Systems and methods for imaging a target object are provided. In one example, an imaging device comprises an objective lens having symmetry around an optical axis. The objective lens is configured to disperse images of a target object in longitudinal chromatic aberrations along the optical axis. The imaging device further includes a sensor configured to obtain multiple images of the target object. Each image corresponds to a specific wavelength within a predetermined spectrum.

Patent
   9945777
Priority
Jan 14 2016
Filed
Jan 14 2016
Issued
Apr 17 2018
Expiry
Jan 14 2036
Assg.orig
Entity
Large
1
470
currently ok
12. A method for for detecting counterfeit bills, the method comprising the steps of:
optically dispersing multiple wavelengths of light reflected from a bill so as to create longitudinal chromatic aberrations on an optical axis, wherein each wavelength of the light corresponds to a point on the optical axis in a range from ultraviolet to near infrared;
sensing multiple in-focus images of the bill at the multiple wavelengths;
creating a three-dimensional image stack comprising multiple in-focus images corresponding to a plurality of wavelengths in the range;
analyzing one or more of the multiple in-focus images to detect chromatic features of the bill;
comparing the chromatic features corresponding to one or more regions of each of one or more of the multiple in-focus images in the three-dimensional image stack, to one or more regions of a corresponding in-focus images of an original bill selected from a three-dimensional image stack comprising multiple in-focus images of the original bill respectively corresponding to one of the plurality of wavelengths in the range; and
determining whether the bill is counterfeit based at least in part on the comparison.
1. An imaging device for detecting counterfeit bills, the image device comprising:
an objective lens having symmetry around an optical axis, the objective lens configured to disperse images of a bill in longitudinal chromatic aberrations along the optical axis;
a sensor configured to obtain multiple images of the bill, each image corresponding to a specific wavelength within a predetermined spectrum from ultraviolet to near infrared;
a processor configured to analyze the multiple images to detect features of the bill, wherein the processor is configured to process the multiple images to obtain a three-dimensional image stack comprising a plurality of images respectively corresponding to one of a plurality of different wavelengths in the spectrum, wherein the processor is configured to:
compare one or more regions of each of one or more of the plurality of images in the three-dimensional image stack, to one or more regions of a corresponding image of an original bill selected from a three-dimensional image stack comprising a plurality of images of the original bill respectively corresponding to the one of the plurality of different wavelengths in the spectrum; and
determine whether the bill is counterfeit based at least in part on the comparison.
2. The imaging device of claim 1, further comprising an electromagnetic radiation source configured to emit broadband spectrum radiation on the bill.
3. The imaging device of claim 2, wherein the electromagnetic radiation source is configured to emit ultraviolet radiation, visible radiation, and near infrared radiation.
4. The imaging device of claim 3, wherein the sensor is configured to sense electromagnetic radiation having wavelengths in the range from about 300 nm to about 1100 nm.
5. The imaging device of claim 1, further comprising a portable housing, wherein the lens and sensor are disposed within the portable housing.
6. The imaging device of claim 5, further comprising barcode scanning components disposed within the portable housing.
7. The imaging device of claim 1, wherein the processor is configured to analyze the multiple images to detect absorption of various wavelengths by the bill.
8. The imaging device of claim 7, wherein the three-dimensional image stack comprises an image corresponding to a wavelength in the visible spectrum, an image corresponding to a wavelength in the ultraviolet spectrum, and an image corresponding to a wavelength in the near infrared spectrum.
9. The imaging device of claim 8, further comprising a memory device configured to store the three-dimensional image stack.
10. The imaging device of claim 1, further comprising a motor configured to move the sensor along the optical axis in a stepwise manner to enable the sensor to obtain the multiple images at each step, each image corresponding to a specific wavelength.
11. The imaging device of claim 1, further comprising a one of a liquid lens and a deformable lens optically aligned with the objective lens, wherein the one of the liquid lens and deformable lens is configured to correct for the longitudinal chromatic aberrations for each image to enable the sensor to obtain the multiple images at a single location.
13. The method of claim 12, further comprising the step of disposing an objective lens and a sensor in a handheld device, the objective lens configured for dispersing the images and the sensor configured for sensing the images.
14. The method of claim 13, further comprising the step of moving the sensor along the optical axis to enable the sensor to sense the multiple in-focus images.
15. The method of claim 12, further comprising the step of correcting for the longitudinal chromatic aberrations to enable the sensor to sense the multiple in-focus images at a single location along the optical axis.
16. The method of claim 12, further comprising the step of analyzing the multiple in-focus images to detect absorption of various wavelengths by features of the bill.
17. The method of claim 16, wherein the three-dimensional image stack comprises an image corresponding to a wavelength in the visible spectrum, an image corresponding to a wavelength in the ultraviolet spectrum, and an image corresponding to a wavelength in the near infrared spectrum.
18. The method of claim 12, wherein the multiple wavelengths include at least an ultraviolet wavelength, a visible wavelength, and a near infrared wavelength.

The present invention relates to systems and methods for imaging a target object and more particularly relates to multi-spectral imaging using longitudinal chromatic aberrations.

Generally speaking, multi-spectral imaging involves analyzing images at various wavelengths of light, such as visible light, ultraviolet light, and infrared light. Multi-spectral imaging can be used in many applications, such as for detecting counterfeit currency, detecting the quality of food, and other applications. The equipment used in many implementations of actual multi-spectral imaging typically includes spectrometers and/or rotating prisms. These implementations are normally very large and expensive. Therefore, a need exists for a more compact multi-spectral imaging device, especially one that can be handheld for easy use.

Accordingly, the present invention embraces systems and methods for imaging an object. In one exemplary embodiment, an imaging device includes an objective lens and a sensor. The objective lens, having symmetry around an optical axis, is configured to disperse images of a target object in longitudinal chromatic aberrations along the optical axis. The sensor is configured to obtain multiple images of the target object, wherein each image corresponds to a specific wavelength within a predetermined spectrum.

In another exemplary embodiment, a method for imaging a target object is provided. The method includes a first step of optically dispersing multiple wavelengths of light reflected from a target object so as to create longitudinal chromatic aberrations on an optical axis, wherein each wavelength of the light corresponds to a point on the optical axis. The method also includes the step of sensing multiple in-focus images of the target object at the multiple wavelengths.

The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.

FIG. 1 schematically depicts a chart showing the relevant wavelengths of electromagnetic radiation being monitored according to at least one embodiment of the present invention.

FIG. 2 schematically depicts a diagram of a multi-spectral imaging apparatus according to at least one embodiment of the present invention.

