An annular blowout preventer includes a body, a piston disposed within the body, and a packing unit disposed adjacent the piston. The packing unit includes an packer body surrounding an opening. The packer body is fabricated from a first material. The packing unit further includes a second material disposed between the packer body and the opening, the second material being less rigid than the first material. The packer body and the second material constrict the opening when the annular blowout preventer is actuated. The second material creates a seal around a tool disposed within the opening. The second material fills in one or more crevices or recesses on an outer perimeter of the tool.
|
17. A method of sealing an annulus of a well, comprising:
actuating an annular blowout preventer, wherein the annular blowout preventer comprises a packing unit and an internal chamber connected to an annulus, wherein the internal chamber comprises a sealing compound in a fluid state;
constricting the packing unit such that the packing unit tightens around an internal pipe;
expelling at least a portion of the fluid sealing compound from the internal chamber into the annulus;
hardening the sealing compound such that a hardened sealing compound and the packing unit form a seal within the annulus.
10. A method of sealing a well, comprising:
actuating an annular blowout preventer, wherein the blowout preventer comprises a piston and a packing unit, the packing unit comprising a packer body having an opening formed therethrough;
urging the piston against the packing unit, wherein the packing unit comprises a first material which is in a solid form and a second material which is in a fluid form when within the packing unit;
compressing the packing unit and thereby constricting the opening with the first material; and
sealing gaps between a tool and the first material with the second material when the tool is disposed through the opening.
1. An annular blowout preventer, comprising:
a body;
a piston disposed within the body; and
a packing unit disposed adjacent the piston, the packing unit comprising:
a packer body surrounding an opening;
an internal chamber formed within the packer body, the internal chamber filled with a fluid sealing compound;
a channel in fluid communication with the chamber; and
a separation between the channel and the opening,
wherein, upon actuation of the annular blowout preventer, at least a portion of the fluid sealing compound is configured to be expelled through the separation in fluid form and into the opening when the packing unit is compressed; and
wherein the packing unit is compressed when the piston is urged against the packing unit during actuation of the annular blowout preventer.
2. The annular blowout preventer of
3. The annular blowout preventer of
5. The annular blowout preventer of
6. The annular blowout preventer of
7. The annular blowout preventer of
8. The annular blowout preventer of
9. The annular blowout preventer of
11. The method of
12. The method of
expelling the second material from the internal chamber and into the opening when the packing unit is compressed; and
flowing the second material around the tool and filling in any gaps between the tool and the first material.
13. The method of
expelling a third material from a second internal chamber and into the opening when the packing unit is compressed; and
mixing the third material and the second material to form a sealing agent, the sealing agent filling in any gaps between the tool and the first material.
14. The method of
15. The method of
16. The method of
18. The method of sealing an annulus of a well of
19. The method of sealing an annulus of a well of
20. The method of sealing an annulus of a well of
|
The present invention relates generally to annular blowout preventers. Specifically, the invention relates to sealing wells with irregular shaped pipes/pipe assemblies using an annular blowout preventer having a packing unit with primary and secondary sealing means.
During completions and production stages of a well, various tools are installed in the well. For example, electric submersible pumps (ESPs) are an artificial-lift method used which involve a sealed motor and pump placed deep in a well and hung on production tubing. During the installation of the ESP system, thousands of feet of tubing, hydraulic control lines, power cables, and electric control lines are installed in the well through a BOP stack. These lines and cables are typically bundled and clamped together onto the surface of the production tubing.
If a well control event were to occur while these lines and cables are on the production tubing traversing the BOP stack, a blind shear ram (BSR) is typically the only preventer available to seal the well. However, when the BSR is actuated, the production tubing, including the bundle of control lines and cables, are sheared and drop into the well, causing further damage and loss.
One way of sealing a well without shearing the production tubing is the use of ram packers and annular BOPs. Ram packers and annular BOPs are a preferable well control device because they do not cause damage to the bundle and do not sever or drop the ESP assembly into the well. Rather, ram packers and annular BOPs constrict around the production tubing when actuated. However, they are ineffective when used with production tubing having an irregular outer profile, such as when lines and cables are disposed on the production tubing, because the packers cannot fill the crevices and gaps in the irregular profile.
According to one aspect of the present disclosure, an annular blowout preventer includes a body, a piston disposed within the body, and a packing unit disposed adjacent the piston. The packing unit includes an packer body surrounding an opening and an internal chamber formed within the packer body. The internal chamber is filled with a sealing compound. The packing unit further includes a channel in fluid communication with the chamber and a separation between the channel and the opening. At least a portion of the fluid is expelled through the separation and into the opening when the packing unit is compressed. The packing unit is compressed when the piston is urged against the packing unit during actuation of the annular blowout preventer.
According to another aspect of the present disclosure, an annular blowout preventer includes a body, a piston disposed within the body, and a packing unit disposed adjacent the piston. The packing unit includes an packer body surrounding an opening. The packer body is fabricated from a first material. The packing unit further includes a second material disposed between the packer body and the opening, the second material being less rigid than the first material. The packer body and the second material constrict the opening when the annular blowout preventer is actuated. The second material creates a seal around any tool disposed within the opening. The second material fills in one or more crevices or recesses on an outer perimeter of the tool.
According to another aspect of the present disclosure, a method of sealing a well includes actuating an annular blowout preventer. The blowout preventer includes a piston and a packing unit. The packing unit includes an packer body having an opening formed therethrough. The method also includes urging the piston against the packing unit. The packing unit comprises a first material and a second material, the second material having a rigidity lesser than that of the first material. The method further includes compressing the packing unit and thereby constricting the opening. The method also includes sealing any gaps between a tool and the packing unit with the second material when a tool is disposed through the opening.
The drawings illustrate only example embodiments of the present disclosure, and are therefore not to be considered limiting of its scope, as the disclosures herein may admit to other equally effective embodiments. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Additionally, certain dimensions or positions may be exaggerated to help visually convey such principles. In the drawings, reference numerals designate like or corresponding, but not necessarily identical, elements. In one or more embodiments, one or more of the features shown in each of the figures may be omitted, added, repeated, and/or substituted. Accordingly, embodiments of the present disclosure should not be limited to the specific arrangements of components shown in these figures.
The present invention relates to a packing unit for annular blowout preventers (BOP) used for well control during completions and workover operations. The packing unit disclosed herein allows for a secondary fluid sealing around irregular shaped pipes and tools, such as ESP bundles, which increases the integrity and effectiveness of the annular blowout preventer.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. One of ordinary skill in the art will appreciate that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention may be better understood by reading the following description of non-limiting embodiments with reference to the attached drawing wherein like parts of each of the figures are identified by the same reference characters. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, for example, a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, for instance, a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
In certain example embodiments, the fluid sealing compound forms around the tool after exiting the packing unit 106. The fluid sealing compound fills in any crevices or recesses around the tool, forming a solid seal around the tool 402. In certain example embodiments, the fluid sealing compound fills in any gaps between the packing unit and the tool 402. In certain example embodiments, the fluid sealing compound hardens around the tool. In an example application, as illustrated in
In certain example embodiments, the internal chamber 304 is formed as a continuous ring disposed within the packer body 302 of the packing unit 106 and surrounds the opening 308. In certain such example embodiments, the internal chamber 304 is coupled to the opening 308 via a plurality of channels disposed at various point around the internal chamber 304. In certain example embodiments, the internal chamber 304 is forms as a pocket disposed within the packer body 302. In certain example embodiments, the packing unit 106 includes a plurality of separate internal chambers 304. In certain such example embodiments, the plurality of separate internal chambers 304 each are filled with the same fluid sealing compound and are each coupled to the opening 308 by a separate channel 306.
In certain other example embodiments, a first internal chamber is filled with a first fluid sealing compound and a second internal chamber is filled with a second fluid sealing compound. In certain example embodiments, the first and/or second sealing compound are in pure or viscous form or in solution. In certain example embodiments, when the annular BOP is actuated, the first and second sealing compounds are both expelled from the packing unit 106 and mix. Mixing of the first and second sealing compounds forms a mixture which hardens and forms a seal. The internal chamber 304 can have any shape or be any type of void within the packer body 302 of the packing unit 106 which allows the fluid sealing compound to be retained therewithin during a neutral state and which allows the fluid sealing compound to be expelled into the opening 308 from the packing unit 106 when the annular BOP 100 is actuated.
In certain example embodiments, the fluid sealing compound can be any type of suitable material which deforms under applied shear stress and can flow or be expelled from the internal chamber and fill any crevices or gaps between the tool 402 and the packing unit 106. The fluid sealing compound remains between the tool 402 and the packing unit 106. Non-limiting examples of the fluid sealing compound include: heavy grease, epoxy resin materials, polyurethane gels or caulk material, crosslinked polymer solution, and other highly-viscous solutions with the capability to be extruded into the annular space with pressure. The fluid sealing compounds may also be in various forms prior to entrance to the wellbore to form an annular seal, including pure liquid form, viscosified liquid form, low-viscosity solution, and pressurized form (to render a foam upon release into the wellbore). In certain example embodiments, the fluid sealing compound forms a permanent seal around the tool 402. In certain example embodiments, the fluid sealing compound forms a semi-permanent seal around the tool 402, which can be easily removed. In certain example embodiments, the packing unit 106 includes a port (not shown) coupled to the internal chamber 304. The port allows additional fluid sealing compound to be injected into the internal chamber 304. In certain such example embodiments, this allows the internal chambers 304 to be refilled with sealing compound for multiple uses. In certain example embodiments, the packing unit 106 includes at least two different reactive materials which mix to form the sealing agent, such as resin or foam.
The present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention. Furthermore, no limitations are intended to the details of construction or design herein shown. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention.
Fuller, Michael James, Witt, Dana Earl, Averill, William Stephen
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5279365, | Jul 22 1991 | Precision Energy Services, Inc | Rotary blowout preventer adaptable for use with both kelly and overhead drive mechanisms |
8176933, | Jul 28 2006 | Hydril USA Distribution LLC | Annular BOP packing unit |
8602688, | Dec 03 2008 | Ziebel AS | Method to stop wellbore fluid leakage from a spoolable wellbore intervention rod |
9441443, | Jan 27 2015 | CARNEGIE LEARNING, INC | Compound blowout preventer seal and method of using same |
20080023865, | |||
20090229424, | |||
20130168578, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 13 2015 | Chevron U.S.A. Inc. | (assignment on the face of the patent) | / | |||
Jan 13 2015 | AVERILL, WILLIAM STEPHEN | CHEVRON U S A INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036136 | /0004 | |
Jan 13 2015 | FULLER, MICHAEL JAMES | CHEVRON U S A INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036136 | /0004 | |
Jan 13 2015 | WITT, DANA EARL | CHEVRON U S A INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036136 | /0004 |
Date | Maintenance Fee Events |
Oct 20 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 01 2021 | 4 years fee payment window open |
Nov 01 2021 | 6 months grace period start (w surcharge) |
May 01 2022 | patent expiry (for year 4) |
May 01 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 01 2025 | 8 years fee payment window open |
Nov 01 2025 | 6 months grace period start (w surcharge) |
May 01 2026 | patent expiry (for year 8) |
May 01 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 01 2029 | 12 years fee payment window open |
Nov 01 2029 | 6 months grace period start (w surcharge) |
May 01 2030 | patent expiry (for year 12) |
May 01 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |