunions (18) snap firmly into the toy mounting cradle (14) due to a slightly closed “C” shape design. The toy contact tabs (19) are two tabs that project downward and capture the upper pendulum rod extension (10). The toy contact tabs (19) are located below the toy pivot trunions (18) which allow the movement of the upper pendulum rod extension (10) to be reversed when transferred to the toy (1). The toy (1) can be various characters, models, or artistic renderings of existing items such as a car, motorcycle, airplane, animal or person.
The bob bumper slides over the pendulum rod. The bottom of the pendulum rod is then inserted through the pendulum bob, and a fastener or adhesive is applied, or the end of the pendulum rod can be upset with heat or pressure to prevent the bob from being removed. The pendulum rod is inserted through the hole between the mounting cradles on the base from below. The lower lever is snapped into the base, and a fastener is passed through the lower lever and pendulum. The toy is snapped onto the lower lever. The base cap is snapped onto the base, attached with mechanical fasteners or adhesive.
The multi-directional reactive pendulum object is meant to be placed on any moving vehicle, i.e. the dashboard of an automobile, boat, train, plane, golf cart. The toy at the top of the pendulum object will mimic the movement of the vehicle that it is placed upon. The movement of the toy is created by a pendulum rod with bob attached that transfers movement to two perpendicular pivots that can be operated at the same time. When the vehicle corners, the bob will swing from the lateral force. This motion is transferred to the left/right pivot by means of the pendulum rod which is on its own pivot that allows free forward/backward movement while transferring left to right movement directly to the lower lever. Said lower lever right/left pivot is located above the pendulum bob causing the upper lever's movement to be opposite of the bobs, creating the effect that the toy is leaning into the corner. When the vehicle accelerates, the bob will swing backwards; when the vehicle decelerates, the bob will swing forward. This movement is transferred to contact tabs on the toy which are located below the said toy's forward/backward pivot by a portion of the pendulum rod that extends past the said pendulum rod pivot causing the movement to be again reversed giving the effect that the toy is doing a wheelie when accelerating and a nose dive when decelerating. Both pivots are able to move at the same time, e.g. if the vehicle is accelerating and turning, the toy will wheelie and lean into the turn. The greater the force exerted on the bob the further the toy will move. There is a bob bumper added to the top of the bob to prevent the bob from contacting the base when the multi-directional reactive pendulum object is exposed to sudden movement such as the vehicle hitting a severe bump. The toy or character will cover and conceal the lever to give the entire device a clean appearance.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1041677, | |||
15072, | |||
1897670, | |||
2962830, | |||
3002335, | |||
376588, | |||
3977085, | Oct 20 1975 | Pendulum toy | |
3995788, | Jul 10 1974 | Allied Chemical Corporation | Vehicle sensitive retractor with improved universal pendulum and gimbal |
4341035, | Feb 01 1980 | Marvin Glass & Associates | Graphic toy |
4560363, | Jan 03 1984 | Mattel, Inc.; Mattel, Inc | Eye-moving mechanism for a figure toy |
5052970, | Jul 23 1990 | Gravitationally motivated toy apparatus | |
5732493, | Sep 14 1995 | HANKSCRAFT MOTORS, INC | Dual pendulum display apparatus |
5842902, | Jun 30 1997 | Magnetically propelled pendulum toy | |
6074269, | Sep 24 1996 | Choas, L.L.C. | Kinetic toy |
6511360, | Jun 01 2001 | Pendulum driven animated figurine | |
7900584, | Jun 20 2006 | Pioneer Pet Products, LLC | Animal entertainment device |
8269447, | Mar 17 2010 | Disney Enterprises, Inc.; DISNEY ENTERPRISES, INC | Magnetic spherical balancing robot drive |
8371249, | Jun 14 2011 | Spring loaded dog toy | |
8414350, | Aug 18 2008 | Rehco, LLC | Figure with controlled motorized movements |
8550927, | Oct 26 2009 | Solar powered, silent, energy efficient baby rocker | |
8894463, | Aug 29 2011 | Mattel, Inc | Toy figure assembly with toy figure and surfboard |
20070295284, | |||
20100221692, | |||
144098, | |||
216999, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Feb 23 2021 | M3551: Payment of Maintenance Fee, 4th Year, Micro Entity. |
Date | Maintenance Schedule |
Feb 20 2021 | 4 years fee payment window open |
Aug 20 2021 | 6 months grace period start (w surcharge) |
Feb 20 2022 | patent expiry (for year 4) |
Feb 20 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 20 2025 | 8 years fee payment window open |
Aug 20 2025 | 6 months grace period start (w surcharge) |
Feb 20 2026 | patent expiry (for year 8) |
Feb 20 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 20 2029 | 12 years fee payment window open |
Aug 20 2029 | 6 months grace period start (w surcharge) |
Feb 20 2030 | patent expiry (for year 12) |
Feb 20 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |