A turbocharger assembly can include a shaft having a rotational axis where the shaft includes a turbine wheel that includes a hub portion; a bearing that includes an outer race, an inner race operatively coupled to the shaft, and rolling elements disposed between the inner race and the outer race where an inner radius of the outer race and an outer radius of the inner race define a radial gap; and a lubricant slinger disposed axially between the inner race and the hub portion of the turbine wheel where the lubricant slinger includes a surface that faces and slopes away from the radial gap.
|
1. A turbocharger assembly comprising:
a center housing that comprises a through bore;
a shaft having a rotational axis wherein the shaft comprises a turbine wheel that comprises a hub portion;
a bearing that comprises an outer race, an inner race operatively coupled to the shaft, and rolling elements disposed between the inner race and the outer race wherein an inner radius of the outer race and an outer radius of the inner race define a radial gap and wherein a radial clearance for a lubricant film exists between a surface of the through bore and an outer surface of the outer race; and
a lubricant slinger disposed axially between the inner race and the hub portion of the turbine wheel wherein the lubricant slinger comprises a surface that faces and slopes away from the radial gap, wherein the lubricant slinger comprises a maximum radius that is less than a radius of the surface of the through bore and wherein the lubricant slinger comprises an annular groove that comprises a minimum radius that is greater than the inner radius of the outer race.
2. The turbocharger assembly of
3. The turbocharger assembly of
4. The turbocharger assembly of
5. The turbocharger assembly of
6. The turbocharger assembly of
7. The turbocharger assembly of
8. The turbocharger assembly of
9. The turbocharger assembly of
10. The assembly of
11. The turbocharger assembly of
|
This application claims priority to and the benefit of a U.S. Provisional Application having Ser. No. 62/002,815, filed 24 May 2014, which is incorporated by reference herein.
Subject matter disclosed herein relates generally to turbomachinery for internal combustion engines and, in particular, to turbochargers.
Turbochargers are frequently utilized to increase output of an internal combustion engine. A turbocharger can include a shaft rotatably supported by a bearing or bearings. As a turbocharger shaft may be configured to rotate at high rotational speeds, lubricant may be provided to reduce friction via lubricant films and to transfer heat energy. As an example, lubricant may flow in a turbocharger responsive to one or more of pressure differentials, interactions with moving components and gravity. Various examples of techniques, technologies, etc. described herein may be beneficial to, for example, turbocharger performance, internal combustion engine performance, after-treatment performance, etc.
A turbocharger assembly can include a shaft having a rotational axis where the shaft includes a turbine wheel that includes a hub portion; a bearing that includes an outer race, an inner race operatively coupled to the shaft, and rolling elements disposed between the inner race and the outer race where an inner radius of the outer race and an outer radius of the inner race define a radial gap; and a lubricant slinger disposed axially between the inner race and the hub portion of the turbine wheel where the lubricant slinger includes a surface that faces and slopes away from the radial gap.
A more complete understanding of the various methods, devices, assemblies, systems, arrangements, etc., described herein, and equivalents thereof, may be had by reference to the following detailed description when taken in conjunction with examples shown in the accompanying drawings where:
Turbochargers are frequently utilized to increase output of an internal combustion engine. Referring to
As shown in
The turbocharger 120 can act to extract energy from the exhaust and to provide energy to intake air, which may be combined with fuel to form combustion gas. As shown in
In the example of
In the example of
In the example of
In
As an example, a properly installed turbocharger, whether during operation or at rest, should experience little to no lubricant leakage. As to types of leakage that may occur, consider leakage from a compressor seal or a turbine side seal. As an example, excessively high lubricant pressure to a center housing of a turbocharger may increase risk of leakage. As an example, inadequate drainage may increase risk of leakage, for example, where a drain is too small, does not go continuously downhill, or a location of a drain opening that is inside an oil pan is located in a section that has oil slung from an engine crank, which may cause oil to back up in a drain conduit (e.g., drain tube). As an example, improper venting of crankcase pressure may increase risk of leakage. As an example, excessive crankcase pressure may increase risk of leakage.
As an example, excessive pressure across a compressor housing inlet may increase risk of leakage, for example, consider excessive pressure caused by one or more of an air filter being too small, charge air tubing too small or with too many bends between the air filter and compressor housing, and a clogged air filter.
As an example, risk of leakage as to a turbine seal may be increased due to one or more of a collapsed turbine piston ring (e.g., due to excessive exhaust gas temperatures (EGTs), a turbocharger being tilted back on its axis past a recommended angle (e.g., consider a recommended angle of about 15 degrees with respect to horizontal, which may be considered an offset of about 15 degrees with respect to gravity).
As an example, a turbocharger may be oriented with respect to gravity. For example, a turbocharger may include a center housing with a top side, a bottom side and a through bore that may be represented as a cylinder with a central axis (e.g., a rotational axis for a shaft disposed in the through bore and supported therein by one or more bearings). In such an example, the central axis of the through bore may be oriented horizontally with the top side of the center housing facing upward and the bottom side of the center housing facing downward. Where lubricant is provided to the center housing, the lubricant may flow under the influence of gravity in a downward direction. For example, the bottom side of the center housing may include a lubricant drain through which lubricant is intended to exit the center housing. Where the central axis of the through bore of the center housing is disposed at an angle with respect to gravity (e.g., not horizontal), gravity may cause lubricant to flow less rapidly to the lubricant drain of the bottom side of the center housing or gravity may cause lubricant to pool, for example, in a region that does not provide surfaces that slope downward to the lubricant drain due to orientation with respect to gravity. For example, a surface that has a downward slope toward a lubricant drain may, upon tilting of a center housing, become oriented such that lubricant will not flow along the slope toward the lubricant drain under the influence of gravity.
As an example, an engine, engine compartment, engine components, etc. may be arranged such that turbocharger orientations are limited. As an example, a turbocharger may find use in applications where equipment may experience inclination angles that may be beyond a recommended tilt angle.
As an example, consider a vehicle where components are arranged in an engine compartment that prohibits mounting of a turbocharger horizontally with a tilt angle of about 0 degrees. More particularly, consider the turbocharger being “optimally” fit into the engine compartment at an angle of about 45 degrees from horizontal, with the turbine end down. In such an example, lubricant may leak under the influence of gravity from a center housing to a turbine housing. During operation, heat energy may then cause the lubricant to generate smoke (e.g., as it is heated by exhaust).
As an example, a turbocharger may include one or more features that can reduce turbine side leakage from a center housing to a turbine housing. For example, consider a slinger and seal insert assembly that can be positioned on a turbine shaft and combined with an interior seal bore and center housing features to reduce risk of lubricant entering a turbine seal cavity during operation. As another example, consider a center housing drain that has a region extending therefrom that is sloped, for example, to match a desired mounting angle of a turbocharger (e.g., to reduce gravity driven flow of lubricant towards a turbine seal bore).
As an example, a turbocharger can include one or more features that provide for an increase in mount angle with little to no impact on risk of lubricant leakage (e.g., via a turbine seal). As mentioned, a feature may be a slinger. For example, consider an arched slinger configured to throw lubricant purposefully into a center housing lubricant cavity. In such an example, the slinger may include a secondary slinger on an outside diameter for additional lubricant control. As another example of a feature consider a notch in a bottom lip of a seal bore interior to drain lubricant that may get axially past the slinger (e.g., toward a turbine). As an example, consider a labyrinth cavity that may be created behind a slinger via use of seal components that cooperate with respect to a shaft and one or more center housing seal bore features.
As an example, a slinger may function as a “disassembly support” to a ball bearing cartridge, for example, such that risk of damage of a bearing cartridge and its internal components is reduced during disassembly.
As an example, a turbocharger may include a piston ring groove insert that can position a piston ring (e.g., as a seal element) between a slinger and a surface of a shaft and wheel assembly. In such an example, the piston ring groove insert may be a bushing that has one or more inner diameters and an annular groove defined by one or more outer diameters. As an example, a slinger, a bushing and a piston ring (e.g., or other seal element) may be positioned in a manner to facilitate evacuation of a labyrinth cavity.
As an example, a slinger and/or a bushing may be manufactured using machining and/or grinding techniques. As an example, a center housing may be manufactured in part using casting and/or machining and/or welding. As an example, a turbocharger may be characterized at least in part by an installation angle, which may be referred to as a tilt angle or inclination angle with respect to gravity (e.g., or with respect to horizontal; see, e.g.,
As an example, a turbocharger can include a slinger with shaped circumference where the slinger is disposed between a bearing cartridge seated in a through bore of a center housing and a turbine end bore of the center housing. As an example, the slinger may be installed via a compressor end bore of a center housing. As an example, a bushing may be installed via a turbine end bore of a center housing and disposed between a face of a shaft and wheel assembly (SWA) and a face of a slinger (e.g., between an axial face of a hub portion of an SWA). As an example, a turbocharger may include a labyrinth arrangement that includes a lip at a top side (e.g., spanning an arc angle) and a drainage area with no lip at a bottom side (e.g., to form an overhang and to form an undercut). In such an example, a slinger may be disposed on a shaft where the slinger includes an outer diameter that exceeds an inner diameter of a bore formed at least in part by the lip. As an example, a slinger may be sized sufficient to, during disassembly, assure that its outer radius will be held by a center housing and that its inner radius can act to force an inner race of a bearing cartridge (e.g., a rolling element cartridge) off of a shaft (e.g., of a shaft and turbine wheel assembly). As an example, a bushing may include one or more slinger features (e.g., that act to sling lubricant at least radially outwardly).
In a cutaway view, the center housing 250 is shown as including a compressor side 251, a turbine side 253, a compressor side wall 252, a turbine side wall 254, an upper lubricant inlet boss 256, a lower lubricant outlet boss 258 and a turbine side bore 257 that is formed in the turbine side wall 254. Also shown are a lubricant cavity 260 that is defined by various surfaces, a lubricant inlet opening 271, lubricant passages 273-1 and 273-2, a lubricant outlet opening 279 and a through bore 280.
As shown, lubricant may flow in the center housing 250 via various paths from the lubricant inlet opening 271 to the lubricant outlet opening 279 (e.g., a lubricant drain). Where the center housing 250 is tilted to a non-horizontal angle, lubricant may flow differently in the lubricant cavity 260. For example, lubricant may flow over an edge of the turbine side bore 257 and axially outwardly from the center housing 250. As another example, lubricant may pool and/or flow less rapidly under the influence of gravity from one or more portions of the cavity 260 to the lubricant outlet opening 279. Such behavior may act to increase residence time of lubricant, which may alter heat transfer and/or expose lubricant to increased time-temperature regimes. As an example, risk of coking may increase, which, in turn, may increase risk of build-up, plugging, etc.
As shown in the example of
In the example of
In comparing the center housings 250 and 350, they differ in shape of their respective cavities 260 and 360, particularly with respect to their respective lubricant outlet openings 279 and 379. They also differ with respect to their turbine side walls 254 and 354, particularly about the bore 257 and 357. In the example of
As shown, the wall 354 includes the surface 366, which may be considered to be an annular shaped surface with an axial position. Located axially inwardly from the surface 366 are the surfaces 367, 368 and 369. The surface 367 is an annular surface that slopes radially inwardly to an edge at the surface 368 and to an edge at the surface 369. As shown, the edge 359 defines in part the surface 368 and the surface 369. The surfaces 368 and 369 may be defined by arc angles, which may sum to approximately 360 degrees (e.g., of a “whole” housing, noting that the cutaway view of
As an example, a turbocharger assembly can include the housing 350, which includes a bearing bore (e.g., as part of the through bore 380 that includes the surface 381) that can receive at least one rolling element bearing; and a turbine side bore 357 (e.g., as a portion of the through bore 380) that extends from an interior of the housing 350 to an exterior of the housing 350 (e.g., from an interior surface to an exterior surface) and where the turbine side bore 357 includes an interior side overhang 370. In such an example, the overhang 370 can include an arc angle less than about 360 degrees, an axial dimension and a radial dimension. As an example, the arc angle may be greater than about 180 degrees (e.g., in a range between about 180 degrees and about 350 degrees).
As an example, a turbocharger assembly can include the housing 350, which includes a bearing bore surface 381 as defining a portion of the through bore 380 that can receive at least one rolling element bearing; and a turbine side bore 357 (e.g., as a portion of the through bore 380) that extends from an interior of the housing 350 to an exterior of the housing 350 (e.g., from an interior surface to an exterior surface) and where the turbine side bore 357 includes an interior side undercut 377. In such an example, the undercut 377 can include an arc angle of less than about 180 degrees. For example, consider an arc angle in a range from about 10 degrees to about 180 degrees. As an example, an undercut may be defined by a depth (e.g., an axial depth) with respect to another surface, which may be, for example, a surface associated with an overhang (e.g., consider the overhang 370).
As an example, the assembly 700 can include the shaft 320 having a rotational axis where the shaft 320 includes turbine wheel 340 and where the turbine wheel 340 includes a hub portion 324. In such an example, the bearing 330 can include an outer race 332, an inner race 334 operatively coupled to the shaft 320, and rolling elements 336 disposed between the inner race 334 and the outer race 332 where an inner radius of the outer race 332 and an outer radius of the inner race 334 define a radial gap 339. In such an example, a lubricant slinger 910 can be disposed axially between the inner race 334 and the hub portion 324 of the turbine wheel 340 where the lubricant slinger 910 includes a surface 916 that faces and slopes away from the radial gap 339.
As an example, a rolling element bearing may include a component that acts to space one or more rolling elements. For example, consider a ring or ball separator that includes openings where individual balls are received by respective individual openings. In such an example, the ring or ball separator may rotate, which may be at a rotational speed that differs from that of an inner race and/or an outer race of the rolling element bearing.
In the example assembly 700 of
As an example, a slinger may include a through bore that may be stepped such that it includes at least one shoulder, which may be a curved shoulder. For example, consider a step from the bore 911 to the bore 915 where the bore 913 is a curved shoulder of increasing radius with respect to increasing axial dimension in a direction from the bore 911 to the bore 915. Such a shoulder may be configured to seat a surface of a shaft, which may be a curved surface. As an example, a slinger may be fit to a shaft via an interference fit. As an example, such an interference fit may be of lesser fitting force than between a shaft and an inner race of a bearing cartridge.
During operation of a turbocharger that includes a turbine-side slinger such as the slinger 910, rotation of a shaft and wheel assembly may cause rotation of the slinger. With respect to the slinger 910, consider lubricant being directed at least in part axially toward the surface 916. During operation, where such lubricant contacts the surface 916 (e.g., or a lubricant film carried thereon), the rotational motion of the slinger 910 will direct the lubricant at least in part radially outwardly. The surface 916 may be considered akin to a reverse banked curve that readily slings lubricant that comes in contact with the surface 916 (e.g., directly or indirectly) radially outwardly therefrom.
As an example, a slinger may include a flat surface. In such an example, lubricant that comes in contact with the flat surface (e.g., directly or indirectly) may progress along the surface radially outwardly until reaching the end of the flat surface at which point it may be slung radially outwardly away from the flat surface of the slinger. While such motion of lubricant may occur with a curved surface (e.g., consider the surface 916), a curved surface has an axial dimension (e.g., a Δz) from which lubricant may be slung prior to reaching radial end of the curved surface. As an example, a slinger may include one or more flat surfaces and/or one or more curved surfaces that face a bearing cartridge, for example, to sling lubricant that is ejected at least in part axially outwardly from the bearing cartridge.
As an example, a bushing may include a through bore that may be stepped such that it includes at least one shoulder, which may be a curved shoulder. For example, consider a step formed by the bore 935, which is a curved shoulder of increasing radius with respect to increasing axial dimension in a direction from the bore 933 to the back face 934. Such a shoulder may be configured to seat a surface of a shaft, which may be a curved surface. As an example, a bushing may be fit to a shaft via an interference fit. As an example, such an interference fit may be of greater fitting force than between a shaft and a slinger such as the slinger 910.
In the example of
As an example, a slinger feature of a bushing may be a curved surface. For example, the slinger feature 939 of the bushing 930 may be defined at least in part by a radius that may be at or near an edge of the bushing 930 (e.g., machined into an edge). As an example, a conical or other shaped annular chamfer portion may be at an inner radius that joins a radius of a curved surface (see, e.g., the feature 939 as including a conical portion that extends over an axial dimension and a radial dimension and that joins the radiused portion of the feature 939).
As an example, the lubricant slinger 910 may rotate at the same speed as a shaft of a turbocharger assembly. As an example, a lubricant slinger 910 may contact a shaft over an axial distance that is less than an axial length of the lubricant slinger 910. In such an example, the axial distance being less than the axial length may act to reduce heat transfer from the shaft to the lubricant slinger 910.
As an example, a lubricant slinger may be constructed of a metal, an alloy, etc. For example, consider a lubricant slinger constructed from steel. As an example, a component that may sit adjacent to a lubricant slinger may be constructed from a metal, an alloy, etc. For example, the component 930 may be constructed from an alloy such as an INCONEL™. As an example, a seal element may be a piston ring that contacts a component such as the component 930. In such an example, the seal element may be seated at least in part in a groove of the component 930.
As shown in
Referring to
As to the center housing 1150, it includes a profile where a minimum exists with respect to the “lip” portion. Such an arrangement may facilitate drainage of lubricant downwardly rather than over an edge to the surface 369 (see, e.g.,
As an example, lubricant may exist in a lubricant film region that exists in a radial clearance between the surface 381 of the through bore 380 of the center housing 350 and an outer surface of the outer race 332 of the bearing cartridge 330. For example, as shown in
As to the center housing 1150, as shown, lubricant may flow along the surface 366 to the surface 367, which in this instance has a minimum radius that is not at an axial edge. Thus, the lubricant may flow azimuthally around the bore 357 with risk of flow over the edge being reduced (see, e.g., arrow with a cross therethrough). For example, some lubricant may flow clockwise along a groove and some lubricant may flow counter-clockwise in the groove, for example, where the groove is defined in part by a minimum radius that is not at an axial edge. As an example, a bore forming wall may include a portion that extends axially outwardly and that forms an annular channel for flow of lubricant. In such an example, the annular channel may span an arc angle less than about 360 degrees, for example, where an undercut may exist that may span an arc angle of about at least a few degrees. As an example, a housing may include multiple undercuts, for example, consider a housing with two undercuts where each of the undercuts provides a path for lubricant flow away from a turbine side bore.
As an example, a physical labyrinth may form during operation of a turbocharger a labyrinth seal. A labyrinth seal configured with respect to a rotating shaft may provide for relatively non-contact sealing action and at least some control of passage of fluid. As an example, a labyrinth seal may employ centrifugal motion to diminish axial fluid flow. Centrifugal motion generated by a rotating component can force fluid radially outwardly, which, in turn, may lessen axial flow of fluid. As an example, fluid may become entrapped in a labyrinth chamber, where it may be forced into a vortex-like motion, which may act to diminish its escape.
As to the upper side, a portion of the surface 369 extends radially downwardly over an axial dimension (see, e.g., Δr13 and Δz13 of the inset of
As shown in
As to the lower side, where some amount of lubricant flows downward, for example, between and/or along the slinger 910 and the bushing 930, to exit the center housing 350, it may need to follow a tortuous flow path as indicated by the dotted line. As shown, the flow paths are asymmetric in that the upper path(s) are more tortuous than the lower path. As gravity may cause more lubricant to flow to the upper path (e.g., dripping, flowing, etc. downwardly), such an asymmetric approach may be considered and implemented, particularly where a center housing of a turbocharger is to be installed at a tilt angle other than horizontal. For example, as shown in
As an example, a turbocharger can include a center housing that includes a through bore; a bearing cartridge disposed in the through bore; a shaft and turbine wheel assembly rotatably supported by the bearing cartridge; and a slinger disposed axially between the bearing cartridge and the turbine wheel of the shaft and turbine wheel assembly. In such an example, the slinger can include an outer diameter, the bearing cartridge can include an outer diameter and the outer diameter of the slinger can be approximately equal to the outer diameter of the bearing cartridge.
As an example, a lubricant film clearance can exist between a bearing cartridge and a surface of a center housing that defines a through bore.
As an example, a bearing cartridge may include an inner race, an outer race and rolling elements disposed between the inner race and the outer race.
As an example, a turbocharger can include a bushing and a slinger that may form a sub-assembly, optionally together with one or more seal elements (e.g., consider a piston ring).
As an example, a center housing can include a turbine side bore formed in a turbine side wall of the center housing. In such an example, the center housing may include a turbine side bore overhang. As an example, such an overhang may be defined by an arc angle less than 360 degrees where, for example, the arc angle is greater than about 180 degrees. As an example, an overhang may include (e.g., be defined at least in part by) an axial dimension and a radial dimension.
As an example, a center housing can include a turbine side bore formed in a turbine side wall of the center housing. In such an example, the turbine side bore can include an undercut (see, e.g., the surface 368 of
As an example, a turbocharger can include a center housing that includes a turbine side wall that includes a turbine side bore where the turbine side bore includes an overhang portion and an undercut portion. In such an example, the overhang portion and the undercut portion may be defined by respective arc angles where the arc angles may sum to about 360 degrees.
As an example, a method can include operating a turbocharger; directing lubricant at least in part axially outwardly from a lubricant film disposed between an outer race of a bearing cartridge and a surface of a through bore of a center housing of the turbocharger; and directing at least a portion of the lubricant radially outwardly via a rotating slinger. In such a method, operating the turbocharger may include operating the turbocharger with a rotational axis disposed at a non-horizontal angle with a turbine side of the turbocharger down and a compressor side of the turbocharger up (e.g., with respect to gravity). In such an example, the angle may be an angle greater than about 5 degrees, an angle greater than about 10 degrees, an angle greater than about 15 degrees, or an angle greater than about 20 degrees.
As an example, a turbocharger can include a center housing that includes a through bore formed in part by a turbine side wall that includes a turbine side bore; a bearing cartridge disposed in the through bore; a shaft and turbine wheel assembly rotatably supported by the bearing cartridge; and a slinger disposed axially between the bearing cartridge and the turbine wheel of the shaft and turbine wheel assembly where the slinger includes an outer diameter that exceeds a diameter of the turbine side bore. In such an example, the slinger can include a front face that faces a turbine end of the bearing cartridge. In such an example, the bearing cartridge can include an inner race that, at the turbine end of the bearing cartridge, contacts the front face of the slinger. Such an arrangement may, for example, facilitate extraction of a shaft from the inner race of the cartridge where a back face of the slinger may bind against the turbine side wall.
As an example, a center housing for a turbocharger can include a through bore formed in part by a turbine side wall that includes a turbine side bore. In such an example, the turbine side bore may include an overhang. For example, an overhang may be defined by an arc angle less than 360 degrees (e.g., consider an arc angle of greater than about 180 degrees). As an example, an overhang may include an axial dimension and a radial dimension. As an example, an overhang may act to direct lubricant away from an opening of a turbine side bore.
As an example, a center housing for a turbocharger can include a through bore formed in part by a turbine side wall that includes a turbine side bore where the turbine side bore includes an undercut. In such an example, the undercut may be defined by an arc angle less than 360 degrees (e.g., consider an arc angle of less than about 180 degrees).
As an example, a center housing for a turbocharger can include a through bore formed in part by a turbine side wall that includes a turbine side bore where the turbine side bore includes an overhang portion and an undercut portion.
As an example, a turbocharger can include a center housing that includes a through bore; a bearing cartridge disposed in the through bore; a shaft and turbine wheel assembly rotatably supported by the bearing cartridge; and a bushing disposed axially between the bearing cartridge and the turbine wheel of the shaft and turbine wheel assembly where the bushing includes an annular groove to seat a seal element and where the bushing includes at least one lubricant slinger feature. As an example, consider the bushing 930 of
As an example, a turbocharger assembly can include a shaft having a rotational axis where the shaft includes a turbine wheel that includes a hub portion; a bearing that includes an outer race, an inner race operatively coupled to the shaft, and rolling elements disposed between the inner race and the outer race where an inner radius of the outer race and an outer radius of the inner race define a radial gap; and a lubricant slinger disposed axially between the inner race and the hub portion of the turbine wheel where the lubricant slinger includes a surface that faces and slopes away from the radial gap. In such an example, the surface of the lubricant slinger can be or include an annular surface.
As an example, a surface of a lubricant slinger can include a slope defined between a first point at a first radius and a second point at a second, larger radius that exceeds the inner radius of the outer race. As an example, a surface of a lubricant slinger can be a curved surface (e.g., that faces a gap). As an example, a surface of a lubricant slinger can extend to a maximum radius of the lubricant slinger. As an example, a surface of a lubricant slinger can extend from a radius of an axially facing surface of the lubricant slinger.
As an example, a lubricant slinger can include an annular groove, which may be, for example, about an edge of the lubricant slinger. As an example, an annular groove of a lubricant slinger can include a minimum radius that exceeds an outer radius of an inner race of a rolling element bearing. As an example, an annular groove of a lubricant slinger can include a minimum radius that exceeds an inner radius of an outer race of a rolling element bearing.
As an example, a rolling element bearing and a lubricant slinger can form a substantially V-shaped annular lubricant passage. In such an example, the passage may be in fluid communication with a gap such as where an inner radius of an outer race and an outer radius of an inner race define a radial gap.
As an example, a lubricant slinger may be operatively coupled to a shaft. As an example, a lubricant slinger may be in contact with an inner race of a rolling element bearing and may be in contact with another component. In such an example, the lubricant slinger may be axially located by the inner race and the other component and, for example, rotate at the same speed as the inner race and the other component.
As an example, a turbocharger assembly can include a seal component disposed axially between a lubricant slinger and a hub portion of a turbine wheel. In such an example, the seal component can include an annular groove that receives a seal element (e.g., the turbocharger assembly can include the seal element). As an example, a seal component may include a plurality of annular grooves where at least one of the annular grooves receives at least one seal element (e.g., a piston ring, an O-ring, etc.).
As an example, a turbocharger assembly can include a bearing housing that includes a bore that receives at least a portion of a bearing (e.g., a rolling element bearing). In such an example, the bearing housing can include a turbine side bore and the assembly can include a seal component disposed axially between a lubricant slinger and a hub portion of a turbine wheel and at least partially within the turbine side bore.
As an example, a bearing housing can include a wall that defines a turbine side bore where the wall includes a first wall thickness that defines a first axial clearance with respect to a surface of the lubricant slinger and a second wall thickness that defines a second, greater axial clearance with respect to the surface of the lubricant slinger.
As an example, a turbocharger assembly can include a housing that includes a bearing bore that receives at least one rolling element bearing; and a turbine side bore that extends from an interior of the housing to an exterior of the housing and where the turbine side bore includes an interior side overhang. In such an example, the overhang can have an arc angle less than 360 degrees, which may be, for example, an arc angle of greater than about 180 degrees. As an example, an overhang can include an axial dimension and a radial dimension. As an example, a turbine side bore can include an overhang and an undercut.
As an example, a turbocharger assembly can include a housing that includes a bearing bore that receives at least one rolling element bearing; and a turbine side bore that extends from an interior of the housing to an exterior of the housing and where the turbine side bore includes an interior side undercut. In such an example, the undercut can have an arc angle less than 360 degrees, which may be, for example, an arc angle of less than about 180 degrees. As an example, a turbine side bore can include an interior side overhang and an interior side undercut. In such an example, the interior side overhang may have an arc angle greater than about 180 degrees and the interior side undercut may have an arc angle less than about 180 degrees. As an example, an interior side overhang and an interior side undercut may include respective arc angles that sum to about 360 degrees.
Although some examples of methods, devices, systems, arrangements, etc., have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the example embodiments disclosed are not limiting, but are capable of numerous rearrangements, modifications and substitutions.
Patent | Priority | Assignee | Title |
11959388, | Oct 18 2018 | TURBO SYSTEMS SWITZERLAND LTD | Turbocharger having improved shaft seal |
11971054, | Oct 19 2020 | General Electric Company | Damping device for damping shaft vibration |
Patent | Priority | Assignee | Title |
2709567, | |||
3494679, | |||
4708602, | May 30 1985 | Teledyne Technologies Incorporated | Lubrication system for a turbocharger |
4789253, | Jan 30 1987 | BBC Brown Boveri AG | Axially pre-tensioned rolling contact bearing arrangement |
4943170, | Apr 26 1988 | NISSAN MOTOR CO , LTD | Bearing holding arrangement in supercharger |
5870894, | Jul 16 1996 | TURBODYNE SYSTEMS, INC , A NEVADA CORP | Motor-assisted supercharging devices for internal combustion engines |
6032466, | Jul 16 1996 | Turbodyne Systems, Inc. | Motor-assisted turbochargers for internal combustion engines |
6338614, | Oct 06 2000 | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | Turbocharger annular seal gland |
20100175377, | |||
20100180589, | |||
20150330240, | |||
20160160872, | |||
EP339601, | |||
EP801217, | |||
GB2200696, | |||
GB2248278, | |||
JP2010133266, | |||
JP2011111900, | |||
JP639430, | |||
WO8200865, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 07 2015 | KOCHER, RYAN MATTHEW | Honeywell International Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035595 | /0918 | |
May 08 2015 | Honeywell International Inc. | (assignment on the face of the patent) | / | |||
Jul 28 2018 | Honeywell International Inc | GARRETT TRANSPORATION I INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046734 | /0134 | |
Sep 27 2018 | GARRETT TRANSPORTATION I INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047172 | /0220 | |
Jan 14 2021 | JPMORGAN CHASE BANK, N A , AS RESIGNING ADMINISTRATIVE AND COLLATERAL AGENT | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 055008 | /0263 | |
Apr 30 2021 | GARRETT TRANSPORTATION I INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 056111 | /0583 | |
Apr 30 2021 | GARRETT TRANSPORTATION I INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE THE TYPOS IN THE APPLICATION NUMBER PREVIOUSLY RECORDED AT REEL: 056111 FRAME: 0583 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 059250 | /0792 | |
Apr 30 2021 | WILMINGTON SAVINGS FUND SOCIETY, FSB | GARRETT TRANSPORTATION I INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056427 | /0298 |
Date | Maintenance Fee Events |
Nov 23 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 05 2021 | 4 years fee payment window open |
Dec 05 2021 | 6 months grace period start (w surcharge) |
Jun 05 2022 | patent expiry (for year 4) |
Jun 05 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2025 | 8 years fee payment window open |
Dec 05 2025 | 6 months grace period start (w surcharge) |
Jun 05 2026 | patent expiry (for year 8) |
Jun 05 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2029 | 12 years fee payment window open |
Dec 05 2029 | 6 months grace period start (w surcharge) |
Jun 05 2030 | patent expiry (for year 12) |
Jun 05 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |