The system and method of the present invention advantageously enable controllable light extraction from optical fiber waveguides and offer highly configurable light signal guidance and control capabilities, as well as additional advantageous features associated with waveguides, by providing, in various exemplary embodiments thereof, a multitude of novel techniques by which the parameters relating to utilization of various light signals (such as direction of their emission, magnitude of the emission, physical surface area of the emission, etc.), can be readily controlled and configured as a matter of design choice. Additionally, the inventive system and method, in various exemplary embodiments thereof, also enable and facilitate selective configuration of, and/or control over, various characteristics of the light signals guided/controlled/extracted thereby, such as the signals' wavelength, polarization, intensity, amplitude, etc. To achieve the above-noted beneficial functions, the system and method of the present invention utilize a physical property of a standard, or a specialty, chiral optical fiber to scatter light signals entering the fiber in directions away from the fiber core (through the fiber cladding), to thereby advantageously enable selective and controllable extraction of light signals of a desired predetermined wavelength (or, optionally of a predetermined range of wavelengths) therefrom.
|
1. A fiber waveguide light extraction system comprising:
an elongated fiber waveguide element having a first end; and
a light source, connected to said first end, operable to emit a light signal into said elongated fiber waveguide element; wherein said elongated fiber waveguide element comprises a longitudinal helical pitch profile selected and configured to achieve substantially uniform light scattering of said light signal passing therethrough.
2. A planar fiber waveguide light extraction system comprising:
at least one elongated fiber waveguide element having a first end;
at least one corresponding light source, connected to said first end of each of said at least one elongated fiber waveguide elements, operable to emit a light signal into each said at least one elongated fiber waveguide element; and
a substantially planar diffuser positioned proximal to said at least one elongated fiber waveguide element, wherein each said at least one elongated fiber waveguide element is positioned proximal to one another, and each comprises a longitudinal helical pitch profile selected and configured to achieve substantially uniform light scattering of said light signal passing therethrough, such that said substantially uniform light scattering of said at least one elongated fiber waveguide element passes through said planar diffuser causing substantially planarly uniform light diffusion therefrom.
3. The fiber waveguide light extraction system of
4. The fiber waveguide light extraction system of
|
The present patent application is a continuation of U.S. application Ser. No. 13/149,073, entitled “Chiral Fiber Apparatus and Method for Controllable Light Extraction from Optical Waveguides,” filed May 31, 2011, which claims priority benefit from the commonly assigned U.S. provisional patent application 61/349,256 entitled “Chiral Fiber Apparatus and Method for Controllable Light Extraction from Optical Waveguides”, filed May 28, 2010.
There is an ever-growing need in modern and cutting edge communication, display, lighting, and other applications, for various techniques and approaches for guiding, controlling, and emission of light signals. However, while solutions for simple emission of predetermined light signals from appropriately configured devices (such as LEDs, etc.), and for basic transport of light signals via conventional waveguides are in common use, the previously known solutions have very significant limitations both in the degree of control that can be exercised over the guidance and emission of light signals as well as in the level of control/configurability of the characteristics/properties of the light signals themselves.
Accordingly, it would be very advantageous to provide various novel techniques by which light signals could be guided and extracted (for redirection, for coupling to other devices/systems, for emission, or for other predefined purposes). It would also be useful to provide various solutions by which the parameters relating to utilization of various light signals (such as direction of their emission, magnitude of emission, physical area of the emission) can be readily controlled and configured as a matter of design choice. It would further be useful to provide various systems and methods to enable selective configuration of, and/or control over, various characteristics of guided/extracted light signals, such as their wavelength, polarization, intensity, amplitude, etc.
In the drawings, wherein like reference characters denote corresponding or similar elements throughout the various figures:
The system and method of the present invention advantageously overcome and address the drawbacks of previously known light signal guidance and control solutions in various applications, and provide additional new benefits and novel features, enabling new applications and uses for systems and components with highly configurable light signal guidance, control, and extraction capabilities, and additional advantageous features related to waveguides.
The inventive system and method, in various exemplary embodiments thereof, also provide a multitude of novel techniques by which the parameters relating to utilization of various light signals (such as direction of their emission, magnitude of the emission, physical surface area of the emission, etc.), can be readily controlled and configured as a matter of design choice, without departing from the spirit of the invention. Additionally, the inventive system and method, in various exemplary embodiments thereof, also enable and facilitate selective configuration of, and/or control over, various characteristics of the light signals guided/controlled/extracted thereby, such as the signals' wavelength, polarization, intensity, amplitude, etc.
In summary, the system and method of the present invention utilize a physical property of a standard or a specialty chiral optical fiber to scatter light signals entering the fiber in directions away from the fiber core (through the fiber cladding), to thereby advantageously enable selective and controllable extraction of light signals of a desired predetermined wavelength (or, optionally of a predetermined range of wavelengths) therefrom.
In a first exemplary embodiment of the present invention, the novel fiber waveguide comprises an elongated configuration connected to a light source at one end (e.g., an LED, etc.), that is operable to achieve substantially uniform light scattering of the light signal emitted by the light source along at least a portion of its length.
In an alternate exemplary embodiment of the present invention, a novel fiber waveguide system comprises at least one fiber waveguide sub-component positioned near one another in a substantially planar configuration, each proximal to a planar diffuser, such that the inventive planar waveguide system is operable to achieve substantially uniform light scattering along each fiber waveguide sub-component and then through the planar diffuser, and thereby serve as a planar light emission source, that is substantially uniform across the planar diffuser surface area (e.g., for use as a display backlight, etc.).
In a second exemplary embodiment of the present invention, the novel fiber waveguide comprises a geometrically selectable configuration (e.g., assembled into a desired predefined two or three dimensional geometric form, or configured to be flexible, or segmented and repositionable, etc.), wherein the inventive fiber waveguide is operable to be selectively configured to, at least: (1) achieve the functionality of the fiber waveguide of
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
The system and method of the present invention advantageously overcome and address the drawbacks of previously known light signal guidance, control, and emission solutions in a wide range of applications, and provide additional new benefits and novel features, enabling new applications and uses for light emission systems and components with highly configurable light signal guidance, control, and extraction capabilities, while providing additional advantageous features typically possessed by waveguides (such as flexible low-loss coupling functionality to other systems/components, selective directed light signal emission, etc.).
The inventive system and method, in various exemplary embodiments thereof, also provide a multitude of novel techniques by which the parameters relating to utilization of various light signals (such as direction of their emission, magnitude of the emission, physical surface area of the emission, etc.), can be readily controlled and configured as a matter of design choice, without departing from the spirit of the invention. Additionally, the inventive system and method, in various exemplary embodiments thereof, also enable and facilitate selective configuration of, and/or control over, various characteristics of the light signals guided/controlled/extracted thereby, such as the signals' wavelength, polarization, intensity, amplitude, etc.
Essentially, the system and method of the present invention utilize a physical property of a standard or a specialty chiral optical fiber (hereinafter individually and collectively referred to as “Fiber Waveguide(s)”, to scatter light signals entering the fiber in directions away from the fiber core (through the fiber cladding), to thereby advantageously enable selective and controllable extraction of light signals of a desired predetermined wavelength (or, optionally of a predetermined range of wavelengths) therefrom.
The specialty chiral optical fibers that may be advantageously utilized in connection with the present invention, include, but are not limited to, the various chiral fibers and chiral fiber-based components, such as are disclosed in the U.S. Pat. No. 6,839,486 entitled “Chiral Fiber Grating”, and U.S. Pat. No. 6,925,230 entitled “Long Period Chiral Fiber Grating Apparatus”, and in the U.S. patent application Ser. No. 12/502,651, entitled “Dual Twist Single Helix Optical Fiber Grating”. These references offer particular insight into the various key characteristics, properties, and functions of specialty chiral optical fibers, that facilitate the various novel features and elements of the inventive system and method. Certainly other types of waveguides (fiber-based and otherwise) with similar/equivalent chiral properties to the fibers and components described in the above references can be readily used to practice the various inventive embodiments hereof, without departing from the spirit of the invention.
However, because the greatest range of advantageous novel features in accordance with the present invention are available with utilization of specialty chiral fiber waveguides, for the sake of convenience the description of various embodiments of the present invention described below, presumes, by way of illustrative example only, that the Fiber Waveguides being utilized have some form of chiral properties.
The light signal scattering effect of Fiber Waveguides may be configured to be either “polarization selective” or “polarization insensitive”, based on the symmetry of the fiber being utilized (for example, use of a single helix fiber results in a “polarization insensitive” scattering waveguide configuration, while use of a double helix fiber results in “polarization selective” scattering waveguide configuration). In either case, the amount of light scattered over a given length of a Fiber Waveguide can be readily controlled as a matter of design choice by selecting a corresponding helical pitch profile along the longitudinal axis of the fiber. It should also be noted that appropriate selection of the Fiber Waveguide's longitudinal helical pitch profile will also advantageously enable control over, and selection of, the direction in which the light signals are scattered as they move through the fiber.
Accordingly, a Fiber Waveguide optimized for one or more specific applications, and having a predetermined profile of intensity and polarization of scattered light signals passing therethrough, can be advantageously achieved by selecting: (1) an appropriate fiber to serve as a waveguide, (2) a method of waveguide manufacturing (e.g., such as a single or dual twist fabrication technique, or other manufacturing approaches not related to fiber twisting), and (3) selectively varying the helical pitch along the longitudinal axis of the fiber.
The Fiber Waveguide may be made form a wide range of materials, including, but not limited to, glass or polymer. The Fiber Waveguide can also be readily adapted for a multitude of different implementations, for example: it can be coupled in an end-to-end manner with a light source (such as one or more LEDs) directly, or with one or more lens may be utilized as part of the coupling interface. In another exemplary embodiment of the present invention, one light source may be coupled to more than one Fiber Waveguide, or more than one light source may be coupled to a Fiber Waveguide.
Referring now to
Referring now to
Referring now to
Advantageously, the novel Fiber Waveguide system 100 may be used on conjunction with a proximal flat diffuser (not shown, but may be equivalent to the diffuser 56 of
It is contemplated by the present invention, that the inventive Fiber Waveguide in various embodiments thereof may also be used in a variety of other applications that benefit from its superb control over the direction, as well as various properties and characteristics of light signals directed thereto—these other applications include, but are not limited to: exacting/precise delivery of light in medical procedures (e.g. for photodynamic therapy or for drug activation, and may be readily configured for use in connection with endoscopic or arthroscopic instrumentation and procedures.
Thus, while there have been shown and described and pointed out fundamental novel features of the inventive apparatus as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices and methods illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Weiner, Gary, Kopp, Victor Il'ich, Neugroschl, Daniel
Patent | Priority | Assignee | Title |
10126494, | Jun 14 2013 | CHIRAL PHOTONICS, INC | Configurable polarization mode coupler |
10353227, | Jun 26 2008 | Chiral Photonics, Inc. | Optical chiral fiber isolator and method of fabrication thereof |
10481324, | Dec 18 2008 | Chiral Photonics, Inc. | Fiber optic diffraction grating |
10502898, | Jan 20 2011 | CHIRAL PHOTONICS, INC | Chiral fiber circular polarizer |
10564348, | Jun 14 2013 | CHIRAL PHOTONICS, INC | Passive aligning optical coupler array |
10564360, | Apr 02 2014 | CHIRAL PHOTONICS, INC | Optimized configurable pitch reducing optical fiber coupler array |
10761271, | Dec 09 2015 | Chiral Photonics, Inc. | Polarization maintaining optical fiber array |
10838155, | Jun 14 2013 | Chiral Photonics, Inc. | Multichannel optical coupler |
10914891, | Jun 14 2013 | CHIRAL PHOTONICS, INC | Multichannel optical coupler |
11022762, | Aug 05 2019 | Chiral Photonics, Inc.; CHIRAL PHOTONICS, INC | Optical fiber connectors for rotational alignment |
11156781, | Jun 14 2013 | Chiral Photonics, Inc. | Passive aligning optical coupler array |
11609376, | Feb 24 2020 | CHIRAL PHOTONICS, INC | Space division multiplexers |
11966091, | Jun 14 2013 | Chiral Photonics, Inc.; CHIRAL PHOTONICS, INC | Multichannel optical coupler array |
Patent | Priority | Assignee | Title |
6396859, | Feb 04 1999 | Chiral Photonics, Inc.; CHIRAL PHOTONICS, INC | Chiral twist laser and filter apparatus and method |
6404789, | Dec 21 1998 | Chiral Photonics, Inc. | Chiral laser apparatus and method |
6411635, | Mar 31 1999 | Chiral Photonics, Inc. | Apparatus and method for mode selection in a photonic band edge laser |
6428198, | Jul 07 1998 | AlliedSignal Inc. | Display system having a light source separate from a display device |
6671293, | Nov 19 2001 | Chiral Photonics, Inc. | Chiral fiber laser apparatus and method |
6678297, | Mar 20 2000 | Chiral Photonics, Inc. | Chiral laser utilizing a quarter wave plate |
6721469, | Dec 06 2001 | Chiral Photonics, Inc. | Chiral in-fiber adjustable polarizer apparatus and method |
6741631, | Mar 14 2002 | Chiral Photonics, Inc. | Customizable apodized chiral fiber grating apparatus and method |
6744943, | Dec 12 2000 | Chiral Photonics, Inc. | Add-drop filter utilizing chiral elements |
6792169, | Dec 06 2001 | Chiral Photonics, Inc. | Chiral fiber sensor apparatus and method |
6839486, | Mar 14 2001 | Chiral Photonics, Inc. | Chiral fiber grating |
6875276, | Jun 15 2001 | Chiral Photonics, Inc. | Apparatus and method for fabricating layered periodic media |
6891992, | Apr 13 2001 | Chiral Photonics, Inc. | Configurable add-drop filter utilizing chiral fiber gratings |
6925230, | Mar 22 2002 | Chiral Photonics, Inc. | Long period chiral fiber grating apparatus |
7009679, | Mar 14 2002 | Chiral Photonics, Inc. | Chiral boardband tuning apparatus and method |
7095911, | Oct 24 2003 | Chiral Photonics, Inc. | Chiral in-fiber polarizer apparatus and method |
7142280, | Mar 14 2002 | Chiral Photonics | Extended chiral defect structure apparatus and method |
7242702, | Jan 07 2000 | Chiral Photonics, Inc. | Thin-film large-area coherent light source, filter and amplifier apparatus and method |
7308173, | Dec 18 2003 | Chiral Photonics, Inc. | Optical fiber coupler with low loss and high coupling coefficient and method of fabrication thereof |
7463800, | Dec 27 2005 | Chiral Photonics, Inc. | Chiral fiber grating device and method of fabrication thereof |
7983515, | Dec 18 2008 | Chiral Photonics, Inc. | Polarization maintaining optical fiber polarizer |
8218921, | Jul 14 2008 | Chiral Photonics, Inc. | Dual twist single helix optical fiber grating |
8326099, | Jul 14 2008 | Chiral Photonics, Inc. | Optical fiber coupler array |
8457456, | Oct 19 2007 | Chiral Photonics, Inc. | Optical fiber mode coupling device, having an optimized fiber interface and method of fabrication thereof |
8463094, | Jul 14 2008 | Chiral Photonics, Inc. | Chiral fiber polarizer |
8712199, | Jul 14 2008 | Chiral Photonics, Inc. | Configurable pitch reducing optical fiber array |
8948547, | Jan 20 2011 | Chiral Photonics, Inc. | Multi-state polarization preserving optical fiber |
9766407, | Jul 08 2015 | CHIRAL PHOTONICS, INC | Untappable secure optical fiber link component |
20020003827, | |||
20020069676, | |||
20020118710, | |||
20020172461, | |||
20030118285, | |||
20040145704, | |||
20080098772, | |||
20090324159, | |||
20100002983, | |||
20100158438, | |||
20110292676, | |||
20110293219, | |||
20120189241, | |||
20120257857, | |||
20130121641, | |||
20130188174, | |||
20130188175, | |||
20130216184, | |||
20140294345, | |||
20150212274, | |||
20170184791, | |||
20170192176, | |||
20170219774, | |||
20170227716, | |||
20170268937, | |||
20170269293, | |||
20170276867, | |||
WO2002073247, | |||
WO2006046947, | |||
WO2008080174, | |||
WO2017053479, | |||
WO2017100667, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2007 | WEINER, GARY M | CHIRAL PHOTONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044822 | /0962 | |
May 25 2017 | KOPP, VICTOR IL ICH | CHIRAL PHOTONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044822 | /0822 | |
May 30 2017 | NEUGROSCHL, DANIEL | CHIRAL PHOTONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044822 | /0822 | |
Jun 02 2017 | Chiral Photonics, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 16 2021 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 20 2021 | 4 years fee payment window open |
Sep 20 2021 | 6 months grace period start (w surcharge) |
Mar 20 2022 | patent expiry (for year 4) |
Mar 20 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 20 2025 | 8 years fee payment window open |
Sep 20 2025 | 6 months grace period start (w surcharge) |
Mar 20 2026 | patent expiry (for year 8) |
Mar 20 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 20 2029 | 12 years fee payment window open |
Sep 20 2029 | 6 months grace period start (w surcharge) |
Mar 20 2030 | patent expiry (for year 12) |
Mar 20 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |