A wing assembly comprises a fixed section, a foldable section, and a hinge assembly for hinging the foldable section to the fixed section. The hinge assembly includes a plurality of interleaved torque boxes that are hinged together.

Patent
   9914523
Priority
Oct 30 2012
Filed
Oct 30 2012
Issued
Mar 13 2018
Expiry
Dec 26 2032
Extension
57 days
Assg.orig
Entity
Large
15
20
currently ok
16. An aircraft comprising a wing assembly including:
a fixed section,
a foldable section, and
a hinge for hinging the foldable section to the fixed section, the hinge including hollow torque boxes that are pinned together along a hinge axis, each hollow torque box including first and second ribs that form sides of the torque box and upper and lower skin panels on the ribs to define an interior void.
28. An aircraft comprising a wing assembly including:
a wing tip;
a first hollow torque box elongated in a spanwise direction away from the wing tip when the wing tip is in a deployed position, the first hollow torque box having sides enclosing an interior void;
an inboard section; and
a second hollow torque box elongated in a spanwise direction away from the inboard section, the first and second hollow torque boxes hinged together so the wing tip is moveable between a stowed position and the deployed position.
1. A wing assembly comprising:
a fixed section,
a foldable section, and
a hinge assembly for hinging the foldable section to the fixed section, the hinge assembly including:
first and second hollow torque boxes extending away from the fixed section, each of the first and second torque boxes having sides enclosing an interior void, and
a third hollow torque box extending away from the foldable section and having sides enclosing an interior void, the third hollow torque box interleaved between and hinged to the first and second hollow torque boxes, the third torque box configured to be latched when the foldable section is moved to a deployed position.
2. The wing assembly of claim 1, wherein the sides of each hollow torque box comprise first and second ribs and upper and lower skin panels.
3. The wing assembly of claim 2, wherein the third hollow torque box is attached to a closeout rib of the foldable section and is elongated in a direction normal to the closeout rib of the foldable section, and the first and second hollow torque boxes are attached to a closeout rib of the fixed section and are elongated in a direction normal to the closeout rib of the fixed section.
4. The wing assembly of claim 3, wherein the hinge assembly further includes a fourth hollow torque box extending away from the closeout rib of the fixed section, and a fifth hollow torque box extending away from the closeout rib of the foldable section and hinged between the second and fourth hollow torque boxes, the fourth hollow torque box also configured to be latched when the foldable section is moved to a deployed position.
5. The wing assembly of claim 3, wherein each hollow torque box includes a stiffening substructure connected to the top and bottom skin panels and to the closeout rib from which the hollow torque box extends.
6. The wing assembly of claim 5, wherein the stiffening substructure of each hollow torque box further includes a shear web disposed within and only partially occupying the interior void, the shear web extending between the skin panels for transferring bending loads between the skin panels.
7. The wing assembly of claim 1, wherein the hollow torque boxes are hinged about a hinge axis that extends through sides of the hollow torque boxes.
8. The wing assembly of claim 7, wherein the hollow torque boxes are coupled by hollow hinge pins extending through ribs of the hollow torque boxes.
9. The wing assembly of claim 8, further comprising electrical wires extending through the pins.
10. The wing assembly of claim 7, further comprising rotary actuators for rotating the foldable section about the hinge axis.
11. A method of enhancing aerodynamic performance of the wing assembly of claim 7, comprising turning the third hollow torque box to rotate the foldable section about the hinge axis, the foldable section rotated between a stowed position and a deployed position.
12. The method of claim 11, further comprising moving latch pins through a closeout rib of the fixed section to engage the third hollow torque box.
13. The wing assembly of claim 1, wherein the fixed section is swept.
14. The wing assembly of claim 1, wherein the foldable section is a wing tip, and the fixed section includes a main wing.
15. The wing assembly of claim 14, wherein the wing tip and the main wing are configured for a commercial aircraft.
17. The aircraft of claim 16, wherein the torque boxes are configured to carry both bending and torsional loads.
18. The aircraft of claim 16, wherein the hollow torque boxes include at least two elongated, hollow torque boxes extending inbound from a closeout rib of the foldable section, and at least two elongated, hollow torque boxes extending outbound from a closeout rib of the fixed section.
19. The aircraft of claim 18, wherein the hollow torque boxes include first, second and third hollow torque boxes extending from a closeout rib of the fixed section, a fourth hollow torque box extending from the foldable section and hinged between the first and second torque boxes, and a fifth hollow torque box extending from the foldable section and hinged between the second and third torque boxes.
20. The aircraft of claim 18, wherein the upper and lower skin panels of each hollow torque box are connected to the first and second ribs and to the closeout rib from which the hollow torque box extends.
21. The aircraft of claim 20, wherein each torque box further includes a shear web disposed within and only partially occupying the interior void, the shear web extending between the skin panels for transferring bending loads between the skin panels.
22. The aircraft of claim 16, wherein the hinge axis is centrally located within the wing assembly.
23. The aircraft of claim 16, wherein the hollow torque boxes are coupled by hollow hinge pins extending through ribs of the torque boxes.
24. The aircraft of claim 23, further comprising electrical cables extending through the pins.
25. The aircraft of claim 16, further comprising a rotary actuator for rotating the foldable section about the hinge axis.
26. The aircraft of claim 16, wherein the fixed section is swept.
27. The aircraft of claim 16, wherein the foldable section is a wing tip, and the fixed section includes a main wing.
29. The aircraft of claim 28, wherein the first and second hollow torque boxes are configured to carry both bending and torsional loads.
30. The aircraft of claim 28, wherein the first hollow torque box is attached to a closeout rib of the wing tip, and the second hollow torque box is attached to a closeout rib of the inboard section; and wherein the first and second hollow torque boxes are hinged together about a hinge axis located between the closeout ribs.
31. The aircraft of claim 30, wherein each hollow torque box includes a stiffening substructure and top and bottom skin panels connected to the stiffening structure and to the closeout rib from which the hollow torque box extends.
32. The aircraft of claim 31, wherein the stiffening substructure of each hollow torque box further includes a shear web disposed within and only partially occupying the interior void, the shear web extending between the skin panels for transferring bending loads between the skin panels.
33. The aircraft of claim 31, further comprising latch pins for engaging the first hollow torque box when the wing tip is in the deployed position.
34. The aircraft of claim 28, further comprising rotary actuators for moving the wing tip between the stowed and deployed positions.
35. The aircraft of claim 28, wherein the inboard section is swept.
36. The aircraft of claim 28, wherein the wing tip and the inboard section are configured for a commercial aircraft.

Long span wings are desirable for commercial aircraft as they are more aerodynamically efficient than shorter wings. The greater aerodynamic efficiency results in lower fuel consumption and, therefore, lower operating costs.

However, existing airport designs place limits on aircraft wingspan. Airport designs are based on international Civil Aviation Organization (ICAO) Codes A through F, which establish dimensional limits on wingspan, landing gear width, length, etc. For instance, an ICAO Code E airport limits wingspan to less than 65 meters so that aircraft can fit within runways, taxiways and gate areas.

A folding wing design may be used to reduce the span of these wings to fit within the limitations of an existing airport's infrastructure. Folding wings may be folded to fit within parking areas and taxiways, and they may be deployed prior to takeoff to increase wing span.

Folding wing designs are commonly used in naval aircraft. Folding wings enable naval aircraft to occupy less space in confined aircraft carrier hangars. Wing fold joints in naval aircraft use highly loaded hinges and locking pins acting over very small wing bending reaction moment arms. However, naval aircraft are much smaller than large commercial aircraft, and present folding wing designs for naval aircraft are optimized to different mission parameters than large commercial aircraft.

In commercial aircraft, a folding wing design may be scaled up. High reaction loads may be overcome by increasing the size of the hinges and locking pins. However, these size increases would increase aircraft weight, and increases in aircraft weight are undesirable because operating costs such as fuel costs are increased. Consequently, the increase in weight negates the advantages offered by the long span wings.

According to an embodiment herein, a wing assembly comprises a fixed section, a foldable section, and a hinge assembly for hinging the foldable section to the fixed section. The hinge assembly includes a plurality of interleaved torque boxes that are hinged together.

According to another embodiment herein, an aircraft comprises a wing assembly including a fixed section, a foldable section, and a hinge for hinging the foldable section to the fixed section. The hinge includes torque boxes that are pinned together along a hinge axis.

According to another embodiment herein, an aircraft comprises a wing assembly including a wing tip, a first torque box extending from the wing tip, an inboard section, and a second torque box extending from the inboard section. The torque boxes are hinged together so the wing tip is moveable between a stowed position and a deployed position.

According to another embodiment herein, there is a method of enhancing aerodynamic performance of an aircraft wing assembly including a fixed section and a foldable section. The foldable section is hinged to the fixed section at a hinge axis. The method comprises turning a torque box extending from the foldable section to rotate the foldable section about the hinge axis. The foldable section is rotated between a stowed position and a deployed position.

These features and functions may be achieved independently in various embodiments or may be combined in other embodiments. Further details of the embodiments can be seen with reference to the following description and drawings.

FIG. 1 is an illustration of an aircraft including wing assemblies.

FIGS. 2A and 2B are illustrations of a wing tip in a stowed position and a deployed position, respectively.

FIGS. 3 and 4 are illustrations of fixed and foldable sections of a wing assembly.

FIG. 5 is an illustration of a hinge assembly for hinging the foldable section to the fixed section.

FIGS. 6A and 6B are illustrations of torque boxes for the hinge assembly.

FIG. 7 is an illustration of an actuation and locking system for the hinge assembly.

FIG. 8 is an illustration of a method of enhancing performance of a commercial aircraft including wing assemblies with folding wing tips.

Reference is made to FIG. 1, which illustrates an aircraft 110 including a fuselage 120, wing assemblies 130, and empennage 140. One or more propulsion units 150 are coupled to the fuselage 120, wing assemblies 130 or other portions of the aircraft 110. In some embodiments, the wing assemblies 130 are swept (see, e.g., FIG. 7). Each wing assembly 130 includes a fixed inboard section and a foldable outboard section. The foldable section is hinged to the fixed section for movement between a stowed position and a deployed position. The foldable section may be stowed to fit the aircraft 110 within runways, taxiways and gate areas. Stowing the foldable section may enable the aircraft to comply with airport codes, such as ICAO codes. The foldable sections may be deployed prior to takeoff to lengthen the wingspan. The lengthened wingspan enables higher aerodynamic efficiency without incurring penalties from increased weight or drag.

The fixed inboard section, which may be a main wing or an inboard section thereof, includes moveable flight control surfaces (e.g., ailerons, slats, flaps). The foldable outboard section may include moveable flight control surfaces. In some embodiments, the foldable outboard section may be a wing tip. In other embodiments, the foldable section may be an outboard section of the main wing.

FIGS. 2A and 2B are illustrations of a wing assembly 130 including a foldable wing tip 210 hinged to a fixed main wing 220. FIG. 2A shows the wing tip 210 in a stowed position, and FIG. 2B shows the wing tip 210 in a deployed position. In some embodiments, the wing tip 210 may be stowed in a roughly vertical position to minimize ground area. In other embodiments, the wing tip 210 may be folded back onto the main wing 220. FIGS. 2A and 2B show a wing tip that is raked. However, a wing tip herein is not so limited.

Reference is now made to FIG. 3, which illustrates an example of a fixed section 310 of the wing assembly 130. The fixed section 310 includes a leading edge 320, trailing edge 330 and wing box 340. The wing box 340 includes front and rear spars 342 and 344, upper and lower skin panels 346 and 348, and ribs. The spars 342 and 344 extend in a spanwise direction, and the ribs extend in a chordwise direction. In FIG. 3, only the closeout rib 349 is shown. The wing box 340 may also include stringers (not shown), which extend in a spanwise direction.

Reference is now made to FIG. 4, which illustrates an example of the foldable section 410 of the wing assembly 130. The foldable section 410 includes a leading edge 420, trailing edge 430 and wing box 440. The wing box 440 includes front and rear spars 442 and 444, upper and lower skin panels 446 and 448, and ribs. The spars 442 and 444 extend in a spanwise direction, and the ribs extend in a chordwise direction. In FIG. 4, only the closeout rib 449 is shown. The wing box 440 may also include stringers (not shown), which extend in a spanwise direction, and mid spars (not shown) in addition to the front and rear spars 442 and 444.

Additional reference is made to FIG. 5, which illustrates a hinge assembly 510 for hinging the foldable section 410 to the fixed section 310. The hinge assembly 510 includes a plurality of interleaved torque boxes that are hinged together. The example illustrated in FIG. 5 shows a total of five torque boxes 511, 512, 513, 514, and 515. First, second and third torque boxes 511, 513 and 515 extend from the closeout rib 349 of the fixed section 310. Fourth and fifth torque boxes 512 and 514 extend from the closeout rib 449 of the foldable section 410. The fourth torque box 512 is hinged between the first and second torque boxes 511 and 513 by hinge pins 516. The fifth torque box 514 is hinged between the second and third torque boxes 513 and 515 by hinge pins 516.

A hinge axis HA extends through the pins 516 in a chordwise direction through a center of the wing assembly 130 (the central location of the hinge axis HA is best shown in FIGS. 6A and 6B). The foldable section 410 is folded about the hinge axis HA. The foldable section 410 may be folded upward or downward into a stowed position. The foldable section 410 may be deployed to a position that is in-plane with the fixed section 310, thereby extending the span of the wing assembly 130. Although a chordwise hinge axis HA is shown in FIG. 5, a skewed hinge axis may be used in some embodiments.

The foldable section 410 may be locked to the fixed section 310 by latch pins 518. In the embodiment shown in FIG. 5, for instance, the latch pins 518 may extend through the closeout rib 349 of the fixed section 310 and engage locking pin receptacles, which are attached to the torque boxes 512 and 514 extending from the foldable section 410.

Other embodiments of the hinge assembly 510 may include other numbers of torque boxes. For instance, another embodiment of a hinge assembly herein may utilize ribs instead of the outer torque boxes 511 and 513. Yet another embodiment of a hinge assembly herein may only include a single torque box extending from the foldable section and hinged between two torque boxes extending from the fixed section. However, at least two torque boxes extending from each closeout rib are advantageous, as they provide redundant load paths. The three torque boxes 511, 513, and 515 advantageously provide a shear interface on either side of the torque boxes 512 and 514 extending from the foldable section 410. Spatial constraints may limit the use of additional torque boxes.

Reference is now made to FIG. 6A, which provides an example of a “foldable-side” torque box 610 for the hinge assembly 510. The foldable-side torque box 610 includes a stiffening substructure covered by top and bottom skin panels 615 and 620. The stiffening substructure may include two ribs 625 that extend outboard of the foldable section closeout rib 449 (only one rib 625 is shown in FIG. 6A). The ribs 625 are spaced apart along the hinge axis HA. The skin panels 615 and 620 connect to the closeout rib 449 and to the two ribs 625 of the foldable-side torque box 610.

The ribs 625 alone may provide stiffness against bending. If the wing assembly 130 is swept, however, it will also have torsion associated with wing bending. Torsional stiffness is desirable to maintain the angle of attack and prevent flutter. The torque box 610 provides the desired stabilization in all directions, including the spanwise direction

The torque box 610 further includes a shear web 630 between the skin panels 615 and 620. The shear web 630 provides a continuous shear path between the top and bottom skin panels 615 and 620. As the wing assembly 130 is bent and twisted during flight, the shear web 630 transfers a load Mi between the skin panels 615 and 620. This allows the wing moment Mi to be reacted by equal and opposite vertical loads PL and PH at the hinge and latch. Horizontal forces Psk (that is, the loads through the skin panels 615 and 620) are balanced by the vertical forces PL and PH

The shear web 630 includes an opening 632 for insertion of a hinge pin 640. The opening 632 may be located mid-way between the top and bottom skin panels 615 and 620, whereby the hinge axis HA is centered inside the wing assembly. The central hinge axis HA also enables the hinge assembly 510 to be integrated entirely within the aerodynamic shape of the wing assembly 130. Because the hinge assembly 510 is not external, either drag is reduced or a fairing is not needed to reduce drag.

A cover (not shown) may close off the open end of the torque box 610. The cover may be removable to give access to the inside of the torque box 610. For instance, the torque box 610 may allow extraneous structure associated with the folding and latching mechanisms to be located in sealed cavities, for maximum protection from the environment.

FIG. 6B provides an example of a “fixed-side” torque box 650 for the hinge assembly 510. The fixed-side torque box 650 also includes a stiffening substructure covered by top and bottom skin panels 655 and 660. The stiffening substructure may include two ribs 665 that extend inboard of the fixed section closeout rib 349. The fixed-side torque box 650 may also include a shear web 670 with a central opening 675 for a hinge pin 680.

FIGS. 6A and 6B show hinge pins 640 and 680 that are hollow. The hollow hinge pins 640 and 680 allow electrical wires 690 to be routed though the center of the wing assembly 130. The electrical wires 690 may provide power to components such as wing tip position lights and strobes, sensors, etc. The hollow pins 640 and 680 may also allow for any hydraulic lines to pass through if the foldable section 410 has any movable surfaces that are actuated hydraulically.

A torque box herein is not limited to the construction illustrated in FIGS. 6A and 6B. More generally, a hinge assembly torque box herein is a closed structure that can carry both bending and torsional loads. In other embodiments, for example, the torque box may be a simple extruded tubular section.

Returning briefly to FIG. 5, the torque boxes 511, 512, 513, 514, and 515 may be built to the same aerodynamic contour as the rest of the wing assembly 130. The torque boxes 511, 512, 513, 514, and 515 and leading and trailing edges may all conform to the wing loft. The skin panels 615, 620, 655, and 660 may be cut to minimize the gap between the skin panels 346, 348, 446 and 448 on the fixed and foldable sections 310 and 410. Any remaining gaps may be filled with rigid or flexible seals.

Reference is now made to FIG. 7, which illustrates an actuation and locking system 710 for the hinge assembly 510 of FIG. 5. The system 710 includes a rotary actuator 720 for turning a foldable-side torque box 512. The hinge pins reduce the motion to rotation only. A drive shaft and the rotary actuator 720 are aligned with the hinge axis so that they don't impart forces to the degrees of freedom that are constrained. The rotary actuator 720 turns the torque box 512 about the hinge axis HA in a direction that rotates the foldable section 410 between the stowed position and the deployed position. The rotary actuator 720 may include, without limitation, a conventional planetary gearbox, or a rotary vane hydraulic actuator, or a hydraulic actuator that has a linear piston pushing against a helical screw.

The actuator system 710 also includes actuators for moving the latch pins 518 into and out of engagement with the torque boxes 512 and 514 that extend from the foldable section 410.

The actuator system 710 further includes a controller 740 for commanding the operation of the actuators 720 and 730. The controller 740 may include a microprocessor. The controller 740 may communicate with a flight computer (not shown) to determine when to deploy or stow the foldable section. 410. The controller 740 may also include hydraulic valves that sequence the actuators 720 and 730.

Reference is now made to FIG. 8, which illustrates a method of enhancing performance of a commercial aircraft including wings with folding wing tips. The aircraft is located at an airport that place limits on aircraft's wingspan length. For instance, the airport is an ICAO Code E airport, which limits wingspan to less than sixty five meters.

At block 810, the aircraft is parked with outboard portions of its wing tips in a stowed position. At block 820, the aircraft is moved to a gate, loaded, and taxied to a runway. The wing tips remain in the stowed position so the aircraft can fit within taxiways en route to the runway.

At block 830, prior to takeoff, the outboard portions of the wing tips are deployed by turning a foldable-side torque box extending from the folding wing tip. The torque box is turned in a direction that rotates the folding wing tip from the stowed position to a deployed position.

At block 840, latch pins are moved through closeout ribs of fixed sections to engage torque boxes extending from the folding wing tips. In this manner, the wing tips are locked to the fixed sections.

By deploying the folding wing tip, wingspan is extended and, as a result, aerodynamic efficiency is increased. The greater aerodynamic efficiency results in lower fuel consumption during flight and, therefore, lowers operating costs and increased lift to optimize take-off.

Although a hinge assembly herein has been described in connection with a wing assembly of a commercial aircraft, it is not so limited. Other structures in the aircraft 110 of FIG. 1 may use a hinge assembly herein.

A hinge assembly herein is not even limited to commercial aircraft. For instance, a hinge assembly herein may be applied to helicopter blades, wind generator turbine blades, truck tailgates, folding ramps, robotic arms, etc.

Good, Mark S., Walker, Steven Paul

Patent Priority Assignee Title
10676175, May 24 2016 Airbus Operations Limited Winglet
11066148, Aug 06 2018 The Boeing Company Folding wing hinge, aircraft and method therefor
11148788, Feb 12 2016 TEXTRON AVIATION RHODE ISLAND INC ; TEXTRON INNOVATIONS, INC Curved wingtip for aircraft
11155331, May 24 2016 Airbus Operations Limited Winglet
11155332, May 24 2016 Airbus Operations Limited Winglet
11214353, Jun 01 2018 Airbus Operations GmbH Wing arrangement for an aircraft and aircraft
11254412, Mar 29 2019 The Boeing Company Foldable raked wing tips having aerodynamic devices
11305864, May 25 2018 Airbus Operations GmbH Wing for an aircraft
11305865, Jun 28 2018 Airbus Operations GmbH Arresting system for arresting a first aircraft component relative to a second aircraft component
11319053, Apr 24 2018 Airbus Operations Limited Secondary locking mechanism
11319054, May 31 2018 Airbus Operations GmbH Wing arrangement for an aircraft
11352127, Oct 28 2010 Airbus Operations Limited Wing tip device attachment apparatus and method
11370526, May 31 2018 Airbus Operations GmbH Latching device for a wing arrangement for an aircraft
11440638, May 03 2018 Airbus Operations GmbH Wing for an aircraft
11518500, May 03 2019 The Boeing Company Aircraft having foldable wings
Patent Priority Assignee Title
2881994,
3081053,
4979700, Oct 28 1988 Curtiss Wright Flight Systems, Inc. Rotary actuator for leading edge flap of aircraft
5201479, Jan 30 1992 The Boeing Company Self-monitoring latch pin lock for folding wing aircraft
5310138, Dec 30 1991 MOOG, INC Wing fold actuator system for aircraft
5381986, Jan 30 1992 Boeing Company, the Folding wing-tip system
5558299, Apr 19 1994 McDonnell Douglas Corporation Wing fold push-pin locking assembly
6082665, Jul 27 1998 Roadable aircraft
6270039, Oct 12 1999 Airbus Operations SAS Hinge for movable control surfaces in an aircraft and a connecting piece to be used with such a hinge
6834835, Mar 12 2004 QORTEK, INC Telescopic wing system
7322545, Dec 29 2005 The Boeing Company Structural mechanism for unlocking and engaging a controllable surface on a hinged platform (wing)
7975965, May 13 2008 The Boeing Company Wing tip joint in airfoils
8733692, Jun 11 2012 The Boeing Company Latching apparatus and methods
20090283639,
20090302159,
20110038576,
20110180657,
20140319268,
20150014478,
EP2650212,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 30 2012The Boeing Company(assignment on the face of the patent)
Nov 01 2012GOOD, MARK S The Boeing CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0295540930 pdf
Nov 01 2012WALKER, STEVEN P The Boeing CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0295540930 pdf
Date Maintenance Fee Events
Sep 13 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Mar 13 20214 years fee payment window open
Sep 13 20216 months grace period start (w surcharge)
Mar 13 2022patent expiry (for year 4)
Mar 13 20242 years to revive unintentionally abandoned end. (for year 4)
Mar 13 20258 years fee payment window open
Sep 13 20256 months grace period start (w surcharge)
Mar 13 2026patent expiry (for year 8)
Mar 13 20282 years to revive unintentionally abandoned end. (for year 8)
Mar 13 202912 years fee payment window open
Sep 13 20296 months grace period start (w surcharge)
Mar 13 2030patent expiry (for year 12)
Mar 13 20322 years to revive unintentionally abandoned end. (for year 12)