FIG. 3 schematically depicts a diagram of an optical imager according to at least a first embodiment of the present invention.

FIGS. 4A and 4B schematically depict diagrams of the chromatic aberration units shown in FIGS. 2 and 3 according to various embodiments of the present invention.

FIG. 5 schematically depicts a diagram of an optical imager according to at least a second embodiment of the present invention.

FIGS. 6A and 6B schematically depict diagrams of the chromatic aberration units shown in FIG. 5 according to various embodiments of the present invention.

FIG. 7 schematically depicts a diagram of an image stack according to at least one embodiment of the present invention.

FIG. 8 schematically depicts a diagram of a handheld device for housing an optical imager, according to at least one embodiment of the present invention.

In the field of optics, the concept of chromatic aberration can be thought of as the result of a lens that fails to focus all colors to the same focal point. The effect of chromatic aberration occurs because of the difference in the refractive indices of different wavelengths of light. Instead of focusing the light to one point, a lens may disperse the light.

Additionally, longitudinal chromatic aberration is a type of chromatic aberration in which light is dispersed along a longitudinal axis, and more specifically, along the optical axis of a lens. For example, a lens that produces longitudinal chromatic aberrations focuses rays of light having wavelengths at one end of the spectrum farthest from the rays of light having wavelengths at the other end of the spectrum. The present invention takes advantage of the phenomenon of longitudinal chromatic aberrations to obtain multiple images at different wavelengths corresponding to the focal point or focal field of the particular wavelength.

The present invention embraces systems and methods for obtaining images of a target object at various wavelengths and analyzing the images to determine certain characteristics of the target object. The present invention may include a lens, such as an objective lens, that is designed to disperse light without correcting for chromatic aberrations. Specifically, the objective lens of the present invention may provide longitudinal chromatic aberrations, such that light at different wavelengths is focused at different points along the optical axis of the lens. The present invention may also include a sensor configured to obtain multiple in-focus images of the object at the different wavelengths. In some embodiments, the sensor is moved along the optical axis to obtain the images.

From the multiple images, an image stack can be generated. The image stack can then be used to analyze various properties to detect characteristics of the object. In one example, specific portions of images at specific wavelengths can be analyzed to determine whether or not printed currency is counterfeit. Also, the quality or maturity of food can be analyzed by observing the absorption spectrum.

FIG. 1 is a chart showing the wavelengths of electromagnetic radiation within a specific spectrum 10 according to exemplary embodiments. The spectrum 10 corresponds substantially to the relevant wavelengths utilized by the present invention. In particular, with the use of a CMOS sensor, the relevant wavelengths may range from about 300 nm to about 1100. Therefore, the spectrum 10 in this example encompasses the entire visible spectrum, which ranges from about 400 nm to about 700 nm and also includes part of the ultraviolet (UV) spectrum, which includes wavelengths below 400 nm, and part of the near infrared (near IR) spectrum, which includes wavelengths above 700 nm.

According to some embodiments, other types of sensors may be used to sense a wider range of wavelengths. For example, some sensors may be used to sense lower wavelengths in the UV spectrum, which includes wavelengths from about 100 nm to 400 nm, and higher wavelengths in the IR spectrum, which includes wavelengths from about 700 nm to about 1 mm.

The present invention may provide a source of light for illuminating a target object. In some embodiments, the light source may provide a range of electromagnetic radiation ranging from about 300 nm to about 1100 nm. Also, the optical systems of the present invention may be capable of sensing at least the same range as shown by the spectrum 10 in FIG. 1. In some embodiments, the optical systems may be configured to sense a greater range of electromagnetic radiation.

FIG. 2 is a diagram of an apparatus 20 illustrating an example of the general concepts of the present invention and more particularly the concepts of an objective lens that may be utilized in the various embodiments of the present invention. The apparatus 20 includes a chromatic aberration unit 22, which represents an optical system for imaging a target object 24. The chromatic aberration unit 22 includes an optical axis 26, which defines an imaginary line about which the optical elements of the chromatic aberration unit 22 are rotationally symmetrical.

As shown in FIG. 2, light rays reflected from the target object 24 are radiated to the chromatic aberration unit 22. The chromatic aberration unit 22 optically refracts the rays such that different wavelengths are focused at different points along the optical axis 26. According to some embodiments, such as those illustrated in FIGS. 5 and 6, the chromatic aberration unit 22 may further include optical components in additional to an objective lens for correcting for the longitudinal chromatic aberrations. By correcting for the longitudinal chromatic aberrations, images at all relevant wavelengths can be focused onto one point on the optical axis 26. It should be noted that the depth of focus at each wavelength enables a sensor to distinguish a sharp image from a blurred image.

The chromatic aberration unit 22 of FIG. 2 may include various combinations of lenses, filters, etc., depending on the various embodiments, as described in more detail below. Regardless of the particular implementation, the chromatic aberration unit 22 includes an objective lens that is configured to optically disperse an image of the target object 24. The dispersion of the image includes focusing specific wavelengths of the image onto specific points along the optical axis 26. For example, the chromatic aberration unit 22 is capable of focusing an ultraviolet image having a wavelength of 300 nm onto the optical axis at the point marked “300” in FIG. 2.

Although the numerals “300,” “500,” “700”, etc. are shown in FIG. 2, it should be noted that they are not part of the apparatus 20 itself, but are shown mainly for the purpose of explanation. Also, the optical axis 26 is an imaginary line and is also shown for the purpose of explanation. It should be noted that the scale regarding the corresponding wavelengths at the points along the optical axis 26 may not necessarily be a linear scale, as shown, but may rather depend on the characteristics of the chromatic aberration unit 22.

Depending on the configuration of the chromatic aberration unit 22, images of the target object 24 may be dispersed at any wavelengths between about 300 nm and 1100 nm. Also, the chromatic aberration unit 22 may also be configured to disperse other wavelengths less than 300 nm and/or greater than 1100 nm along the optical axis 26.

FIG. 3 is a diagram showing a first embodiment of an optical imager 30. The optical imager 30 includes the chromatic aberration unit 22 having optical axis 26, as described above with respect to FIG. 2. The optical imager 30 further includes one or more radiation sources 32, a sensor 34, a motor 36, a motor controller 38, a processor 40, and memory 42. The sensor 34, motor 36, and motor controller 38 may define an auto-focus mechanism. Other types of auto-focus mechanisms may be utilized in the present invention for moving the sensor 34 reciprocally along the optical axis 26. The purpose of the auto-focus mechanism is to enable the sensor 34 to acquire in-focus images at different wavelengths by moving the sensor 34 along the caustic of chromatic aberration created by the optical system.

The radiation sources 32 define a broadband spectrum source when considered in combination or separately. Therefore, the radiation sources 32 are configured to illuminate the target object 24 with light within the relevant spectrum utilized by the optical imager 30, which may include electromagnetic radiation ranging in wavelength from about 300 nm to about 1100 nm. As mentioned above, the chromatic aberration unit 22 disperses the light rays based on wavelength. Shorter wavelength (e.g., ultraviolet) refract at a greater angle than longer wavelengths (e.g., near IR) and are focused at different points on the optical axis 26.

In some embodiments, the sensor 34 may be a CMOS sensing component, which may be configured to sense electromagnetic radiation in a range from about 300 nm to about 1100 nm. According to other embodiments, the sensor 34 may include other types of sensing components for sensing wavelengths below 300 nm and/or for sensing wavelengths above 1100 nm.

The processor 40 instructs the motor controller 38 to cause the motor 36 to move the sensor 34 in a reciprocal motion along the optical axis 26. In some embodiments, the motor controller 38 may control the motor 36 to move in a stepwise manner. Accordingly, the motor 36 may be configured to move the sensor 34 to a first point where the light is sensed with respect to a first wavelength, then move the sensor 34 to a second point where the light is sensed with respect to a second wavelength, and so on. This can be repeated for multiple wavelengths within the relevant spectrum.

For example, the optical imager 30 may be configured to step the sensor 34 in such a way as to capture images of the target object 24 with respect to various wavelengths differing by about 25 nm. When sensed at 25 nm apart (i.e., at each tick mark in FIG. 1), the optical imager 30 may capture, for example, 41 images from 300 nm to 1100 nm. The processor 40 may further be configured to store the captured images in the memory device 42.

FIG. 4A illustrates a first embodiment of the chromatic aberration unit 22 shown in FIGS. 2 and 3. In this embodiment, the chromatic aberration unit 22 may be configured as a single objective lens 46 symmetrically arranged with the optical axis 26. The objective lens 46 may be designed to specifically refract light of various wavelengths at different refractive indices so as to disperse the different wavelengths of light. The objective lens 46 disperses the light without the conventional practice of attempting to correct for chromatic aberrations.

FIG. 4B illustrates a second embodiment of the chromatic aberration unit 22 shown in FIGS. 2 and 3. In this embodiment, the chromatic aberration unit 22 may be configured as a combination of lenses, such as a common objective lens 46 and a diffraction lens 48. In other embodiments, three or more lenses may be used. Also, the chromatic aberration unit 22 may include one or more filters for filtering out unwanted wavelengths of electromagnetic radiation.

FIG. 5 illustrates a diagram of a second embodiment of an optical imager 50. In the embodiment of FIG. 5, the chromatic aberration unit 22 may include features in addition to the lenses and filters described with respect to FIGS. 4A and 4B. For example, the chromatic aberration unit 22 in FIG. 5 may further include an autofocusing component that focuses the dispersed light onto one point 52 on the optical axis 26. Therefore, the motor 36 and motor controller 38 shown in FIG. 3 is not needed in this embodiment and the sensor 34 remains stationary.

In this embodiment, the processor 40 may be configured to control the focusing components of the chromatic aberration unit 22 for a particular wavelength and store the image sensed by the sensor 34 at the particular wavelength into memory 42. This process can be repeated for multiple wavelengths such that the processor-controlled auto-focusing components of the chromatic aberration unit 22 changes for each wavelength being sensed.

Various technologies, as discussed below, can be used to provide auto-focusing without the use of mechanically manipulating the sensor 34. Therefore, the non-moving devices can replace the mechanical actuator described with respect to FIG. 3. Implementing an autofocus mechanism without any moving part may be more robust than the mechanical type.

FIG. 6A is a diagram showing an embodiment of a liquid lens 56 that may be used with the objective lens 46 for auto-focusing purposes. Based on input from the processor 40, the physical properties of the liquid lens 56 can be changed. The changes in physical properties thereby change the optical characteristics of the liquid lens 56 to enable focusing the light rays of different wavelengths on the single point 52.

The liquid lens 56 includes a fluid-tight structure that contains a first medium m1 and a second medium m2 separated from each other by a natural barrier 62. For example, the first medium m1 may be water and the second medium m2 may be oil. When the processor 40 applies a voltage V across metal terminals 58 and 60, the media m1, m2 react such that the curvature of the natural barrier 62 changes. For example, a low voltage will cause the first medium m1 to take on a concave shape whereas a high voltage will cause the first medium m1 to take on a convex shape. Light passing through the liquid lens 56 is refracted based on the controlled curvature of the barrier 62 between m1 and m2.

In operation, the objective lens 46 may disperse the light rays based on wavelength as mentioned above. Then, the liquid lens 56 can be adjusted to compensate for the chromatic aberrations. The liquid lens 56 can be controlled so as to focus the light of each respective wavelength onto the point (shown in FIG. 5) on the optical axis 26. Therefore, specific voltages can be applied across the terminals 58, 60 to achieve a desired curvature of the barrier 62 to focus the light of various wavelengths onto the point 52.

According to other embodiments, the liquid lens may be configured using the electro-wetting principle to achieve an auto-focusing device. Other types of auto-focusing devices can be implemented using other known principles.

FIG. 6B is a diagram of an embodiment of a deformable lens 64. The objective lens 46 may also be used in this embodiment for dispersing the light, as mentioned above. The deformable lens 64 in this embodiment includes a glass base 66, a thin glass layer 68, and a soft polymer 70 between the glass base 66 and thin glass layer 68. The deformable lens 64 also includes one or more piezo-electric elements 72 formed around the edges of the thin glass layer 68.

The piezo-electric elements 72 applies forces on the thin glass layer 68 based on the voltage applied to the piezo-electric elements 72. At zero volts, the piezo-electric elements 72 do not apply any force. As the voltage is increased, the piezo-electric elements 72 deform or bend the thin glass layer 68 to various degrees depending on the voltage applied. The bending of the thin glass layer 68 changes the optical focus. Therefore, the processor 40 is configured to control the deformable lens 64 to adjust the focus as needed to maintain the focal point of the corresponding wavelength being measured to the point 52 where the sensor 34 is located.

In other embodiments, the deformable lens may include first and second liquid media m1, m2, separated by a natural barrier. In this embodiment, a piezo-electric element 66 can be stimulated to cause it to press against a depressible wall at various pressures. The depressible wall can be depressed to various degrees causing the pressure of one medium to bulge out toward the other, depending on the particular pressure within the chambers in which the media m1, m2 are contained, thereby changing the optical properties and enabling auto-focus.

FIG. 7 is a diagram showing an example of an image stack 74 comprising multiple images 76 of the target object 24. Each image 76 represents an in-focus view of the target object 24 at a corresponding wavelength. According to the embodiments in connection with FIGS. 3 and 4, the multiple images 76 may be captured at various points along the optical axis 26. According to the embodiments in connection with FIGS. 5 and 6, the multiple images 76 may be captured at the same point on the optical axis 26, but may be automatically focused on the point based on the particular wavelength being sensed.

The image stack 74 is a three-dimensional multi-spectral image that stacks the images 76 acquired at various steps within the relevant spectrum. Images are acquired at the wavelengths within the relevant spectrum of about 300 nm to about 1100 nm, as described above. The images 76 do not necessarily include every wavelength, but include discrete measurements within the spectrum.

Once the three-dimensional image stack 74 is obtained at the multiple wavelengths, various properties of the target object 24 can be analyzed. For detecting counterfeit bills, different regions of the bill can be analyzed by the processor 40 at one or more wavelengths and compared with the corresponding regions of a real bill.

For food quality detection, absorption of various wavelengths can be analyzed. For example, as a fruit gets mature, its absorption of various light may vary. Therefore, the fruit can be analyzed for ripeness as well as being analyzed for past a ripe stage into turning rotten.

Other applications of multi-spectral imaging can be implemented. Particularly, the uses may be especially more convenient using a the multi-spectral imaging devices described in the present disclosure since the embodiments described herein may be embodied in a compact, handheld device, as described below.

FIG. 8 is a diagram of an example of a handheld device 80 configured to house the optical imager 30, 50. The embodiments described in the present disclosure represent a great reduction in size with respect to conventional optical imagers. In this respect, a user can easily manipulate the handheld device 80 to capture the three-dimensional image stack 74 of the target object 24 at multiple wavelengths. The handheld device 80 is also configured to process the images to determine various properties of the target object 24.

In some embodiments, the handheld device 80 may also be configured to house barcode scanning circuitry in addition to the optical imager 30, 50. Therefore, a user may be able to scan a barcode and perform multi-spectral imaging using a single device.

To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Gillet, Alain

Patent Priority Assignee Title
10948715, Aug 31 2018 Hellman Optics, LLC Chromatic lens and methods and systems using same
Patent Priority Assignee Title
5359185, May 11 1992 Intermec IP CORP Chromatic ranging method and apparatus for reading optically readable information over a substantial range of distances
5479258, Dec 28 1992 Pacific Advanced Technology Image multispectral sensing
6172745, Jan 16 1996 CRANE PAYMENT INNOVATIONS, INC Sensing device
6765617, Nov 14 1997 Optoelectronic camera and method for image formatting in the same
6832725, Oct 04 1999 HAND HELD PRODUCTS, INC Optical reader comprising multiple color illumination
7128266, Nov 13 2003 Metrologic Instruments, Inc Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture
7159783, Mar 28 2002 Hand Held Products, Inc. Customizable optical reader
7413127, Jul 31 2001 Hand Held Products, Inc. Optical reader for classifying an image
7726575, Aug 10 2007 HAND HELD PRODUCTS, INC Indicia reading terminal having spatial measurement functionality
8126205, Sep 25 2006 CAMBRIDGE RESEARCH & INSTRUMENTATION, INC Sample imaging and classification
8294969, Sep 23 2009 Metrologic Instruments, Inc. Scan element for use in scanning light and method of making the same
8317105, Nov 13 2003 Metrologic Instruments, Inc. Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin
8322622, Nov 09 2010 Metrologic Instruments, Inc. Hand-supportable digital-imaging based code symbol reading system supporting motion blur reduction using an accelerometer sensor
8366005, Nov 13 2003 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system supporting a multi-tier modular software architecture
8371507, Oct 08 2007 Metrologic Instruments, Inc Method of selectively projecting scan lines in a multiple-line barcode scanner
8376233, Jun 15 2011 Metrologic Instruments, Inc Bar code symbol reading system employing an extremely elongated laser scanning beam capable of reading poor and damaged quality bar code symbols with improved levels of performance
8381979, Jan 31 2011 Metrologic Instruments, Inc. Bar code symbol reading system employing EAS-enabling faceplate bezel
8390909, Sep 23 2009 Metrologic Instruments, Inc. Molded elastomeric flexural elements for use in a laser scanning assemblies and scanners, and methods of manufacturing, tuning and adjusting the same
8408464, Feb 03 2011 Metrologic Instruments, Inc Auto-exposure method using continuous video frames under controlled illumination
8408468, Dec 13 2010 Metrologic Instruments, Inc. Method of and system for reading visible and/or invisible code symbols in a user-transparent manner using visible/invisible illumination source switching during data capture and processing operations
8408469, Oct 07 2010 Metrologic Instruments, Inc. Laser scanning assembly having an improved scan angle-multiplication factor
8424768, Apr 09 2009 Metrologic Instruments, Inc. Trigger mechanism for hand held devices
8448863, Dec 13 2010 Metrologic Instruments, Inc. Bar code symbol reading system supporting visual or/and audible display of product scan speed for throughput optimization in point of sale (POS) environments
8457013, Jan 13 2009 Metrologic Instruments, Inc Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
8459557, Mar 10 2011 Metrologic Instruments, Inc. Dual laser scanning code symbol reading system employing automatic object presence detector for automatic laser source selection
8469272, Mar 29 2011 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and imaging system supporting digital-imaging based bar code symbol reading at the surface of a laser scanning window
8474712, Sep 29 2011 Metrologic Instruments, Inc Method of and system for displaying product related information at POS-based retail checkout systems
8479992, Nov 13 2003 Metrologic Instruments, Inc. Optical code symbol reading system employing an acoustic-waveguide structure for coupling sonic energy, produced from an electro-transducer, to sound wave ports formed in the system housing
8490877, Nov 09 2010 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system having finger-pointing triggered mode of operation
8517271, Nov 13 2003 Metrologic Instruments, Inc. Optical code symbol reading system employing a LED-driven optical-waveguide structure for illuminating a manually-actuated trigger switch integrated within a hand-supportable system housing
8523076, Jan 10 2012 Metrologic Instruments, Inc Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation
8528818, Jul 13 2001 Hand Held Products, Inc. Optical reader having an imager
8544737, Jan 11 2002 Hand Held Products, Inc. Terminal including imaging assembly
8548420, Oct 05 2007 Hand Held Products, Inc. Panic button for data collection device
8550335, Mar 09 2012 Honeywell International, Inc.; HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Encoded information reading terminal in communication with peripheral point-of-sale devices
8550354, Feb 17 2011 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Indicia reader system with wireless communication with a headset
8550357, Dec 08 2010 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Open air indicia reader stand
8556174, Aug 16 2007 Hand Held Products, Inc. Data collection system having EIR terminal interface node
8556176, Sep 26 2011 Metrologic Instruments, Inc. Method of and apparatus for managing and redeeming bar-coded coupons displayed from the light emitting display surfaces of information display devices
8556177, May 31 2005 HAND HELD PRODUCTS, INC System including bar coded wristband
8559767, Jan 22 2001 Welch Allyn Data Collection, Inc. Imaging apparatus having imaging assembly
8561895, Jan 11 2002 Hand Held Products, Inc. Terminal including imaging assembly
8561903, Jan 31 2011 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC System operative to adaptively select an image sensor for decodable indicia reading
8561905, Jun 15 2011 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
8565107, Sep 24 2010 HAND HELD PRODUCTS, INC Terminal configurable for use within an unknown regulatory domain
8571307, Nov 16 2010 HAND HELD PRODUCTS, INC Method and system operative to process monochrome image data
8579200, Jan 15 2010 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Parallel decoding scheme for an indicia reader
8583924, Jul 01 2009 HAND HELD PRODUCTS, INC Location-based feature enablement for mobile terminals
8584945, Nov 14 2007 Hand Held Products, Inc. Encoded information reading terminal with wireless path selection capability
8587595, Oct 01 2009 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Low power multi-core decoder system and method
8587697, Mar 28 1997 Hand Held Products, Inc. Method and apparatus for compensating pixel values in an imaging system
8588869, Jan 19 2010 Hand Held Products, Inc. Power management scheme for portable data collection devices utilizing location and position sensors
8590789, Sep 14 2011 Metrologic Instruments, Inc. Scanner with wake-up mode
8596539, Aug 12 2009 Hand Held Products, Inc. Imaging terminal having image sensor and lens assembly
8596542, Jun 04 2002 Hand Held Products, Inc. Apparatus operative for capture of image data
8596543, Oct 20 2009 Hand Held Products, Inc. Indicia reading terminal including focus element with expanded range of focus distances
8599271, Jan 31 2011 Hand Held Products, Inc. Apparatus, system, and method of use of imaging assembly on mobile terminal
8599957, May 13 2005 EMS TECHNOLOGIES, INC Method and system for communicating information in a digital signal
8600158, Nov 16 2010 HAND HELD PRODUCTS, INC Method and system operative to process color image data
8600167, May 21 2010 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC System for capturing a document in an image signal
8602309, Mar 04 1994 Hand Held Products, Inc. Bar code reading device for reading 1D or 2D bar code symbols
8608053, Apr 30 2012 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC , DOING BUSINESS AS D B A HONEYWELL SCANNING AND MOBILITY Mobile communication terminal configured to display multi-symbol decodable indicia
8608071, Oct 17 2011 Honeywell Scanning and Mobility Optical indicia reading terminal with two image sensors
8611309, Feb 21 2008 HAND HELD PRODUCTS, INC Roaming encoded information reading terminal
8615487, Jan 23 2004 HAND HELD PRODUCTS, INC System and method to store and retrieve identifier associated information content
8621123, Oct 06 2011 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC , DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Device management using virtual interfaces
8622303, Jan 09 2003 Hand Held Products, Inc. Decoding utilizing image data
8628013, Dec 13 2011 Honeywell International Inc. Apparatus comprising image sensor array and illumination control
8628015, Oct 31 2008 HAND HELD PRODUCTS, INC Indicia reading terminal including frame quality evaluation processing
8628016, Jun 17 2011 Hand Held Products, Inc. Terminal operative for storing frame of image data
8629926, Nov 04 2011 HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Imaging apparatus comprising image sensor array having shared global shutter circuitry
8630491, May 03 2007 HAND HELD PRODUCTS, INC System and method to manipulate an image
8635309, Aug 09 2007 HAND HELD PRODUCTS, INC Methods and apparatus to change a feature set on data collection devices
8636200, Feb 08 2011 Metrologic Instruments, Inc. MMS text messaging for hand held indicia reader
8636212, Aug 24 2011 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Decodable indicia reading terminal with indicia analysis functionality
8636215, Jun 27 2011 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
8636224, Oct 05 2004 Hand Held Products, Inc. System and method to automatically discriminate between different data types
8638806, May 25 2007 HAND HELD PRODUCTS, INC Wireless mesh point portable data terminal
8640958, Jan 21 2010 HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Indicia reading terminal including optical filter
8640960, Jun 27 2011 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING AND MOBILITY Optical filter for image and barcode scanning
8643717, Mar 04 2009 HAND HELD PRODUCTS, INC System and method for measuring irregular objects with a single camera
8646692, Sep 30 2011 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Devices and methods employing dual target auto exposure
8646694, Dec 16 2008 Hand Held Products, Inc. Indicia reading terminal including frame processing
8657200, Jun 20 2011 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
8659397, Jul 22 2010 VOCOLLECT, Inc. Method and system for correctly identifying specific RFID tags
8668149, Sep 16 2009 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Bar code reader terminal and methods for operating the same having misread detection apparatus
8678285, Sep 20 2011 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
8678286, Jan 31 2011 HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Method and apparatus for reading optical indicia using a plurality of data sources
8682077, Nov 28 2000 Hand Held Products, Inc. Method for omnidirectional processing of 2D images including recognizable characters
8687282, Dec 15 2006 Hand Held Products, Inc. Focus module and components with actuator
8692927, Jan 19 2011 Hand Held Products, Inc. Imaging terminal having focus control
8695880, Dec 22 2011 Honeywell International, Inc. Imaging devices and methods for inhibiting or removing captured aiming pattern
8698949, Jan 08 2010 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Terminal having plurality of operating modes
8702000, Jan 22 2001 Hand Held Products, Inc. Reading apparatus having partial frame operating mode
8717494, Aug 11 2010 Hand Held Products, Inc. Optical reading device with improved gasket
8720783, Nov 05 2004 Hand Held Products, Inc. Device and system for processing image data representing bar codes
8723804, Feb 11 2005 HAND HELD PRODUCTS, INC Transaction terminal and adaptor therefor
8723904, Sep 25 2009 Intermec IP CORP Mobile printer with optional battery accessory
8727223, Jun 09 2006 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Indicia reading apparatus having image sensor array
8740082, Feb 21 2012 Metrologic Instruments, Inc. Laser scanning bar code symbol reading system having intelligent scan sweep angle adjustment capabilities over the working range of the system for optimized bar code symbol reading performance
8740085, Feb 10 2012 HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY System having imaging assembly for use in output of image data
8746563, Jun 10 2012 Metrologic Instruments, Inc. Laser scanning module with rotatably adjustable laser scanning assembly
8750445, May 13 2005 EMS Technologies, Inc. Method and system for communicating information in a digital signal
8752766, May 07 2012 Metrologic Instruments, Inc. Indicia reading system employing digital gain control
8756059, Feb 04 2005 VOCOLLECT, Inc. Method and system for considering information about an expected response when performing speech recognition
8757495, Sep 03 2010 HAND HELD PRODUCTS, INC Encoded information reading terminal with multi-band antenna
8760563, Oct 19 2010 Hand Held Products, Inc. Autofocusing optical imaging device
8763909, Jan 04 2011 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Terminal comprising mount for supporting a mechanical component
8777108, Mar 23 2012 Honeywell International, Inc.; HONEYWELL INTERNATIONAL INC D B A HONEYWELL SCANNING & MOBILITY Cell phone reading mode using image timer
8777109, Oct 04 2012 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Customer facing imaging systems and methods for obtaining images
8779898, Aug 17 2011 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
8781520, Jan 26 2010 Hand Held Products, Inc. Mobile device having hybrid keypad
8783573, Dec 02 2008 Hand Held Products, Inc. Indicia reading terminal having plurality of optical assemblies
8789757, Feb 02 2011 Metrologic Instruments, Inc. POS-based code symbol reading system with integrated scale base and system housing having an improved produce weight capturing surface design
8789758, May 12 2003 Hand Held Products, Inc. Picture taking reading apparatus
8789759, May 18 2012 Metrologic Instruments, Inc. Laser scanning code symbol reading system employing multi-channel scan data signal processing with synchronized digital gain control (SDGC) for full range scanning
8794520, Sep 30 2008 HAND HELD PRODUCTS, INC Method and apparatus for operating indicia reading terminal including parameter determination
8794522, May 15 2001 HAND HELD PRODUCTS, INC Image capture apparatus and method
8794525, Sep 28 2011 Metrologic Instruments, Inc Method of and system for detecting produce weighing interferences in a POS-based checkout/scale system
8794526, Jun 04 2007 HAND HELD PRODUCTS, INC Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
8798367, Jan 31 2011 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Optical imager and method for correlating a medication package with a patient
8807431, Nov 14 2007 HAND HELD PRODUCTS, INC Encoded information reading terminal with wireless path selecton capability
8807432, Sep 26 2011 Metrologic Instruments, Inc. Apparatus for displaying bar codes from light emitting display surfaces
8817242, Jun 17 2008 GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH Sensor device for the spectrally resolved capture of valuable documents and a corresponding method
8820630, Dec 06 2011 Honeywell International, Inc. Hand held bar code readers or mobile computers with cloud computing services
8822848, Sep 02 2011 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Bioptical point of sale (POS) checkout system employing a retractable weigh platter support subsystem
8824692, Apr 20 2011 VOCOLLECT, Inc. Self calibrating multi-element dipole microphone
8824696, Jun 14 2011 VOCOLLECT, Inc. Headset signal multiplexing system and method
8842849, Feb 06 2006 VOCOLLECT, Inc. Headset terminal with speech functionality
8844822, Nov 13 2003 Metrologic Instruments, Inc. Image capture and processing system supporting a multi-tier modular software architecture
8844823, Sep 15 2011 Metrologic Instruments, Inc. Laser scanning system employing an optics module capable of forming a laser beam having an extended depth of focus (DOF) over the laser scanning field
8849019, Nov 16 2010 Hand Held Products, Inc. Method and system operative to process color image data
8851383, Jan 05 2006 Hand Held Products, Inc. Data collection system having reconfigurable data collection terminal
8854633, Jun 29 2012 Intermec IP CORP Volume dimensioning system and method employing time-of-flight camera
8866963, Jan 08 2010 Hand Held Products, Inc. Terminal having plurality of operating modes
8868421, Feb 04 2005 VOCOLLECT, Inc. Methods and systems for identifying errors in a speech recognition system
8868519, May 27 2011 VOCOLLECT, Inc.; VOCOLLECT, INC System and method for generating and updating location check digits
8868802, Oct 14 2009 Hand Held Products, Inc. Method of programming the default cable interface software in an indicia reading device
8868803, Oct 06 2011 Honeywell Internation Inc. Managing data communication between a peripheral device and a host
8870074, Sep 11 2013 HAND HELD PRODUCTS, INC Handheld indicia reader having locking endcap
8879639, Jan 31 2011 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Adaptive video capture decode system
8880426, Jan 30 2012 Honeywell International, Inc.; HONEYWELL INTERNATIONAL, INC D B A HONEYWELL SCANNING & MOBILITY Methods and systems employing time and/or location data for use in transactions
8881983, Dec 13 2011 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC D B A HONEYWELL SCANNING AND MOBILITY Optical readers and methods employing polarization sensing of light from decodable indicia
8881987, Aug 26 2005 Hand Held Products, Inc. Data collection device having dynamic access to multiple wireless networks
8903172, Nov 17 2011 Honeywell International, Inc. Imaging terminal operative for decoding
8908995, Jan 12 2009 Intermec Scanner Technology Center; Intermec IP CORP Semi-automatic dimensioning with imager on a portable device
8910870, Aug 06 2010 HAND HELD PRODUCTS, INC System and method for document processing
8910875, Jun 20 2011 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
8914290, May 20 2011 VOCOLLECT, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
8914788, Jul 01 2009 HAND HELD PRODUCTS, INC Universal connectivity for non-universal devices
8915439, Feb 06 2012 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Laser scanning modules embodying silicone scan element with torsional hinges
8915444, Mar 13 2007 Hand Held Products, Inc. Imaging module having lead frame supported light source or sources
8916789, Sep 14 2012 Intermec IP Corp. Access door with integrated switch actuator
8918250, May 24 2013 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC System and method for display of information using a vehicle-mount computer
8918564, Oct 06 2011 Honeywell International Inc. Device management using virtual interfaces
8925818, Aug 16 2007 Hand Held Products, Inc. Data collection system having EIR terminal interface node
8939374, Dec 30 2010 Hand Held Products, Inc. Terminal having illumination and exposure control
8942480, Jan 31 2011 Metrologic Instruments, Inc. Optical imager and method for correlating a medication package with a patient
8944313, Jun 29 2012 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING & MOBILITY Computer configured to display multimedia content
8944327, Nov 09 2010 HAND HELD PRODUCTS, INC Using a user's application to configure user scanner
8944332, Aug 04 2006 Intermec IP CORP Testing automatic data collection devices, such as barcode, RFID and/or magnetic stripe readers
8950678, Nov 17 2010 Hand Held Products, Inc. Barcode reader with edge detection enhancement
8967468, Jan 11 2002 Hand Held Products, Inc. Terminal including imaging assembly
8971346, Apr 30 2007 HAND HELD PRODUCTS, INC System and method for reliable store-and-forward data handling by encoded information reading terminals
8976030, Apr 24 2012 Metrologic Instruments, Inc. Point of sale (POS) based checkout system supporting a customer-transparent two-factor authentication process during product checkout operations
8976368, Sep 14 2012 Intermec IP CORP Optical grid enhancement for improved motor location
8978981, Jun 27 2012 Honeywell International Inc.; HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING AND MOBILITY Imaging apparatus having imaging lens
8978983, Jun 01 2012 Honeywell International, Inc. Indicia reading apparatus having sequential row exposure termination times
8978984, Feb 28 2013 HAND HELD PRODUCTS, INC Indicia reading terminals and methods for decoding decodable indicia employing light field imaging
8985456, Feb 03 2011 Metrologic Instruments, Inc. Auto-exposure method using continuous video frames under controlled illumination
8985457, Jul 03 2003 Hand Held Products, Inc. Reprogramming system and method for devices including programming symbol
8985459, Jun 30 2011 Metrologic Instruments, Inc. Decodable indicia reading terminal with combined illumination
8985461, Jun 28 2013 HAND HELD PRODUCTS, INC Mobile device having an improved user interface for reading code symbols
8988578, Feb 03 2012 Honeywell International Inc. Mobile computing device with improved image preview functionality
8988590, Mar 28 2011 Intermec IP Corp. Two-dimensional imager with solid-state auto-focus
8991704, Dec 14 2011 Intermec IP Corp. Snap-on module for selectively installing receiving element(s) to a mobile device
8996194, Jan 03 2011 EMS TECHNOLOGIES, INC Vehicle mount computer with configurable ignition switch behavior
8996384, Oct 30 2009 VOCOLLECT, INC Transforming components of a web page to voice prompts
8998091, Jun 15 2011 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
9002641, Oct 05 2012 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Navigation system configured to integrate motion sensing device inputs
9007368, May 07 2012 Intermec IP CORP Dimensioning system calibration systems and methods
9010641, Dec 07 2010 Hand Held Products, Inc. Multiple platform support system and method
9015513, Nov 03 2011 VOCOLLECT, Inc. Receiving application specific individual battery adjusted battery use profile data upon loading of work application for managing remaining power of a mobile device
9016576, May 21 2012 Metrologic Instruments, Inc. Laser scanning code symbol reading system providing improved control over the length and intensity characteristics of a laser scan line projected therefrom using laser source blanking control
9022288, Sep 05 2012 Metrologic Instruments, Inc. Symbol reading system having predictive diagnostics
9030964, Jan 13 2009 Metrologic Instruments, Inc. Wireless network device
9033240, Jan 31 2011 Honeywell Internation Inc. Method and apparatus for reading optical indicia using a plurality of data sources
9033242, Sep 21 2012 Intermec IP Corp.; Intermec IP CORP Multiple focusable fields of view, such as a universal bar code symbol scanner
9036054, Oct 19 2010 Hand Held Products, Inc. Autofocusing optical imaging device
9037344, May 24 2013 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC System and method for display of information using a vehicle-mount computer
9038911, May 18 2012 Metrologic Instruments, Inc. Laser scanning code symbol reading system
9038915, Jan 31 2011 Metrologic Instruments, Inc.; Metrologic Instruments, Inc Pre-paid usage system for encoded information reading terminals
9047098, Oct 14 2009 Hand Held Products, Inc. Method of programming the default cable interface software in an indicia reading device
9047359, Feb 01 2007 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Apparatus and methods for monitoring one or more portable data terminals
9047420, Oct 06 2011 Honeywell International Inc. Managing data communication between a peripheral device and a host
9047525, Jan 22 2001 Hand Held Products, Inc. Imaging apparatus having imaging assembly
9047531, May 21 2010 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Interactive user interface for capturing a document in an image signal
9049640, Nov 14 2007 Hand Held Products, Inc. Encoded information reading terminal with wireless path selection capability
9053055, Oct 06 2011 Honeywell International Device management using virtual interfaces cross-reference to related applications
9053378, Dec 12 2013 HAND HELD PRODUCTS, INC Laser barcode scanner
9053380, Jun 22 2012 Honeywell International, Inc. Removeable scanning module for mobile communication terminal
9057641, Sep 28 2011 Metrologic Instruments, Inc. Method of and system for detecting object weighing interferences
9058526, Feb 11 2010 Hand Held Products, Inc. Data collection module and system
9064165, Mar 28 2012 Metrologic Instruments, Inc. Laser scanning system using laser beam sources for producing long and short wavelengths in combination with beam-waist extending optics to extend the depth of field thereof while resolving high resolution bar code symbols having minimum code element widths
9064167, May 07 2012 Metrologic Instruments, Inc. Indicia reading system employing digital gain control
9064168, Dec 14 2012 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Selective output of decoded message data
9064254, May 17 2012 HONEYWELL INTERNATIONAL INC DOING BUSINESS AS D B A HONEYWELL SCANNING AND MOBILITY Cloud-based system for reading of decodable indicia
9066032, Nov 04 2011 Honeywell International Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
9070032, Apr 10 2013 HAND HELD PRODUCTS, INC Method of programming a symbol reading system
9082023, Sep 05 2013 Hand Held Products, Inc. Method for operating a laser scanner
9224022, Apr 29 2014 Hand Held Products, Inc. Autofocus lens system for indicia readers
9224027, Apr 01 2014 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
9230140, Dec 30 2014 Hand Held Products, Inc. System and method for detecting barcode printing errors
9250712, Mar 20 2015 Hand Held Products, Inc. Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display
9258033, Apr 21 2014 Hand Held Products, Inc. Docking system and method using near field communication
9262633, Oct 31 2014 Hand Held Products, Inc. Barcode reader with security features
9310609, Jul 25 2014 Hand Held Products, Inc. Axially reinforced flexible scan element
9342724, Sep 10 2014 Honeywell International, Inc.; Honeywell International Inc Variable depth of field barcode scanner
9375945, Dec 23 2014 Hand Held Products, Inc. Media gate for thermal transfer printers
9390596, Feb 23 2015 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
9412242, Apr 04 2014 HAND HELD PRODUCTS, INC Multifunction point of sale system
9443123, Jul 18 2014 Hand Held Products, Inc. System and method for indicia verification
9443222, Oct 14 2014 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC Identifying inventory items in a storage facility
9478113, Jun 27 2014 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
20030098350,
20070063048,
20090134221,
20100177076,
20100177080,
20100177707,
20100177749,
20100276493,
20110169999,
20110202554,
20120111946,
20120168512,
20120193423,
20120203647,
20120223141,
20120281081,
20120312877,
20130043312,
20130057753,
20130075168,
20130175341,
20130175343,
20130257744,
20130257759,
20130270346,
20130287258,
20130292475,
20130292477,
20130293539,
20130293540,
20130306728,
20130306731,
20130307964,
20130308625,
20130313324,
20130313325,
20130342717,
20140001267,
20140002828,
20140008439,
20140025584,
20140034734,
20140036848,
20140039693,
20140042814,
20140049120,
20140049635,
20140061306,
20140063289,
20140066136,
20140067692,
20140070005,
20140071840,
20140074746,
20140076974,
20140078341,
20140078342,
20140078345,
20140098792,
20140100774,
20140100813,
20140103115,
20140104413,
20140104414,
20140104416,
20140104451,
20140106594,
20140106725,
20140108010,
20140108402,
20140108682,
20140110485,
20140114530,
20140124577,
20140124579,
20140125842,
20140125853,
20140125999,
20140129378,
20140131438,
20140131441,
20140131443,
20140131444,
20140131445,
20140131448,
20140133379,
20140136208,
20140140585,
20140151453,
20140152882,
20140158770,
20140159869,
20140166755,
20140166757,
20140166759,
20140168787,
20140175165,
20140175172,
20140191644,
20140191913,
20140197238,
20140197239,
20140197304,
20140203087,
20140204268,
20140214631,
20140217166,
20140217180,
20140231500,
20140232930,
20140247315,
20140263493,
20140263645,
20140270196,
20140270229,
20140278387,
20140282210,
20140284384,
20140288933,
20140297058,
20140299665,
20140312121,
20140319220,
20140319221,
20140326787,
20140332590,
20140344943,
20140346233,
20140351317,
20140353373,
20140361073,
20140361082,
20140362184,
20140363015,
20140369511,
20140374483,
20140374485,
20150001301,
20150001304,
20150003673,
20150009338,
20150009610,
20150014416,
20150021397,
20150028102,
20150028103,
20150028104,
20150029002,
20150032709,
20150039309,
20150040378,
20150048168,
20150049347,
20150051992,
20150053766,
20150053768,
20150053769,
20150062366,
20150063215,
20150063676,
20150069130,
20150071819,
20150083800,
20150086114,
20150088522,
20150096872,
20150099557,
20150100196,
20150102109,
20150115035,
20150127791,
20150128116,
20150129659,
20150133047,
20150134470,
20150136851,
20150136854,
20150142492,
20150144692,
20150144698,
20150144701,
20150149946,
20150161429,
20150169925,
20150169929,
20150186703,
20150193644,
20150193645,
20150199957,
20150204671,
20150210199,
20150220753,
20150237270,
20150254485,
20150327012,
20160003675,
20160014251,
20160040982,
20160042241,
20160057230,
20160109219,
20160109220,
20160109224,
20160112631,
20160112643,
20160124516,
20160125217,
20160125342,
20160125873,
20160133253,
20160171720,
20160178479,
20160180678,
20160189087,
20160227912,
20160232891,
20160291479,
20160292477,
20160294779,
20160306769,
20160314276,
20160314294,
20170193727,
D702237, Jan 11 2013 Hand Held Products, Inc. Imaging terminal
D716285, Jan 08 2013 HAND HELD PRODUCTS, INC Electronic device enclosure
D723560, Jul 03 2013 Hand Held Products, Inc. Scanner
D730357, Jul 03 2013 Hand Held Products, Inc. Scanner
D730901, Jun 24 2014 Hand Held Products, Inc.; HAND HELD PRODUCTS, INC In-counter barcode scanner
D730902, Nov 05 2012 HAND HELD PRODUCTS, INC D B A HONEYWELL SCANNING & MOBILITY Electronic device
D733112, Jan 08 2013 Hand Held Products, Inc. Electronic device enclosure
D734339, Dec 05 2013 Hand Held Products, Inc. Indicia scanner
D734751, Jan 11 2013 Hand Held Products, Inc. Imaging terminal
D747321, Jul 02 2013 HAND HELD PRODUCTS, INC Electronic device enclosure
D757009, Jun 24 2014 Hand Held Products, Inc. In-counter barcode scanner
D760719, Oct 20 2014 HAND HELD PRODUCTS, INC Scanner
D762604, Jun 19 2013 HAND HELD PRODUCTS, INC Electronic device
D762647, Nov 05 2012 Hand Held Products, Inc. Electronic device
D766244, Jul 03 2013 Hand Held Products, Inc. Scanner
EP2246802,
EP2789999,
WO2011138606,
WO2013163789,
WO2013173985,
WO2014019130,
WO2014110495,
WO9415184,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 06 2015GILLET, ALAINHAND HELD PRODUCTS, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0374910880 pdf
Jan 14 2016Hand Held Products, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 05 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Apr 17 20214 years fee payment window open
Oct 17 20216 months grace period start (w surcharge)
Apr 17 2022patent expiry (for year 4)
Apr 17 20242 years to revive unintentionally abandoned end. (for year 4)
Apr 17 20258 years fee payment window open
Oct 17 20256 months grace period start (w surcharge)
Apr 17 2026patent expiry (for year 8)
Apr 17 20282 years to revive unintentionally abandoned end. (for year 8)
Apr 17 202912 years fee payment window open
Oct 17 20296 months grace period start (w surcharge)
Apr 17 2030patent expiry (for year 12)
Apr 17 20322 years to revive unintentionally abandoned end. (for year 12)