Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
|
1. A lithium-sulfur energy storage device having a positive electrode comprising a composite material, the composite material comprising a sulfurized polymer having cross-linked chains through sulfur bonds and further comprising sulfide particles, polysulfide particles, or both, the sulfide particles, polysulfide particles, or both, are not bonded to the sulfurized polymer but are confined in the composite material by the polymer cross-linked chains, the device configured to have a reversible capacity of at least 600 mAhg−1 when operated.
15. A lithium-sulfur energy storage device comprises a negative electrode comprising lithium and a positive electrode comprising a composite material, the composite material comprising sulfurized polyaniline (SPANI) polymer having cross-linked chains through sulfur bonds and having nanoparticles comprising sulfide anions, nanoparticles comprising polysulfide anions, or both, wherein the sulfide anion nanoparticles, the polysulfide anion nanoparticles, or both, are not bonded to the sulfurized polyaniline (SPANI) polymer but are confined among the sulfurized polyaniline (SPANI) polymer chains located between the nanoparticles, the device configured to have a reversible capacity of at least 600 mAh g−1 when operated.
2. The lithium-sulfur energy storage device of
3. The lithium-sulfur energy storage device of
4. The lithium-sulfur energy storage device of
5. The lithium-sulfur energy storage device of
6. The lithium-sulfur energy storage device of
7. The lithium-sulfur energy storage device of
8. The lithium-sulfur energy storage device of
9. The lithium-sulfur energy storage device of
10. The lithium-sulfur energy storage device of
11. The lithium-sulfur energy storage device of
12. The lithium-sulfur energy storage device of
13. The lithium-sulfur energy storage device of
14. The lithium-sulfur energy storage device of
|
This invention claims priority from U.S. Provisional Patent Application No. 61/521,191, entitled Electrodes for Li—S Batteries, filed Aug. 8, 2011. The Provisional Application is incorporated herein by reference.
This invention was made with Government support under Contract DE-AC0576RLO1830 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
Elemental sulfur is an attractive cathode material for lithium batteries because of its high theoretical capacity (1672 mAh/g) and specific energy (2600 Wh/kg), assuming complete reaction of lithium with sulfur to form Li2S. It also has the advantage of relatively low cost and environmental impact as an electrode material. Practical realization of an acceptable Li—S battery is a challenge for at least two reasons. Elemental sulfur, and its discharge products, has a highly electrically insulating nature (5×10−30 S cm−1 at 25° C.), which can lower both electrochemical activity and the utilization ratio of sulfur. Another issue commonly associated with the Li—S system is poor cyclability caused by the high solubility of the intermediate lithium polysulfide, Li2Sx (2≤x≤8), formed during both charge and discharge processes. Dissolved polysulfides can diffuse to the lithium anode where they are then subsequently reduced to short chain polysulfides. Those soluble species can also transport back to the cathode and be reoxidized into long chain polysulfides. The above parasitic process creates an internal shuttle reaction, which results in low coulombic efficiency. Moreover, a fraction of the soluble polysulfides are strongly reduced into insoluble Li2S2 and/or Li2S, which are then deposited on the anode surface and gradually form a thick layer upon repeated cycling. The same phenomenon also occurs on the cathode surface during discharge. The deactivated insoluble agglomerates on both electrodes can lead to a progressive loss of active materials, inaccessibility of the active components in the interior sulfur electrode, a serious morphology change of the electrode, and increased cell impedance. These cumulative effects can then be reflected in a rapid capacity degradation of the Li—S battery upon charge/discharge cycling.
In order to address the aforementioned challenges, a matrix can be designed to not only support good conductivity and dispersion of sulfur, but also, to constrain sulfur and the polysulfides within a framework. However, simple physical confinement and/or sorption does not appear to be sufficiently effective in retarding polysulfide dissolution so as to improve cycle life. Accordingly, a need exists for an improved composite material exhibiting high capacity retention and high charge/discharge cycle stability when utilized as an electrode in Li—S energy storage devices.
This document describes lithium-sulfur energy storage devices having a positive electrode comprising a composite exhibiting relatively high capacity and cycle stability compared to the state of the art. The composite can be electrically conductive. Also described are methods for making the composites. The composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide particles can be confined through chemical bonds and not mere physical confinement or sorption.
In some instances and/or stages of operation, the positive electrode can further comprise sulfur particles distributed among the chains. For example, prior to the first discharge an energy storage device, the positive electrode can Comprise all, or at least some, sulfur particles distributed among the polymer chains. Furthermore, even after discharge, at least some sulfur particles can be distributed among the polymer chains along with the sulfide and/or polysulfide particles.
As used herein, a sulfurized polymer can refer to a polymer that includes sulfur on the polymer backbones and/or between polymer chains. In some embodiments, the sulfurized polymer comprises sulfurized polyaniline (SPANI). Alternatively, the polymer can comprise sulfurized polypyrrole or a sulfurized poly(pyrrole-co-aniline). Examples of functional groups, which can be attached to the polymer chains, include, but are not limited to carboxyl, hydroxyl, sulfonate, sulfate, and combinations thereof. In preferred embodiments, at least some functional groups comprise amine and/or imine groups.
In some embodiments, the chemical bonds confining the sulfide and/or polysulfide particles occur between the particles and the functional groups. In certain embodiments, the chemical bonding predominantly excludes weak means of confinement such as physical confinement, physisorption, van der waal bonding, and hydrogen bonding. In still other embodiments, as described in greater detail below, sulfurization (i.e., vulcanization) of the polymer is not so extensive that the sulfur in the composite participates predominantly in cross-linking and strongly covalent bonding to the functional groups. A portion of the sulfur is not bonded to the polymer chains but is confined as sulfur, sulfide, and/or polysulfide particles.
According to one embodiment, the positive electrode has a sulfurized polymer-to-sulfur weight ratio between 2.5 and 0.7 (e.g., the ratio of sulfurized polymer and unconfined sulfur after vulcanization). The sulfurized polymer, in some instances, can have a sulfur content between 25 wt % and 60 wt % (e.g., the weight ratio of elemental sulfur in the form of disulfide bonded in the sulfurized polymer, which can be measured by elemental analysis).
In some embodiments, the positive electrode further comprises a layer comprising a conductive carbon material contacting the composite. Alternatively, or in addition, a conductive carbon material can be distributed throughout the composite. Preferably, the conductive carbon material comprises graphene.
According to some embodiments, lithium-sulfur energy storage devices are configured with the positive cathodes described herein and exhibit a reversible capacity of at least 600 mAh g−1 when operated. In other embodiments, the energy storage devices are configured to retain at least 50% of the devices' initial capacity when operated over at least 500 cycles.
In one particular embodiment, a lithium-sulfur energy storage device has a negative electrode comprising lithium and a positive electrode comprising a composite comprising chains of a sulfurized polyaniline (SPANI) polymer cross-linked through sulfur bonds. The composite further comprises nanoparticles comprising sulfide anions, nanoparticles comprising polysulfide anions, or both confined among the chains by chemical bonds between the anions and functional groups attached to the chains. The device is configured to have a reversible capacity of at least 600 mAh g−1 when operated.
This document also describes methods of synthesizing the composite for a positive electrode in a lithium-sulfur energy storage device. The methods are characterized by dispersing a polymer in a solution comprising sulfur dissolved in a solvent and then removing the solvent after a time to yield a polymer-sulfur intermediate mixture. The polymer-sulfur intermediate mixture is heated to at least the melting temperature of sulfur for a first amount of time to improve distribution and/or adsorption of the sulfur among the polymer. The polymer-sulfur intermediate mixture is then partially vulcanized at a vulcanizing temperature for a second amount of time sufficient to form cross links between polymer chains through sulfur bonds, thereby yielding a sulfurized polymer. The partial vulcanization also results in sulfide particles, polysulfide particles, or both confined by chemical bonds among the cross-linked chains. Preferably, though not always, the sulfide particles can comprise sulfide anions and the polysulfide particles can comprise polysulfide anions.
In one embodiment, the vulcanizing temperature can be between 200° C. and 350° C. In another embodiment, the weight ratio of the sulfurized polymer to sulfur contained in the particles is between 2.5 and 0.7. In yet another embodiment, the sulfurized polymer has a total content of elemental sulfur between 25 wt % and 60 wt %.
The purpose of the foregoing summary is to enable the United States Patent and Trademark Office and the public generally, especially the scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The summary is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
Various advantages and novel features of the present invention are described herein and will become further readily apparent to those skilled in this art from the following detailed description. In the preceding and following descriptions, the various embodiments, including the preferred embodiments, have been shown and described. Included herein is a description of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modification in various respects without departing from the invention. Accordingly, the drawings and description of the preferred embodiments set forth hereafter are to be regarded as illustrative in nature, and not as restrictive.
Embodiments of the invention are described below with reference to the following accompanying drawings.
It will be clear from this description of the invention that the invention is not limited to these illustrated embodiments but that the invention also includes a variety of modifications and embodiments thereto. Therefore the present description should be seen as illustrative and not limiting. While the invention is susceptible of various modifications and alternative constructions, it should be understood, that there is no intention to limit the invention to the specific form disclosed, but, on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims.
The following includes a description of one embodiment of the present invention, in which a flexible interwoven sulfurized polyaniline (SPANI, hereafter) is designed to imbed sulfur in the form of a SPANI/S composite. The soluble long chain polysulfides produced during repeated cycling are effectively constrained within the SPANI spatial network through both physical and chemical interactions. Even after 500 cycles a capacity retention rate of 68% is observed in the S/SPANI composite with a reversible capacity of around 600 mAh g−1. According to this embodiment, the framework of the elastic SPANI polymer functions in such a way that the volume of SPANI varies along with the S content, thereby addressing the dislocation issue of sulfur. The embodiment includes amine groups and/or imine groups decorated on SPANI surface, which can further interact or attract soluble polysulfide anions.
Polyaniline (PANI) was first synthesized by a chemical oxidative method. 0.9 mL of aniline was dissolved in 80 mL of 1.5 mol L−1 HCl with stirring. A 2.28 g portion of (NH4)2S2O8 was dissolved in 20 mL of deionized water and then quickly added to the above solution. The mixture was stirred constantly at room temperature for 12 h. The PANI solid product was washed with deionized water until the filtrate became colorless and neutral and then dried at 50° C. overnight. SPANI/S composites were synthesized as follows: 0.3, 0.35 and 0.4 g of sulfur were thoroughly dissolved in 2 mL of carbon disulfide (CS2) respectively. Then 0.2, 0.15, and 0.1 g of PANI were added respectively in sequence into the above three solutions and dispersed uniformly under constant stirring. The mixtures were further stirred until the CS2 solvent was completely evaporated. The solid mixtures obtained from this procedure were heated in a sealed vessel filled with argon gas at 155° C. for 12 h and further heated at 280° C. for 12 h to perform the sulfur vulcanization reaction. The products were designated as SPANI/S-28, SPANI/S-35 and SPANI/S-55, respectively, according to the composition and the net elemental sulfur contents based on the thermogravimetric (TG) analysis. For the sake of property comparison, another portion of a mixture composed of 0.3 g of sulfur and 0.2 g of PANI was heated at 155° C. for 12 h; the product obtained was designated as PANI/S-58 according to the TG test. Without the subsequent heat treatment, the PANI/S-58 sample lacked substantial cross-linking of the PANI chains. Furthermore, for comparative purposes, some SPANI/S composites were washed with CS2 to remove any elemental sulfur; the washed products were designated as SPANI. Mesoporous carbon was used for electrochemical impedance spectra.
The various samples were characterized using the following techniques and instruments. Scanning electron microscopy (SEM) experiments were performed on an FEI HELIOS NANOLAB® dual-beam focused ion beam/scanning electron microscope (FIB/SEM). X-ray diffraction (XRD) characterization was carried out on a PHILIPS XPERT® X-ray diffractometer using Cu Kα radiation at λ=1.54 Å at 40 min−1 in 10-80° Nitrogen adsorption-desorption isotherms for surface-area and pore analysis were measured using a QUANTACHROME AUTOSORB® Automated Gas Sorption System. Thermal gravimetric analysis was conducted on a METTLER TOLEDO TGA/DSC 1® thermogravimetric analyzer in argon at a scan rate of 10° C./min from room temperature to 800° C. Ramam spectra were excited using 25 mW of 488 nm excitation from a coherent INNOVA 300 C® cw argon ion laser. Backscattered light was analyzed using a SPEX TRIPLEMATE® Spectrometer (Model 1877). Ten scans of 30 s exposure time was signal averaged. XPS measurements were performed with a PHYSICAL ELECTRONICS QUANTERA® Scanning X-ray Microprobe. This system uses a focused monochromatic Al Kα X-ray (1486.7 eV) source for excitation and a spherical section analyzer. The instrument has a 32 element multichannel detection system. A 100 W X-ray beam focused to 100 μm diameter was rastered over a 1.4 mm×0.1 mm rectangle on the sample. The X-ray beam is incident normal to the sample and the photoelectron detector is at 45° off-normal. High energy resolution spectra were collected using a pass-energy of 69.0 eV with a step size of 0.125 eV. For the Ag 3d5/2 line, these conditions produced a FWHM of 0.91 eV. The sample experienced variable degrees of charging. Low energy electrons at ˜1 eV, 20 μA and low energy Ar+ ions were used to minimize this charging.
For electrochemical tests, a cathode was prepared by mixing 80 wt % of the active composite, 10 wt % Super P (TIMCAL, graphite & carbon Inc.), and 10 wt % of polyvinylidene difluoride (PVDF, Alfa Aesar) dissolved in N-methyl-2-pyrrolidone (NMP, Aldrich) to form a slurry which was then pasted to an Al foil substrate. Electrochemical tests were performed using 2325 coin cells with lithium metal as the counter electrode. The electrolyte was 1 M lithium bis(trifluoromethane)sulfonamide (LiTFSI) (99.95% trace metals basis, Aldrich) dissolved in a mixture of 1,3-dioxolane (DOL) and dimethyoxyethane (DME) (1:1 by volume). The separator was a CELGARD 3501® microporous membrane. The cells were assembled in an argon-filled glove box. The galvanostatic charge-discharge test was conducted by a BT-2043 ARBIN® Battery Testing System. Cyclic voltammograms and electrochemical impedance spectra were obtained from a SOLARTRON SI 1287® electrochemical interface.
However, the spectrum of this composite (i.e., PANI/S-58) upon further heat treatment (e.g., at 280° C.), yields SPANI/S-28, which shows distinct differences. Referring to
In one embodiment, as illustrated in
To further confirm the vulcanization reaction, Raman spectroscopy was also performed on the as-prepared composites. As shown in
The SPANI/S composites (SPANI/S-28, SPANI/S-35 and SPAN1/S-55) synthesized at 280° C. present similar Raman spectra. The bands in the low wavenumber range (100-500 cm−1) are consistent with elemental sulfur, indicating that elemental sulfur does exist in the composites. However, the bands at medium to high wavenumbers (600-1700 cm−1) are obviously different from those seen in pure PANI (
TABLE 1
Binding energies (eV) with their corresponding atomic concentrations
and peak full widths at half maximum (in parentheses: area % and
eV. respectively) of S 2p3/2 component peaks of different
composites. Component 1 is representative of elemental sulfur form
while component 2 corresponds to organic disulfides environments.
Composite
Component 1
Component 2
PANI/S-58
164.2 (85, 1.11)
163.8 (15, 0.60)
SPANI/S-28
164.1 (42, 1.03)
163.6 (58, 0.87)
SPANI/S-35
164.0 (50, 1.03)
163.5 (50, 0.80)
SPANI/S-55
164.0 (54, 1.13)
163.5 (46, 0.88)
In the case of PANI/S-58, the S 2p3/2 component peaks of the two doublets are centered at 164.2 eV and 163.8 eV, respectively. The S 2p3/2 peak positioned at 164.2 eV is up to cyclic octa-atomic elemental sulfur. The S 2p3/2 peak positioned at lower binding energy (163.8 eV) appears to be associated with sulfur linked on the aromatic rings, since sulfur in this chemical environment should have a higher electron density than in its neutral form due to the electron-donating character of the phenyl rings. Therefore, the binding energy will decrease accordingly. This data is also in agreement with that seen for poly(Phenylene Sulfide) (163.8 eV) and poly(benzenethiol) (163.6 eV). As can be seen in Table 2, 85% of sulfur is present in a neutral form in PANI/S-58, implying that only a small portion of the sulfur has chemically interacted with polyaniline at 155° C. It has to be noted that the corresponding area cannot be used for quantitative analysis, as a portion of elemental sulfur will sublime in the ultra high vacuum system during XPS analysis. However, the data can still be used qualitatively to understand the relative composition of sulfur in the two chemical environments.
TABLE 2
Results of elemental compositions, S/C atomic ratios on
SPANI backbone. BET and TG data of different composites.
BET/
Elemental analysis/wt. %
m2 g−1
S
C
N
H
TG/%
S/C
PANI/S-58
4.80
~58
SPANI/S-28
8.00
61.1
29.1
5.03
1.08
~28
0.43
SPANI/S-35
4.67
73.1
22.2
3.74
0.73
~35
0.63
SPANI/S-55
1.08
83.3
14.3
3.60
0.50
~55
0.72
* BET of neat PANI is 32.0 m2 g−1.
Compared with PANI/S-58, The S 2p3/2 peaks of SPANI/S composites corresponding to sulfur connected with aromatic rings shift about 0.2-0.3 eV towards lower binding energy, indicating that the interactions between sulfur and aromatic rings get strengthened after the vulcanization reaction. At the same time, the S 2p3/2 peaks corresponding to elemental sulfur shift about 0.1-0.2 eV towards lower binding energy, implying that its chemical environment is slightly changed as well. In addition, as can be seen from Table 2, the S 2p3/2 peak areas of the SPANI/S corresponding to elemental sulfur increase with the sulfur contents of the composites, confirming reasonableness of the fits.
Elemental analysis shown in Table 2 indicates that the sulfur contents in the SPANI/S-28, SPANI/S-35 and SPANI/S-55 composites are 61.1, 73.1 and 83.3 wt %, which are close to the original amounts of 60, 70 and 80 wt % sulfur, respectively. TG data show that the pure elemental sulfur content is 28, 35, and 55 wt %, respectively. Therefore, the S/C molar ratios calculated for SPANI are 0.43, 0.63 and 0.72 for SPANI/S-28, SPANI/S-35 and SPANI/S-55 respectively according to the elemental analysis and TG results. The S/C molar ratios increase with the increased initial sulfur content. When the original sulfur content is 60 wt %, about 3 H atoms on each benzene ring are substituted by sulfur. While the original sulfur content increase to 70 and 80 wt %, all of the 4 H atoms on each benzene ring are substituted. Based on the above FTIR analysis, the quinoid ring units in SPANI are less than that seen in the pure PANI (y>x); concurrently, the vulcanization reaction may occur at any neighboring two benzene rings leading to the formation of both inter- and intra molecular-chain organic S—S bonds. Thus, the possible structural formula of SPANI can be written as shown in scheme 1b. This structure also is in accord with the results from aforementioned FTIR, Raman and XPS spectra.
As the backbone of the composite is SPANI, it is necessary to investigate intrinsic electrochemical properties and capacity contribution. In order to get pure SPANI, CS2 was used to dissolve the elementary sulfur out of the polymer. Unfortunately, there is still about 10% sulfur that cannot be completely removed from SPANI which is confirmed by TGA and Raman spectrometry. It is possible that some sulfur is deeply entrained in the SPANI network or has strong interactions with the polymer backbone chains precluding complete removal. The CV curve of the SPANI sample (with residual sulfur) appears in
To exclude the capacity contribution from the SPANI polymer itself, the galvanostatic charge/discharge curves of SPANI are shown in
The electrochemical reaction of the sulfur cathode is a complicated process involving a series of electron transfer reactions, coupled with the repeated dissolution/deposition of the sulfur species. The structural reconstruction of the electrode inevitably occurs during cycling. It was found that the thickness of a carbon/sulfur composite electrode changes by about 22% after one discharge/charge cycle. In fact, the capacity fading mechanism of sulfur electrodes, especially at higher sulfur loading, is due to physical cracking of the electrode structure. Thus, the mechanical strength of the conductive supporting matrix becomes particularly important.
The excellent cycling stability and rate performance are firstly related to the SPANI polymer framework formed by the in-situ vulcanization reaction which effectively constrains sulfur and the intermediate lithium polysulfides. As confirmed from the Raman spectra, elemental sulfur already has certain chemical interactions with the polymer backbone during heating process. The incorporation of sulfur in the SPANI matrix is similar as a capsule in which SPANI is tightly coated on the sulfur surface with the aid of chemical interactions formed during vulcanization. Significant differences exist between as-formed S/SPANI and traditional S/carbon composites. In the conventional S/C composites the soluble polysulfides can be considered as “water” in a “broken bucket” in which the hard container (carbon) can only slow down the leaking process if the hole size (pore size of carbon) on the “bucket” is tuned appropriately. In this S/SPANI design, however, the bucket or the container itself becomes elastic during charge/discharge, which is the second critical factor to stabilize polysulfides. During discharge, the sulfur is converted into polysulfide and Li2S increasing the volume of the active material. Meanwhile a fraction of disulfide bonds connected on the SPANI polymer split into dithiolate form during discharge, thus the polymer matrix then can expand concurrently with the transition from S to Li2S. During the next charge, the volume of Li2S shrinks when it turns back to sulfur while the disulfide bonds recombine therefore reduces the polymer volume simultaneously. In other words, SPANI functions as a self-breathing framework to accommodate the volume changes of sulfur during electrochemical reactions. SPANI backbones effectively hold the “water” (soluble polysulfides) like an adjustable “soft bucket”. Therefore the mechanical stress arising from the electrochemical reaction is more effectively alleviated than using other ceramic materials or carbon matrix composites benefitting the long-term cycling stability of the composite electrode.
This self-accommodation ability of SPANI network also explains well the aforementioned activation process observed in the cycling performance. During each expansion process more new surface areas of SPANI are exposed to sulfur and more soluble polysulfides which are then in turn chemically bonded to the polymer matrix. Those chemically adsorbed active species effectively get involved in the whole electrochemical process gradually increasing the utilization rate of element sulfur in the first tens of cycles until a kinetic equilibrium is built.
Finally the influences from the amine and imine groups on the SPANI main chain cannot be ignored since they are electropositive and grafting the negative polysulfide ions in the vicinity of the polymer framework in a way more akin to chemical bonding than mere physical absorption.
Electrochemical impedance spectroscopy of the SPANI/S-55 composite was carried out on the completely charged state of the material after respective cycles as shown in
TABLE 3
EIS Parameters of SPANI/S-55 electrode during different cycles derived
from the equivalent circuit shown in FIG. 8b and mesoporous carbon/S
electrode during first cycle derived from the equivalent circuit
shown in literature.
Cycle number/n
R1/Ω
R2/Ω
R3/Ω
R4/Ω
SPANI/S-55
1
1.64
11.2
46.0
45.0
20
2.16
13.5
16.8
21.2
50
3.63
22.0
2.13
4.29
100
3.67
22.6
1.45
8.79
MCS
1
1.08
17.9
84.9
Results indicate that the solution (R1) and surface film resistance grow gradually, probably caused by some insoluble Li2S accumulated on the electrode surface. The charge transfer resistance of elemental sulfur shows a descending trend, indicating the continuous immersion of the electrolyte increases the reactive contact area. Also the electrode structural evolution during cycling, which enhances the electrochemical reaction kinetics, may also favor a reduction of the charge transfer resistance. However, the impedance corresponding to the SPANI electrochemical reaction first decreases then slightly increases. The initial immersion into the electrolyte can enhance the polymer's electrode reaction kinetics. An increasing number of disulfide bonds participated in the reaction while some of the dissociated disulfide bonds could not recover to the original crosslinked state, thus impeding the SPANI electrochemical reaction in subsequent cycles. This explanation is supported by changes in the capacity of the SPANI electrode which increases in the first 50 cycles and then gradually decays in later cycles (
While a number of embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims, therefore, are intended to cover all such changes and modifications as they fall within the true spirit and scope of the invention.
Liu, Jun, Exarhos, Gregory J., Xiao, Jie, Cao, Yuliang, Xiao, Lifen, Schwenzer, Birgit, Nie, Zimin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5462566, | Jun 16 1993 | Sion Power Corporation | High capacity cathodes for secondary cells |
6072026, | Sep 02 1997 | Yazaki Corporation | Aniline polymer electrode material and secondary cell |
6245458, | Jan 28 1998 | Matsushita Electric Industrial Co., Ltd. | Composite electrode, method of producing the same, and lithium secondary battery using the same |
6302928, | Dec 17 1998 | Sion Power Corporation | Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers |
6652440, | May 04 1999 | Sion Power Corporation | Electroactive polymers of high sulfur content for use in electrochemical cells |
7029796, | Sep 23 2002 | Samsung SDI Co., Ltd. | Positive active material of a lithium-sulfur battery and method of fabricating same |
20040157122, | |||
20090226809, | |||
EP818839, | |||
EP2337126, | |||
JP2002329495, | |||
JP2005285376, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 27 2012 | LIU, JUN | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 23 2012 | XIAO, JIE | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 23 2012 | EXARHOS, GREGORY J | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 23 2012 | SCHWENZER, BIRGIT | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 23 2012 | NIE, ZIMIN | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 27 2012 | CAO, YULIANG | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 27 2012 | XIAO, LIFEN | Battelle Memorial Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028731 | /0632 | |
Jul 30 2012 | Battelle Memorial Institute | (assignment on the face of the patent) | / | |||
Aug 20 2012 | BATTELLE MEMORIAL INSTITUTE, PACIFIC NORTHWEST DIVISION | U S DEPARTMENT OF ENERGY | CONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS | 028828 | /0932 |
Date | Maintenance Fee Events |
Aug 12 2021 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 27 2021 | 4 years fee payment window open |
Sep 27 2021 | 6 months grace period start (w surcharge) |
Mar 27 2022 | patent expiry (for year 4) |
Mar 27 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 27 2025 | 8 years fee payment window open |
Sep 27 2025 | 6 months grace period start (w surcharge) |
Mar 27 2026 | patent expiry (for year 8) |
Mar 27 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 27 2029 | 12 years fee payment window open |
Sep 27 2029 | 6 months grace period start (w surcharge) |
Mar 27 2030 | patent expiry (for year 12) |
Mar 27 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |